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Abstract

A scheme for introducing mountain wave-induced temperature pertubations in a mi-
crophysical PSC model has been developed. A data set of temperature fluctuations
attributable to mountain waves as computed by the Mountain Wave Forecast Model
(MWFM-2) has been used for the study. The PSC model has variable microphysics,5

enabling different nucleation mechanisms for nitric acid trihydrate, NAT, to be employed.
In particular, the difference between the formation of NAT and ice particles in a sce-
nario where NAT formation is not dependent on preexisting ice particles, allowing NAT
to form at temperatures above the ice frost point, Tice, and a scenario, where NAT nu-
cleation is dependent on preexisting ice particles, is examined. The performance of10

the microphysical model in the different microphysical scenarios and a number of tem-
perature scenarios with and without the influence of mountain waves is tested through
comparisons with lidar measurements of PSCs made from the NASA DC-8 on 23 and
25 January during the SOLVE/THESEO 2000 campaign in the 1999–2000 winter and
the effect of mountain waves on local PSC production is evaluated in the different mi-15

crophysical scenarios. Mountain wave-induced temperature fluctuations are introduced
in vortex-covering model runs, extending the full 1999–2000 winter season, and the ef-
fect of mountain waves on large-scale PSC production is estimated in the different
microphysical scenarios.

1. Introduction20

Polar stratospheric clouds (PSCs) are known to be of vital importance to ozone-
depleting processes in the polar regions (Tolbert and Toon, 2001). In particular, the
formation of solid PSC particles (ice and nitric acid trihydrate (NAT) particles) is im-
portant since these particles may grow large enough for gravitational sedimentation to
have an impact, thereby depleting the stratosphere of water and nitrogen compounds.25

The removal of these compounds serves to enhance the ozone-depleting conditions
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(WMO, 1999).
In the northern polar stratosphere synoptic temperatures usually hover around the

existence temperature for NAT (WMO, 1999). Consequently, the additional cooling
caused by mountain waves may be of importance to the production of solid PSC types
in the northern polar vortex. Mountain waves are known to cause the formation of solid5

PSC types (Carslaw et al., 1998a,b) and the locally produced solid PSCs may exist
at vast distances downstream (Carslaw et al., 1999). In order to be able to produce
reasonable estimates of the load of solid type PSCs in the Arctic, it is therefore impor-
tant to be able to evaluate the amount of PSCs produced in mountain waves compared
to the amount of synoptically produced PSCs. In the present study, a method for in-10

corporating mountain wave effects in microphysical PSC simulations on local as well
as synoptic scales has been developed, thereby allowing for an estimate of the impor-
tance of mountain wave effects on the PSC load. In Sect. 2 the microphysical model
used for this study is presented and the method for including mountain wave effects
in the simulations is introduced in Sect. 2.1. Next, comparisons between lidar mea-15

surements of PSCs and model runs with and without mountain waves are presented in
Sect. 3. Finally, in Sect. 4 the influence of mountain waves on the production of solid
PSCs inside the vortex is evaluated for the winter 1999–2000.

2. The Microphysical model

Simulations of the PSC production have been made using the Danish Meteorological20

Institute microphysical PSC model (Larsen, 1991, 2000). The core of the PSC model
is a box model which for a given time step calculates the changes in size distributions,
chemical composition, and physical phase of an ensemble of particle types. The in-
put to the box model at each time step is the temperature, pressure, partial pressures
of H2O and HNO3, the current number densities, and the amount of bound acid and25

water in each size bin of the different aerosol types, and the box model returns new
values of these parameters in each size bin. Mixtures of four different particle types
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are recognised by the model: 1) Liquid particles assumed to be sulphate aerosols
turning into supercooled ternary H2O-H2SO4-HNO3 solutions (STS) at low tempera-
tures through uptake of HNO3 and H2O. 2) Frozen sulphate aerosols assumed to be
sulphuric acid tetrahydrate, SAT. 3) NAT particles with inclusions of SAT and 4) ice
particles with inclusions of NAT and SAT. Each of the four different particle types has5

its own size distribution. The size distributions are discretized into N size bins on a
geometric volume scale. Within a given size distribution particles are shifted to higher
or lower radius bins through vapour deposition and evaporation. When phase transi-
tions occur (e.g. all NAT evaporating to form a SAT particle) particles are transferred
from one size distribution to another. During this transfer the particles are assumed10

to have an unaltered radius. When calculating the evaporation and condensational
growth of liquid, NAT, and ice particles, vapour pressures over STS are taken from Luo
et al. (1995), vapour pressures over NAT are taken from Hanson and Mauersberger
(1988), and vapour pressures over ice are taken from Marti and Mauersberger (1993).
Ice particles form by homogeneous nucleation out of STS solutions at temperatures15

3–4 K below the ice frost point, Tice, and a homogeneous nucleation rate, derived from
experimental data, is used in the simulations (Koop et al., 2000).
Recently, studies have been published indicating the need for a freezing process ac-
tive above Tice in order to explain observations of solid PSC particles (Drdla et al.,
2002; Pagan et al., 2004). As an example of a NAT nucleation mechanism capable20

of generating NAT at temperatures above the ice frost point, NAT nucleation in the
present study is described by the nucleation rate of nitric acid dihydrate, NAD, found
in Tabazadeh et al. (2002) (assuming an instantaneous conversion of NAD particles to
NAT), although corrected by a factor of 0.1 in order to comply with restrictions posed by
observations of particle size distributions and gas phase mixing ratios of HNO3 accord-25

ing to the findings in Larsen et al. (2004). Whether this particular nucleation mechanism
alone is responsible for any NAT formation at temperatures above Tice or whether other
nucleation mechanisms, e.g. heterogeneous nucleation (Drdla et al., 2002), are active
cannot be concluded from the present study, which only addresses the effect of a sin-
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gle proposed nucleation mechanism for NAT which is active above Tice as compared to
a scenario where NAT formation requires the presence of ice particles. Note that the
choice of nucleation mechanism for NAT will affect the formation of ice particles. If NAT
can form at temperatures above the ice frost point, ice may nucleate heterogeneously
on preexisting NAT particles as soon as temperatures drop slightly below Tice instead5

of only forming by homogeneous nucleation at temperatures 3–4 K below Tice.
The model calculates the backscatter ratio and depolarisation at 603 nm based on a

T-matrix calculation code by Mishchenko and Travis (1998). A number of assumptions
about the shape of the particles and their refractive indices are made and the calculated
backscatter ratio and depolarisation are rather sensitive to the choice of these param-10

eters. Hence, the calculated optical variables are only suited for general qualitative
comparisons with the measured data and not for detailed, quantitative comparisons. In
the simulations, refractive indices are set to 1.55 for STS (Adriani et al., 2004), 1.51 for
NAT (Deshler et al., 2000), and 1.31 (Chemical Rubber Company, 1970) for ice. The
particles are assumed to be spheroids with aspect ratios of 1.0 for STS and 1.05 for15

the solid particle types (Carslaw et al., 1998a).
The model is initialised by profiles of HNO3 and H2O and a background population of

sulphuric aerosols. The size distribution of the sulphuric aerosols is based on a SAGE
I and SAGE II (Stratospheric Aerosol and Gas Experiment) surface area climatology
(Hitchman et al., 1994). The HNO3 content is initialised by a LIMS profile (Gille and20

Russell, 1984) and the H2O content is described as a function of the potential temper-
ature, Θ, based on a series of frost point hygrometer measurements in the northern
polar vortex (Ovarlez et al., 2004).

The input to the model is provided by temperature trajectories based on ECMWF
analyses. The calculation of the trajectories uses 6 hourly ECMWF analyses on a25

1.5◦×1.5◦ longitude-latitude grid. The trajectories themselves are calculated on an
equal-area grid with a grid distance of 139 km and start inside or at the edge of the
polar vortex at 9 standard isentropic levels (360 K, 380 K, 400 K, 435 K, 475 K, 515 K,
550 K, 600 K, and 650 K) in the case of the hemispheric simulations and on 11 levels
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(400 K, 425 K, 450 K, 475 K, 500 K, 530 K, 560 K, 590 K, 600 K, 625 K, and 700 K) in
the case of the small-scale simulations. Diabatic cooling is taken into account in the
calculations (Morcrette, 1991; Knudsen and Grooss, 2000; Larsen et al., 2002). At
each point of a trajectory the temperature, pressure, potential temperature, potential
vorticity, latitude, and longitude are given. Depending on the number of trajectories5

and their duration, microphysical simulations on a variety of scales may be performed;
from very detailed model runs closely matching the time and location of different sets
of measurements to vortex-covering simulations extending over entire winter seasons.

2.1. Including mountain wave effects in the simulations

Temperature fluctuations due to mountain waves may influence the formation of solid10

type PSCs (Carslaw et al., 1998a). Climatological studies of the stratosphere over
Scandinavia have shown that practically all ice particle events in this area are at-
tributable to the presence of mountain waves (Dörnbrack and Leutbecher, 2001). In
order to obtain reliable estimates of the PSC load, the inclusion of mountain wave
effects in the modelling of PSCs is crucial. ECMWF reanalyses lack sufficient res-15

olution to resolve the full spectrum of mesoscale mountain waves that occur in the
stratosphere. To provide estimates of mountain wave influences on the PSC load,
mesoscale temperature variances from hindcast runs using Version 2 of the Naval Re-
search Laboratory Mountain Wave Forecast Model (MWFM-2) through global analysis
fields issued by NASA’s Global Modeling and Analysis Office (GMAO) during the Arc-20

tic winter of 1999–2000 are used to supplement the ECMWF temperature trajectories.
Details of the MWFM-2 algorithms are given by Eckermann and Preusse (1999), Hert-
zog et al. (2002) and Jiang et al. (2004). These fields are issued as averaged gridded
wave-induced temperature variance fields on pressure surfaces, derived from the raw
mountain wave ray data generated by the hindcasts, to make them more amenable25

for use in offline transport simulations. The formation and use of this 1999–2000 grid-
ded product is described in detail by Pierce et al. (2003) and Pagan et al. (2004). An
important point to note is that the procedure of avaraging into a gridded variance prod-

4586

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/4/4581/acpd-4-4581_p.pdf
http://www.atmos-chem-phys.org/acpd/4/4581/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
4, 4581–4609, 2004

Influence of
mountain waves and
NAT nucleation on

PSC formation

S. H. Svendsen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

uct tends to significantly suppress typical intra-gridbox variability found within unaver-
aged mountain wave fields (Hertzog et al., 2002; Brogniez et al., 2003) and thus the
data product used in this study should be viewed as a working lower bound on likely
mesoscale temperature variability due to mountain waves. Thus, any microphysical
changes caused by insertion of these mountain wave fields are likely significant.5

In this study, the MWFM-2 fields are used to introduce mountain wave-induced tem-
perature fluctuations into the simulations. The MWFM-2 hindcasts and averaging pro-
duces daily fields of mountain wave-induced temperature fluctuations on a 1◦×1◦ grid,
specifying the amplitude of the temperature fluctuation and the standard deviation of
the temperature amplitude at seven standard pressure levels (10, 20, 30, 40, 50, 70,10

and 100 hPa). Through interpolations in pressure and time the value of the tempera-
ture amplitude and the standard deviation of the temperature amplitude are found at
the nearest grid point of each trajectory position, thereby producing a data base of
mountain wave-induced temperature fluctuations at the times and locations of the tra-
jectories. When running the microphysical simulations, different temperature scenarios15

with and without the inclusion of mountain wave effects can be examined: Case 1:
T=T0, Case 2: T=T0−TA, Case 3: T=T0−TA−Tcorr , where T is the temperature used as
input in the microphysical simulations, T0 is the trajectory temperature according to the
ECMWF reanalysis, TA is the mountain wave-induced temperature amplitude, and Tcorr
is an additional temperature correction, based on temperature restrictions posed by the20

presence of ice particles in observations. This additional correction will be described
in further detail below. Subtraction of the amplitude of the mountain wave perturbation
in cases 2 and 3 corresponds to the maximal lowering of the temperatures and one
should therefore interpret these results as lower limits of the temperature.

3. Comparing model runs and lidar measurements25

Given the high altitude and time resolution of lidar measurements, very detailed infor-
mation about the observed aerosols can be provided by such measurements. In order
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to make comparisons between observations and model results, it is important to en-
sure that the model results closely match the time and location of the measurements.
In the present study, lidar data from the NASA DC-8 flights of 23 and 25 January 2000,
during the SOLVE/THESEO 2000 campaign have been considered. A summary of the
campaign can be found in Newman et al. (2002). A description of the lidar system5

used for the measurements can be found in Browell (1989) and Browell et al. (1990).
Sets of back trajectories have been initiated along the flight tracks. Running these tra-
jectories produces information about the aerosol at the position and time of the lidar
measurements according to the microphysical model.

The presence of ice particles in the observations poses restrictions on the temper-10

atures. In areas where ice is observed, the temperature must necessarily be equal to
or colder than the ice frost point, Tice. Aerosol backscatter ratios at 603 nm greater
than 5.0 with enhanced depolarisation (>2.5%) are considered to be ice particles in
the DC-8 data. By keeping track of the times and altitudes where ice particles are
observed, one may compare the model temperatures in these areas to Tice. The ice15

correction Tcorr is determined as the average difference between the trajectory temper-
ature and Tice in those areas where ice particles are observed. It is assumed that the
additional temperature correction is associated with an under-estimation of the moun-
tain wave-induced temperature fluctuations and Tcorr is only introduced if the mountain
wave-induced temperature amplitude TA exceeds a value of 0.5 K. The value of Tcorr20

is found to be 1.16 K for 23 January 2000, and 3.70 K for 25 January 2000. Compar-
isons of the measured and calculated backscatter ratio and depolaristion at 603 nm for
the three different temperature scenarios are shown in Figs. 1 and 2 for 23 January
2000, whereas Figs. 3 and 4 show the measured and calculated backscatter ratio and
depolarisation at 603 nm for 25 January 2000. NAT nucleation above Tice has been25

included in the simulations. In the figures, the upper left panel shows the measure-
ment data. The upper right panel shows model results from the T=T0 scenario, the
lower right panel shows the results from the T=T0−TA scenario and the results from the
T=T0−TA−Tcorr scenario are shown in the lower left panel. For both of the flights con-
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sidered here, changes can be seen in the calculated backscatter ratio as well as the
depolarisation when the effect of mountain waves is taken into consideration. Consid-
ering the backscatter ratios one can see that the model reproduces the various fields
of aerosols seen in the observations. Including the effect of mountain waves increases
the peak values as well as the spatial spread of the backscatter ratio, indicating larger5

aerosol formation in these cases. In particular, the changes in the depolarisation are
of interest since such changes can be directly linked to changes in the amount of
solid particles present in the model. When considering the backscatter ratio and de-
polarisation the inclusion of the effect of mountain waves apparently produces a better
correspondence between the observed and the calculated quantities.10

It is possible to make a quantitative comparison of the amount of solid particles
produced by the model and the amount of solid particles found in the observations. In
the case of the observations, type distinction is made by considering the backscatter
ratio and the depolarisation. Such a type distinction is only possible when both the
backscatter ratio and the depolarisation are available and, hence, the type of statistics15

presented here only represents the areas where both types of data are present. Points
where the backscatter ratio B lies in the interval 0.18≤B≤5.0 and the depolarisation D
is larger than 2.5% are classified as type 1a PSCs whereas points where 5.0<B and
2.5%<D are classified as type 2 PSCs and points where the depolarisation is smaller
than 2.5% and the backscatter ratio is higher than 0.18 (0.18<B and D<2.5%) are20

considered to be type 1b PSCs. A data point is classified as containing NAT or ice as
soon as the lidar data indicates the mere presence of type 1a or 2 PSCs and does
not take into account whether or not the solid particles actually dominate the probed
air mass. Liquid particles may thus be present as well in points classified as either
NAT or ice. The percentages of data points containing solid particles according to this25

classification scheme should therefore be considered an upper limit of the solid particle
presence in the probed air mass.

In order to be able to compare model data and observations, it is necessary to isolate
the areas in the model data which correspond to the sections of the observations where
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both backscatter ratios and depolarisations are available. For these sections of the
model data it is investigated whether or not any solid PSC particles are present and the
percentage of model points containing either NAT or ice particles can be determined.
A model data point is said to contain ice or NAT if the volume density of the given
particle type is larger than zero. Again, this classification scheme does not address5

the question of which particle type (liquid or solid) actually dominates the profile, it
merely provides an upper limit to the amount of NAT and ice particles produced in
the simulation, in agreement with the classification scheme used for the observational
data. The percentage of ice and NAT in the observational data (red columns) and in
the simulations is shown in Figs. 5 and 6 for 23 January 2000, and in Figs. 7 and 8 for10

25 January 2000. In the figures, the percentages of NAT and ice particles in the model
data are determined for two sets of model data: one where NAT nucleation above
Tice is allowed as described earlier in this paper (blue columns), and one where NAT
nucleation above Tice is not allowed (green columns). In the latter case, NAT forms on
preexisting ice particles.15

For both 23 and 25 January 2000, the percentage of NAT particles in the model
data shows the best correspondence with the measurements when NAT nucleation
above Tice is included (see Figs. 5 and 7) than when this is not the case. When NAT
nucleation above Tice is included in the microphysics the percentage of NAT in the
model data is comparable to the percentage of NAT in the observations whereas the20

percentage of NAT in the case where NAT nucleation above Tice is not included is
much smaller than the observed values. In the case of the NAT particles, the influence
of mountain waves does not seem to be very large in the case where NAT nucleation
above Tice is included; only small changes are seen in the NAT percentage when going
from one temperature scenario to another. For both the days considered here, the25

synoptic temperatures alone were sufficient to generate the majority of the observed
NAT particles and in such cold cases where the synoptic temperatures already are
below TNAT any additional mountain wave cooling will not cause any large changes. In
other cases, where the synoptic temperatures are warmer, mountain wave cooling may
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have a larger influence on the amount of NAT particles.
In a recent study it was established that NAT observations from the early part of

the winter 1999–2000 could not be explained by the presence of mountain waves and
that some NAT nucleation mechanism active above the ice frost point was necessary
in order to explain the observations (Pagan et al., 2004). The present work supports5

this conclusion since, even in the presence of mountain waves, the amount of NAT
particles produced when there is no NAT nucleation above Tice does not correspond to
the amount of NAT particles seen in observations. When NAT nucleation above Tice is
active a better correspondence between observational data and model data is seen.

In the case of the ice particles, the influence of mountain waves is much larger,10

see Figs. 6 and 8. In this case, practically no ice particles are seen in the model
data when the synoptic temperatures alone are taken into consideration, regardless
of the choice of microphysics. This is in agreement with the findings of Dörnbrack
and Leutbecher (2001), where a climatological study indicated an almost complete
dependence on mountain waves for the ice particle production over Scandinavia. When15

mountain wave effects are included ice particles are seen in the model data, although
the percentage of ice in the intermediate mountain wave scenario is very small in the
case where NAT nucleation above Tice is included and no ice particles are seen at all
in the case where NAT nucleation above Tice is not included. In the strongest mountain
wave scenario (T=T0−TA−Tcorr ) there is a significant increase in the percentage of ice20

particles in the case where NAT nucleation above Tice is included. In the case of 23
January 2000, the percentage of ice particles in this scenario is comparable to the
observed percentage of ice particles, whereas for 25 January 2000, the percentage
of ice particles in the model data is too high. When NAT nucleation above Tice is not
included only very little ice is seen in the case of 23 January 2000, and in the case of 2525

January 2000, the percentage of ice particles is larger than the observed percentage.
The fact that the model overestimates the percentage of ice particles on 25 January
2000, regardless of the choice of microphysics, may be an indication that the value of
Tcorr is too large in this case. The influence of the choice of NAT nucleation mechanism
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on the percentage of ice particles is not surprising; when NAT particles are present, ice
may nucleate heterogeneously as soon as small supersaturations with respect to ice
occur, whereas much larger supersaturations are needed in order for homogeneous
nucleation of ice particles to take place. Overall, the correspondence between the
percentage of ice particles in the model data and in the observations seems to be best5

when NAT nucleation above Tice is taken into consideration, as was the case for the
NAT particles. However, in the case of the ice particles, the impact of mountain waves
is much larger compared to the NAT particles. Ice particles seem to form exclusively
as a consequence of mountain wave effects, regardless of the choice of microphysics.

4. The influence of mountain waves on large-scale PSC production10

In Sect. 3 it was shown that mountain waves may have a significant influence on the
amount of ice particles and that the inclusion of mountain wave effects was necessary
in order to be able to produce amounts of ice PSC events comparable to those seen in
lidar observations. In addition, it was seen that including a NAT nucleation mechanism
which is active above Tice in the simulations resulted in a better correspondence be-15

tween the amount of NAT and ice particles in the observations and the model output.
The apparent importance of mountain waves on ice PSC production and of the choice
of NAT nucleation mechanism on production of NAT and ice on local scales naturally
leads to the question of the influence of mountain waves and NAT nucleation above Tice
on large-scale PSC production. In order to address this issue vortex-covering model20

runs extending from 15 November 1999 to 15 March 2000, have been made. A set of
19 140 trajectories, distributed over 9 isentropic levels, is initiated on 11 January 2000,
and calculated backwards and forwards in time, thereby covering the entire winter sea-
son. The model is run for three different temperature scenarios, one unperturbed by
mountain waves and two with increasingly stronger mountain wave corrections as de-25

scribed in Sect. 2.1. In the case of the hemispheric simulation, a direct estimate of Tcorr
is not possible and instead, an average of the two values found for 23 and 25 January
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2000, is used (Tcorr=2.4 in the hemispheric runs). Two microphysical scenarios are
tested as well, one where NAT nucleation above Tice is included and one where this is
not the case.

Initially, the influence of mountain waves on the temperatures is examined by
analysing the trajectory data and determining the percentage of the trajectories where5

the temperature drops below either TNAT or Tice as a function of day number. This
provides an estimate of the amount of trajectories where NAT or ice particles can pos-
sibly exist. In Fig. 9 these percentages are shown for three different model layers.
An ample amount of trajectories is seen to have temperatures below TNAT even with-
out the presence of mountain waves. However, the percentage of trajectories where10

T<TNAT increases as mountain wave effects are taken into consideration, with the high-
est trajectory frequencies adhering to the strongest possible temperature perturbation
(T=T0−TA−Tcorr ). In the case of trajectories where T<Tice only a small amount of
trajectories fulfills this criterion when mountain wave effects are not taken into consid-
eration. In this case, temperatures below Tice are only observed briefly just before day15

0 and just before day 30 and 40. When mountain wave-induced temperature fluctua-
tions are included the number of trajectories where T<Tice increases and temperatures
below Tice are seen over extended periods of time during the winter season, although
the numbers typically are small (<0.5%), with the highest values reaching around 4%.
Again, the highest trajectory frequencies are observed in the case where the strongest20

possible temperature perturbation is employed. As mentioned earlier, these results can
only provide an estimate of the possible existence of NAT and ice particles. In order to
evaluate the actual load of NAT and ice particles one must examine the outcome of the
full microphysical simulation.

The percentage of trajectories containing NAT or ice particles within the polar vor-25

tex as a function of day number according to the microphysical simulation is shown in
Fig. 10. Results are shown for three different temperature scenarios and for two dif-
ferent choices of microphysics. In the present analysis, a trajectory is said to contain
ice or NAT if the volume density of these particle types exceeds zero. This is a very
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liberal definition of the presence of ice or NAT. However, it is consistent with the criteria
chosen for the particle type specification used in the comparison of the DC-8 measure-
ments and the local-scale model runs. In the case of NAT, it is seen that NAT forms
readily as a consequence of the synoptic conditions alone when NAT nucleation above
Tice is allowed (solid curves). When this is not the case no NAT particles are seen5

(dotted curves). When mountain wave effects are included the period during which
NAT particles are seen starts earlier in the winter compared to the case where moun-
tain wave effects were not included. In the cases where mountain wave effects are
taken into account NAT is readily seen throughout the winter, regardless of the choice
of microphysics, although the percentage of trajectories containing NAT is consistently10

higher in the case where NAT nucleation above Tice is included.
The importance of mountain wave effects for NAT formation seems much larger in

the hemispheric simulations than in the local ones. This could be because the synoptic
temperatures alone are generally well below TNAT in the local scale simulations. If the
additional cooling caused by mountain waves is not sufficient to lower the temperatures15

below Tice, the addition of mountain wave effects will not cause many changes. Doing
local scale model runs in relatively warmer periods (e.g. the early part of the winter)
may reveal a greater impact of mountain waves on NAT formation on local scales as
well.

Considering the ice particles it is evident that, regardless of the choice of micro-20

physics, practically no ice particles form as a consequence of the synoptic conditions
alone, as was the case in the local-scale model runs as well. When mountain wave
effects are included the percentage of trajectories containing ice particles increases
noticeably, and trajectories containing ice particles are observed throughout the winter
season. When NAT nucleation above Tice is included (solid curves) the percentage is25

higher than in the case where NAT nucleation above Tice is not allowed (dotted curves).
These results are in agreement with the findings of Dörnbrack and Leutbecher (2001)
who found that practically all ice particle formation over Scandinavia was a conse-
quence of mountain wave activity.
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As seen above the effect of localised mountain wave effects may extend beyond their
local scale. In hemispheric model runs where mountain wave effects have been in-
cluded NAT particle production is seen to increase and practically all the ice particles
produced in the simulations can be directly attributed to the effect of mountain waves.

5. Conclusions5

Detailed model runs matching lidar measurements from two specific flight days (23 and
25 January 2000) of the NASA DC-8 during SOLVE/THESEO 2000 have been anal-
ysed and the correspondence between model data and observational data has been
examined. Considering a quantitative analysis of the percentage of data points con-
taining ice or NAT particles the correspondence is better when NAT nucleation above10

Tice is allowed than when this is not the case. In the case of the local scale model
runs the amount of NAT particles is only slightly affected by the inclusion of mountain
wave effects in the simulations, whereas mountain waves have a noticeable impact on
the amount of ice particles. In the latter case, the correspondence between measure-
ments and model data increases greatly when mountain waves are added. The limited15

effect of mountain waves on NAT formation in the two sets of examined DC-8 data
may be due to the fact that the synoptic temperatures alone are rather low; substantial
amounts of NAT are seen as a consequence of the synoptic conditions alone. Any
additional cooling is not likely to result in significant changes unless the cooling results
in temperatures below Tice.20

In the case of large-scale model runs the effect of mountain waves on the solid
particle production within the entire northern polar vortex over the course of the win-
ter season 1999–2000 was shown to be quite significant. Practically no ice particles
were seen as a consequence of the synoptic conditions alone whereas ice was ob-
served in a substantial amount of the trajectories for extended periods over the course25

of the winter when mountain wave effects were taken into consideration, regardless
of the choice of microphysics. However, the case where NAT nucleation above Tice
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was included consistently showed a higher percentage of trajectories containing ice
particles. NAT particles were seen to form readily as a consequence of the synoptic
conditions alone, however, with the inclusion of mountain wave effects the time period
during which NAT particles were present became longer. As was the case with the
ice particles, the percentage of trajectories containing NAT particles is greater when5

NAT nucleation above Tice was included than when this was not the case. Considering
the hemispheric simulations mountain wave effects seem to have a quite significant
influence on the NAT formation, contrary to what was seen in the two local-scale simu-
lations matching DC-8 flights examined here. A possible explanation could be that the
synoptic temperatures alone were low enough to allow for NAT formation during these10

two flights. Additional local-scale model runs from relatively warmer flight dates (e.g.
early in the winter) could help shed some more light on this.

Given the large effect mountain waves apparently had on ice and NAT formation
on hemispheric scales during the winter 1999–2000, the inclusion of mountain waves
in models seems important in order to be able to provide accurate estimates of the15

PSC load within the vortex. It would be most interesting to determine whether or not
the impact of mountain waves is as pronounced in other winters as well and such an
examination is planned for a future study.
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Fig. 1. Measured and calculated backscatter ratio at 603 nm for 23 January 2000. Grey areas
in the plots of measured data represent valid data with values less than the minimum threshold
value for particle presence whereas white areas indicate lack of valid data. Each panel is
labelled as either measurements or model results from one of the three different temperature
scenarios.
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Fig. 2. Measured and calculated depolarisation at 603 nm for 23 January 2000. Grey areas in
the plots of measured data represent valid data with values less than the minimum threshold
value for particle presence whereas white areas indicate lack of valid data. Each panel is
labelled as either measurements or model results from one of the three different temperature
scenarios.

4601

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/4/4581/acpd-4-4581_p.pdf
http://www.atmos-chem-phys.org/acpd/4/4581/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
4, 4581–4609, 2004

Influence of
mountain waves and
NAT nucleation on

PSC formation

S. H. Svendsen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

8 10 12 14 16 18
14

16

18

20

22

24

26

8 10 12 14 16 18
14

16

18

20

22

24

26

8 10 12 14 16 18
14

16

18

20

22

24

26

8 10 12 14 16 18
14

16

18

20

22

24

26

 

A
lti

tu
de

 (
km

)

Measured backscatter ratio

Measured and calculated backscatter ratio, 25/1-2000.
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Fig. 3. Same as Fig. 1, only for 25 January 2000.
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Fig. 4. Same as Fig. 2, only for 25 January 2000.
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Fig. 5. Percentage of PSC 1a particles in observational and model data for 23 January 2000, for
three different temperature scenarios. Model results are shown for two different microphysical
scenarios, one where NAT nucleation above Tice is allowed, and one where this is not the case.
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Fig. 6. Percentage of PSC 2 particles in observational and model data for 23 January 2000, for
three different temperature scenarios. Model results are shown for two different microphysical
scenarios, one where NAT nucleation above Tice is allowed, and one where this is not the case.
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Fig. 7. Same as Fig. 5, but for 25 January 2000.
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Fig. 8. Same as Fig. 6, but for 25 January 2000.
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Fig. 9. Percentage of trajectories where the temperature is below either TNAT (top row) or Tice
(bottom row) for three different model layers. Layer 5: 475 K, layer 6: 515 K, layer 7: 550 K.
Results are shown for three different temperature scenarios according to the colour coding,
one without mountain wave pertubations and two where increasingly stronger mountain wave
pertubations are included.
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Fig. 10. Percentage of trajectories containing PSCs of type 1a (left column) and type 2 (right
column) PSCs within the polar vortex as a function of daynumber for the winter 1999–2000.
Results are shown for three different model layers. Layer 5: 475 K, layer 6: 515 K, layer 7:
550 K, and for three different temperature scenarios according to the colour coding, one without
mountain wave pertubations and two where increasingly stronger mountain wave pertubations
are included. The solid lines are from a series of simulations where NAT nucleation above Tice
is allowed whereas the dotted lines are from a simulation sequence where this is not the case.
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