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Abstract

Neural networks are ideally suited to describe the spatial and temporal dependence
of tracer-tracer correlations. The neural network performs well even in regions where
the correlations are less compact and normally a family of correlation curves would be
required. For example, the CH4-N2O correlation can be well described using a neural5

network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio
(v.m.r.). In this study a neural network using Quickprop learning and one hidden layer
with eight nodes was able to reproduce the CH4-N2O correlation with a correlation co-
efficient of 0.9995. Such an accurate representation of tracer-tracer correlations allows
more use to be made of long-term datasets to constrain chemical models. Such as the10

dataset from the Halogen Occultation Experiment (HALOE) which has continuously
observed CH4 (but not N2O) from 1991 till the present. The neural network Fortran
code used is available for download.

1. Introduction

The spatial distributions of atmospheric trace constituents are in general dependent on15

both chemistry and transport. Compact correlations between long-lived species are
well-observed features in the middle atmosphere, as for example described by Fahey
et al. (1989); Plumb and Ko (1992); Loewenstein et al. (1993); Elkins et al. (1996);
Keim et al. (1997); Michelson et al. (1998); Rinsland et al. (1999); Strahan (1999);
Fischer et al. (2000); Muscari et al. (2003). The correlations exist for all long-lived20

tracers – not just those which are chemically related. The tight relationships between
different constituents have led to many analyses where measurements of one tracer
are used to infer the abundance of another tracer. These correlations can also be used
as a diagnostic of mixing (Schoeberl et al., 1997; Morgenstern et al., 2002) and to
distinguish between air-parcels of different origins (Waugh and Funatsu, 2003).25

Of special interest are the so-called “long-lived tracers”: constituents such as ni-
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trous oxide (N2O), methane (CH4), and the chlorofluorocarbons (CFCs) that have long
lifetimes (many years) in the troposphere and lower stratosphere, but are destroyed
rapidly in the middle and upper stratosphere.

The correlations are spatially and temporally dependent. For example, there is
a “compact-relation” regime in the lower part of the stratosphere and an “altitude-5

dependent” regime above this. In the compact-relation region, the abundance of one
tracer is uniquely determined by the value of the other tracer, without regard to other
variables such as latitude or altitude. In the altitude-dependent regime, the correlation
generally shows significant variation with altitude (Minschwaner et al., 1996) (Fig. 1d).

The description of such spatially and temporally dependent correlations are usually10

achieved by a family of correlations. However, a single neural network is a natural and
effective alternative.

2. Motivation

The motivation for this study was preparation for a long term chemical assimilation
of Upper Atmosphere Research Satellite (UARS) (Reber et al., 1993) data starting15

in 1991 and coming up to the present. For this period we have continuous version
19 data from the Halogen Occultation Experiment (HALOE) (Russell et al., 1993) but
not observations of N2O as both ISAMS and CLAES failed. In addition we would
like to constrain the total amount of reactive nitrogen, chlorine, and bromine in a self-
consistent way. Tracer correlations provide a means to do this by using HALOE CH420

observations.

3. Neural Networks

Computational neural networks are composed of simple elements operating in parallel.
These elements are inspired by biological nervous systems. As in nature, the net-
work function is determined largely by the connections between elements. A neural25
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network can be trained to perform a particular function by adjusting the values of the
connections (weights) between elements (Fig. 1b).

Commonly neural networks are trained so that a particular input leads to a specific
target output. The network is adjusted, based on a comparison of the output and the
target, until the network output matches the target. Typically many such input/target5

pairs are used, in this supervised learning, to train a network. Batch training of a
network proceeds by making weight and bias changes based on an entire set (batch)
of input vectors. Incremental training changes the weights and biases of a network
as needed after presentation of each individual input vector. Incremental training is
sometimes referred to as “on line” or “adaptive” training.10

Neural networks have been trained to perform complex functions in various fields
of application including pattern recognition, identification, classification, speech, vision
and control systems. It is well established that multilayer feedforward networks are
universal approximators (Hornik et al., 1989; Castro and Delgado, 1996; Ying, 1998).

In this study we use neural networks (Peterson et al., 1994) to describe the temporal15

and spatial dependence of tracer correlations (Fig. 1).
To find the optimum neural network configuration a range of network architectures

were considered containing between one and two hidden layers with between one and
sixteen nodes in each hidden layer. A range of updating procedures were also used
including back-propagation, Manhattan learning, Langevin Learning, Quickprop and20

Rprop. Each network was trained for 106 epochs. The details of the different learn-
ing methods can be found in (Peterson et al., 1994). A variety of activation functions
were used. Non-linear activation functions performed best, and the most successful is
shown below in Eq. (1). To determine which network architecture and updating proce-
dure was most suitable each configuration was tried in turn and the correlation coeffi-25

cient between the actual solution and the neural network solution were computed (the
correlation coefficient being a normalized measure of the linear relationship strength
between variables). The configuration with the highest correlation coefficient was cho-
sen.
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3.1. The CH4-N2O Correlation

Fig. 1a shows the CH4-N2O correlation from the Cambridge 2D model (Law and Pyle,
1993a,b) overlaid with a neural network fit to the correlation. The neural network used
was a feed-forward multilayer perceptron type with Quickprop learning (Peterson et al.,
1994). There were four inputs, one output, and one hidden layer with eight nodes. A5

non-linear activation function was used, namely

g(x) =
1

1 + exp(−2x)
(1)

The training dataset contained 1292 patterns, sampling the input space completely as
shown in Fig. 1. The network was constrained for 106 epochs (iterations).

The correlation coefficient between the actual solution and the neural network solu-10

tion was 0.9995. Figure 1 panel (b) shows how the median fractional error of the neural
network decreases with epoch (iteration). Both CH4 and pressure are strongly corre-
lated with N2O as can be seen in panels (c) and (d). Latitude and time are only weakly
correlated with N2O as can be seen in panels (e) and (f). Even though the correlation
with time of year and latitude is relatively weak it still does play a role in capturing some15

of the details of the CH4-N2O correlation in Panel (a).
A polynomial or other fit will typically do a good job of describing the CH4-N2O cor-

relation for high values of CH4 and N2O. However, for low values of CH4 and N2O
there is quite a spread in the relationship which a single curve can not describe. This
is the altitude dependent regime where the correlation shows significant variation with20

altitude (Minschwaner et al., 1996).
Figure 1c shows a more conventional fit using a Chebyshev polynomial of order 20.

This fit was chosen as giving the best agreement to the CH4-N2O correlation after
performing fits using 3667 different equations. Even though this is a good fit the spread
of values can not be described by a single curve. However, a neural network trained25

with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.) (four
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inputs) is able to well reproduce the N2O v.m.r. (one output), including the spread for
low values of CH4 and N2O.

3.2. Scaling

Variable scaling often allows neural networks to achieve better results. In this case all
variables were scaled to vary between zero and one. If the initial range of values was5

more than an order of magnitude then log scaling was also applied. In the case of time
of year the sine of the fractional time of year was used to avoid a step discontinuity at
the start of the year.

4. Conclusions

Neural networks are ideally suited to describe the spatial and temporal dependence10

of tracer-tracer correlations. Even in regions when the correlations are less compact.
Useful insight can be gained into the relative roles of the input variables from visualizing
the network weight assignment. The neural network Fortran code used is available for
download.
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Fig. 1. The neural network used to produce the CH4-N2O correlation in Panel (a) used Quick-
prop learning and one hidden layer with eight nodes. The correlation coefficient between the
actual solution and the neural network solution was 0.9995. Panel (b) shows how the median
fractional error of the neural network decreases with epoch (iteration). Both CH4 and pressure
are strongly correlated with N2O as can be seen in panels (c) and (d). Latitude and time are
only weakly correlated with N2O as can be seen in panels (e) and (f). Even though the correla-
tion with time of year and latitude is relatively weak it still does play a role in capturing some of
the details of the CH4-N2O correlation in Panel (a).
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Fig. 1. (b) Continued.
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Fig. 1. (c) Continued.
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