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Abstract

A comprehensive set of stratospheric balloon and aircraft samples was analyzed for
the position-dependent isotopic composition of nitrous oxide (N2O). Results for a total
of 220 samples from between 1987 and 2003 are presented, nearly tripling the num-
ber of mass-spectrometric N2O isotope measurements in the stratosphere published to5

date. Cryogenic balloon samples were obtained at polar (Kiruna/Sweden, 68◦ N), mid-
latitude (southern France, 44◦ N) and tropical sites (Hyderabad/India, 18◦ N). Aircraft
samples were collected with a newly-developed whole air sampler on board of the high-
altitude aircraft M55 Geophysica during the EUPLEX 2003 campaign. All samples were
analyzed by laboratory mass spectrometry for their 18O/16O and position-dependent10
15N/14N isotope ratios with very high precision (standard deviation about 0.15‰ for
18O/16O and average 15N/14N ratios, about 0.5‰ for 15NNO/14NNO and N15NO/N14NO
ratios). For mixing ratios above 200 nmol mol−1, relative isotope enrichments (δ val-
ues) and mixing ratios display a compact relationship, which is nearly independent of
latitude and season and which can be explained equally well by Rayleigh fractionation15

or mixing. However, for mixing ratios below 200 nmol mol−1 this compact relationship
gives way to meridional, seasonal and interannual variations. A comparison to a previ-
ously published mid-latitude balloon profile even shows large zonal variations, justifying
the use of three-dimensional models for further data interpretation.

In general, the magnitude of the apparent fractionation constants (apparent iso-20

tope effects) increases continuously with altitude and decreases from the equator to
the North pole, which can be qualitatively understood by the interplay between the
time-scales of N2O photochemistry and transport. Deviations from this behavior occur
where polar vortex air mixes with nearly N2O-free upper stratospheric/mesospheric air
(e.g., during the boreal winter of 2003 and possibly 1992). Aircraft observations in the25

polar vortex at mixing ratios below 200 nmol mol−1 deviate from isotope variations ex-
pected for both Rayleigh fractionation and end-member mixing, but could be explained
by continuous weak mixing between intravortex and extravortex air (Plumb et al., 2000).

4274

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/4273/2006/acpd-6-4273-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/4273/2006/acpd-6-4273-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 4273–4324, 2006

Stratospheric N2O
isotope distribution

J. Kaiser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Finally, correlations between 18O/16O and average 15N/14N isotope ratios or between
the position-dependent 15N/14N isotope ratios show that photo-oxidation makes a large
contribution to the total N2O sink in the lower stratosphere (up to 100%). Towards
higher altitudes, the temperature dependence of these isotope correlations becomes
visible in the stratospheric observations.5

1 Introduction

Stratospheric N2O is enriched in the heavy nitrogen and oxygen isotopes (15N, 17O,
18O) relative to tropospheric N2O. This enrichment is caused by kinetic isotope frac-
tionation in the stratospheric sink reactions, i.e., ultraviolet photolysis (R1) and reaction
with electronically excited oxygen atoms, O(1D) (Reactions R2a+b):10

N2O + hν→ N2 + O(1D) (185 nm < λ < 225 nm) (R1)

N2O + O(1D) → NO + NO (R2a)

→ N2 + O2 (R2b)

Reaction (R2) is also called “photo-oxidation”, even though, strictly speaking, O(1D)
only reacts as an oxidant in the NO+NO channel. Reaction (R1) accounts for about15

90% of the total sink, whereas Reactions (R2a) and (R2b) contribute 6% and 4%,
respectively (Minschwaner et al., 1993).

The dependence of the N2O absorption spectrum on isotopic composition was al-
ready studied in the early 1980s (Selwyn and Johnston, 1981), but the relevance of this
isotope effect for the 15N enrichment observed in a single stratospheric N2O sample20

(Moore, 1974) was not recognized before the early 1990s (Yoshida et al., 1990). Two
additional stratospheric air samples analyzed by Kim and Craig (1993) substantiated
the N2O isotope enrichment for both 15N and 18O, but the results may have been im-
paired by CO2 contamination (Rahn and Wahlen, 1997). Laboratory studies of isotope
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fractionation in N2O photolysis at 185 nm and during “photo-oxidation” found only small
oxygen isotope effects (Johnston et al., 1995), in apparent contradiction to the strato-
spheric findings. However, additional high-quality field data from Rahn and Wahlen
(1997) were accompanied by theoretical predictions of an increase of the photolytic
isotope effect towards longer, stratospherically more relevant wavelengths (Yung and5

Miller, 1997). Laboratory measurements of isotope effects between 193 and 208 nm
quickly showed that these theoretical predictions were qualitatively correct, but at least
a factor of two too small in magnitude (Rahn et al., 1998). Analytical advances in the
late 1990s then allowed the position-dependent measurement of the nitrogen isotope
distribution between the terminal and central nitrogen atoms in N2O (Brenninkmeijer10

and Röckmann, 1999; Esler et al., 2000; Toyoda and Yoshida, 1999). The new tech-
niques were immediately adopted for extensive laboratory measurements of kinetic
isotope effects during photolysis (summarized in Kaiser et al., 2003b; von Hessberg
et al., 2004) and the reaction of N2O with O(1D) (Kaiser et al., 2002a; Toyoda et al.,
2004). Our present understanding of these isotope effects can be considered to be15

very good.
The new analytical techniques were used for further stratospheric measurements,

as evidenced by six publications (Griffith et al., 2000; Park et al., 2004; Röckmann et
al., 2001; Toyoda et al., 2001, 2004; Yoshida and Toyoda, 2000). The paper by Toyoda
et al. (2004) also contains the data from the earlier two papers by the same principal20

authors. All but the Fourier transform infrared-spectra (FTIR) of Griffith et al. (2000)
were analyzed by isotope ratio mass-spectrometry (IRMS) of discrete whole-air sam-
ples, either obtained by aircraft (Park et al., 2004) or from balloon platforms. A total
of 32 samples were analyzed by Park et al. (2004). Toyoda and co-workers analyzed
72 samples. In the following, we present data from an additional 132 balloon and 8825

aircraft samples, obtained at latitudes between 18◦ N and 80◦ N. A subset of ten trop-
ical, one mid-latitude, and eight polar samples were already included in our previous
paper (Röckmann et al., 2001). Importantly, we show two balloon profiles from Hy-
derabad/India at 18◦ N, the only existing stratospheric N2O isotope measurements at
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low latitudes. The tropics are important because there, the upwelling branches of the
Hadley and the Brewer-Dobson circulation lead to net air mass transport from the tro-
posphere to the stratosphere. Thus, the “youngest” stratospheric air masses are found
in the tropics, where they undergo rapid photochemical processing. However, even
though the geographic location of Hyderabad is in the tropics, this does not necessar-5

ily mean that the air mass sampled there can be considered tropical with respect to the
atmospheric circulation system, as explained in Sect. 3.1. Further samples from the
“deep” tropics might be needed to fully characterize the isotopic composition of N2O in
upwelling tropical air.

We will use tracer-tracer diagrams of stratospheric N2O isotope and concentra-10

tion measurements to investigate transport, mixing and photochemical processes
(Sects. 3.2 and 3.3). Using correlations between isotope enrichments and mixing
ratios, it will be shown to what extent the influence of chemistry and transport on
N2O isotope distributions can be interpreted in the framework of a one-dimensional
reaction-advection-diffusion regime (Sect. 3.2), or as two-end member mixing relation-15

ships (Sect. 3.3). Meridional and seasonal variations in apparent fractionation con-
stants are identified, followed by the discussion of possible mechanisms explaining
these variations (Sect. 3.2 to 3.4). We also show that the relationship between differ-
ent intramolecular isotopic signatures of N2O varies with altitude, giving insights into
the contribution of individual N2O sinks at different stratospheric levels (Sect. 3.5).20

2 Experimental methods

2.1 Sample collection

Upper tropospheric and stratospheric balloon air samples from altitudes between 6 and
34 km were collected at one tropical (Hyderabad/India, 17.5◦ N), two mid-latitude (Aire
sur l’Adour/France, 43.7◦ N; Gap/France, 44.4◦ N), and one polar site (Kiruna/Sweden,25

67.9◦ N). We analyzed a total of 132 samples, which were collected using balloon-
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borne cryogenic whole air samplers during 12 launches between March 1987 and
March 2003. The first eight profiles between 1987 and 1999 were acquired with
the air sampler of the former Max Planck Institute (MPI) for Aeronomy, Katlenburg-
Lindau/Germany (now: MPI for Solar System Research). The final four profiles were
performed by the BONBON air sampler jointly developed by the Research Centre5

Jülich/Germany and the Institute for Meteorology and Geophysics (now: Institute for
Atmosphere and Environment) at the J. W. Goethe University, Frankfurt/Germany. Both
air samplers consist of 15 electro-polished stainless steel tubes immersed into liquid
neon at a temperature of 27 K, but differ especially in the intake design (see Schmidt
et al., 1987, for details). The sampling tubes have an internal volume of about 500 cm3

10

and usually contain between 2.5 and 25 dm3 of sample at standard temperature and
pressure (STP), corresponding to pressures between 0.54 and 5.4 MPa at 20◦C. The
altitude-resolution is about 1 km, sampling latitudes are essentially invariant, and longi-
tude variations can be a few degrees, depending on the prevailing zonal winds during
sample collection.15

Aircraft samples were collected from the high-latitude research aircraft M55 Geo-
physica during the EUPLEX (European Polar Stratospheric Cloud and Lee Wave Ex-
periment) campaign in January/February 2003 in Kiruna/Sweden (67.9◦ N). A total of
88 samples was analyzed for their N2O isotopic composition. The samples were col-
lected using a new whole air sampler developed at the MPI for Nuclear Physics, Hei-20

delberg/Germany. The sampler uses trace-gas clean metal bellows pumps to collect
up to 20 samples into electro-polished stainless steel flasks of 2 dm3 internal volume.
At a pressure of about 0.3 to 0.4 MPa, this gives sample amounts of 6 to 8 dm3 (STP).
The samples span a smaller altitude range (8 to 20 km) than individual balloon profiles,
but larger latitude (65.6 to 80◦ N) and longitude (9.1 to 48.8◦ E) bands.25

Table 1 summarizes sampling dates and locations of all published isotope measure-
ments of stratospheric N2O, including the 220 samples analyzed for this paper. N2O is
usually zonally well-mixed, but for completeness we show both latitude and longitude
of the sampling locations, where available.
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2.2 Isotope analysis and measurements of N2O mixing ratios

The position-dependent isotopic composition of N2O was measured as described pre-
viously (Röckmann et al., 2003b). We assign a locant 1 to the terminal nitrogen atom
in N2O and a locant 2 to the central nitrogen atom, so that the corresponding relative
isotope enrichments (δ values) are designated 1δ15N and 2δ15N. Other authors are5

using a locant β for the terminal and α for the central nitrogen atom (Yoshida and Toy-
oda, 2000). δ values are defined as the relative deviation of the isotope ratio of the
sample to a reference isotope ratio:

δ =
Rsample

Rreference
− 1 (1)

The isotope ratio R is defined as the abundance ratio of the heavier isotope and the10

lighter isotope, i.e., 15N and 14N in the case of nitrogen and 18O and 16O in the case
of oxygen. Variations of the 17O/16O isotope ratio were not measured, but for data
reduction purposes, we assume that stratospheric N2O has the same small relative
17O excess of ∆17O=0.9‰ as tropospheric N2O (Kaiser et al., 2003a). This assumption
follows theoretical considerations (Kaiser and Röckmann, 2005), but the possible error15

introduced by this assumption is small because the 17O correction to the δ15N values is
only about −0.1∆17O for 2δ15N and −0.05 ∆17O for average δ15N=(1δ15N+2δ15N)/2.

Generally, the reference isotope ratios are those of air-N2 for nitrogen and Vienna
Standard Mean Ocean Water (VSMOW) for oxygen isotope measurements. However,
in the present paper we frequently deviate from this convention and express the strato-20

spheric isotope ratios relative to those of tropospheric N2O. Thus, the individual isotope
signatures are more easily intercomparable. Moreover, assigning a specific position-
dependent nitrogen isotope scale is problematic at the present time because two sig-
nificantly different absolute isotope calibrations exist and the discrepancies have not
been resolved yet (Kaiser et al., 2004a; Toyoda and Yoshida, 1999). At times when we25

interpret our results in the framework of a simple Rayleigh fractionation approach, we
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apply a further normalization by correcting for the temporal trend in the isotope ratio of
tropospheric N2O and the age of stratospheric air (Sect. 3.2). Thus, the isotope profiles
for individual years can be compared directly. Furthermore, we can study variations in
the ratio between position-dependent isotope signatures for individual samples in order
to separate isotope variations due to transport from those due to changing chemistry5

(Sect. 3.5).
In practice, we base our isotope measurements on a tank of tropospheric N2O,

which was collected on 15 March 2002 at Mount Schauinsland in southwest Ger-
many (SIL-N2O). Its isotope composition was determined by offline N2O isotope anal-
ysis (Kaiser et al., 2003a) and found to be δ15N=(6.6±0.1)‰, 1δ15N=(−16.0±0.2)‰,10
2δ15N=(29.1±0.2)‰ and δ18O=(44.6±0.1)‰. In order to avoid large nonlinearity cor-
rections (see Röckmann et al., 2003b), we strove to roughly adjust the extraction time
of the trace gas pre-concentration system using a previously measured N2O mixing
ratio value so that the peak area matched that of the Schauinsland reference tank
sample (about 4.4 Vs for the N2O+ peak, corresponding to 2.0 nmol of N2O). In cases15

where the available sample amount was limited, this was not always possible, but even
then the necessary non-linearity corrections were at most 0.5‰ for δ15N and δ18O
and less than 1.5‰ for 1δ15N and 2δ15N. This concerned samples from the high lat-
itudes and/or altitudes with correspondingly low mixing ratios and high δ values, so
that the relative error due to this non-linearity correction is small. For analyses of the20

N2O+ molecular ion, sample sizes ranged from 0.3 to 2.1 nmol (0.5 to 4.6 Vs) with an
average of (1.7±0.4) nmol or (3.6±0.9) Vs. For the NO+ fragment ion, which is used
for position-dependent 15N analysis, the range was 1.0 to 7.0 nmol (0.4 to 2.8 Vs) with
an average of (4.4±1.0) nmol or (1.7±0.4) Vs. A larger amount of sample was used
for NO+ fragment analysis because the relative abundance of NO+ in the N2O mass25

spectrum is only about 20% of the N2O+ molecular ion for the mass spectrometers and
ion source configurations we were using.

All isotope analyses were performed on a Finnigan Delta Plus XL isotope ratio mass
spectrometer except for the last balloon flight on 6 March 2003, which was analyzed on
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a Delta Plus XP mass spectrometer. The Delta Plus XP allows simultaneous registering
of mass-to-charge ratios 30, 31, 44, 45, and 46, which has the advantage of requiring
only a single extraction/injection of sample for analysis. The reproducibility for a 2 nmol
N2O sample was about 0.15‰ for δ15N and δ18O and about 0.5‰ for 1δ15N and 2δ15N,
which is the best precision achieved to date for stratospheric N2O samples (Park et al.,5

2004; Toyoda et al., 2004).
Mixing ratios (µ) were calculated by comparing the extraction time-weighted peak

areas of the stratospheric samples with those of the Schauinsland reference tank
samples. The N2O mixing ratio of the Schauinsland reference tank was determined
by Ingeborg Levin at the Institute for Environmental Physics, Heidelberg/Germany,10

using GC-ECD (gas chromatography-electron capture detection) and found to be
(319.0±0.2) nmol/mol (SIO98 scale; Prinn et al., 2000). N2O mixing ratios were de-
rived both from NO+ fragment and N2O+ molecular ion peak areas. Figure 1 shows
that they follow a 1:1 relationship very closely, with the NO+-derived mixing ratio being
on average (1.3±2.1) nmol mol−1 higher. We adopt the mean of the N2O+- and the15

NO+-derived mixing ratio as the mixing ratio of the individual sample. For a subset of
47 samples, we have compared this mixing ratio to independent GC-ECD measure-
ments at the Institute for Meteorology and Geophysics of the University of Frankfurt
(Fig. 2). The average relative difference is (−0.3±2.1)%, with relative differences of
1% or smaller for larger mixing ratios and larger relative differences for smaller mix-20

ing ratios. Thus, precision and accuracy of the mixing ratio measurements by mass
spectrometry are sufficient for the derivation of apparent fractionation constants in the
stratosphere with an uncertainty of about 1%.

3 Results and discussion

We start this section with a general description of the balloon profiles in terms of their25

mixing ratios and then proceed to explore the variation of the isotopic composition with
the mixing ratio. In a first step, we will interpret the data in a Rayleigh fractionation
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framework, as applied in past studies of stratospheric N2O (Griffith et al., 2000; Park
et al., 2004; Rahn and Wahlen, 1997; Röckmann et al., 2001; Toyoda et al., 2001).
As a second step and partly in response to a question raised by Park et al. (2004),
we explore to what extent simple end-member mixing can describe the co-variation
between isotope and mixing ratios and whether a more complex “continuous weak5

mixing” scheme (Plumb et al., 2000) can give a better description for part of the data.
Finally, we investigate whether correlations between N2O isotope signatures are useful
indicators of the partitioning between O(1D) and photolytic N2O sinks and of changes
of temperature and actinic fluxes with altitude.

3.1 N2O mixing ratios10

Figure 3 shows vertical profiles of the N2O mixing ratio. The decrease of tropopause
altitude, ztrop, from the low-latitude Indian samples (ztrop≈16 km) to the polar Kiruna
samples (ztrop≈7 km) can be estimated from the point where the mixing ratio starts

to drop below its tropospheric value of 310 to 320 nmol mol−1. Correspondingly, the
profiles can be separated into those of polar character (all Kiruna profiles except for the15

high altitude-samples of the Kiruna 03/95 profile), mid-latitude character (Gap 06/99,
all Aire sur l’Adour profiles, and the high-altitude Kiruna 03/95 samples) and tropical
character (India profiles). The Kiruna profiles were obtained in winter and generally
sampled air from inside the polar vortex, although the distinction between polar and
mid-latitude samples is only unambiguous for mixing ratios below 290 nmol mol−1. In20

contrast, the polar vortex had already broken up completely by the time of the 03/95
balloon launch and the resulting N2O profile corresponds to a mid-latitude one. The
distinction between tropical and mid-latitude samples can be made most clearly for
mixing ratios above 250 nmol mol−1, but some overlap occurs for lower mixing ratios.

The above classification based on the vertical N2O profiles is rather crude and sen-25

sitive to intra- and interannual synoptic changes of the large-scale stratospheric cir-
culation. Correlations between different stratospheric trace gases are better suited to
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segregate the stratosphere into regions because characteristic tracer-tracer relation-
ships develop in areas where exchange time-scales due to transport and mixing are
significantly shorter than the instantaneous chemical lifetimes. Michelsen et al. (1998)
developed an N2O-CH4 climatology with polynomial fits for different stratospheric re-
gions and we show our data in context of these fits in Fig. 4. No clear separation into5

stratospheric regions is possible for N2O mixing ratios above 150 nmol mol−1, but be-
low this value, the picture that developed from the vertical N2O profiles is confirmed
with one exception: The 140 nmol mol−1 sample obtained from the India 04/99 launch
clearly stands out as a tropical N2O sample, whereas the India 03/87 samples rather
show mid-latitude character. This is in line with historic CH4 profile variations, which10

showed that the intertropical convergence zone (ITCZ) moves northward across the
sampling location of Hyderabad between end of March and end of April, but was still
south of Hyderabad on 26 March 1987 (Patra et al., 2003). Some caution is warranted
in the interpretation of our data in context of these CH4-N2O relationships because
the latter have been derived with data from the years 1993 and 1994 (Michelsen et15

al., 1998), but will change in time due to the different relative growth rates of atmo-
spheric N2O and CH4 of 0.25%/a and between 0 and 0.8%/a, respectively (Prather et
al., 2001). This may explain why the India 03/87 samples fall below the generic tropical
N2O-CH4 climatology.

3.2 Isotope variations in a Rayleigh fractionation framework20

Figure 5 shows the relationship between average δ15N values (relative to SIL-N2O) and
N2O mixing ratios. The isotopic enrichment generally increases with decreasing mixing
ratios due to the increasing degree of photochemical removal of N2O and the associ-
ated kinetic isotope effects, which lead to preferential destruction of the lighter isotopo-
logues. Samples with mixing ratios above 200 nmol mol−1 display a uniform compact25

relationship independent of latitude, which was also noted by Park et al. (2004). How-
ever, samples with µ<200 nmol mol−1 clearly split up into different profiles, depending
on latitude and sampling season. Mid-latitude samples collected in fall maintain a
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rather compact relationship even below 200 nmol mol−1. However, samples from polar
latitudes (Kiruna) and the mid-latitude summer profile (Gap 06/99) differ substantially
among each other and from the fall mid-latitude profiles. Notably, the Kiruna 03/95
profile, which was classified as a mid-latitude profile based on its CH4-N2O correlation
and the shape of the vertical N2O profile, falls below the ASA fall profiles. It is similar to5

the Gap 06/99 summer profile, though. The polar vortex samples show δ15N variations
of more than 25‰ for the same N2O mixing ratio, which means that the photochemical
and transport processes that establish the mid-latitude δ-µ relationship do not prevail
in the polar vortex. This is due to dynamic isolation of the polar vortex and the limited
degree of photochemical processing that occurs over the dark polar areas. In addition,10

mixing with upper stratospheric and/or mesospheric air (Sect. 3.3) as well as more
complicated mixing processes (Sect. 3.4) can play a role.

For illustrative purposes, Fig. 5 also shows two hypothetical Rayleigh fractionation
lines, which have been calculated assuming a closed system with no sources and a
single sink with an isotope effect ε of −38.0‰ and −19.2‰, respectively. Rayleigh15

fractionation then leads to δ=(µ/µT)ε−1. The two limits for ε correspond to an intrinsic
photochemical isotope effect as expected from broadband photolysis at room tempera-
ture with a 10% contribution from N2O photo-oxidation and the apparent isotope effect
expected for transport-limited conditions (about half the intrinsic isotopic effect) (Kaiser
et al., 2002a, b). These upper and lower bounds delimit the range of isotope effects,20

which can be realized in a purely one-dimensional reaction-advection-diffusion system
at steady-state. This was demonstrated for the reaction-diffusion system (Kaiser et al.,
2002a; Kaye, 1987; Morgan et al., 2004), but is still valid even if advection is included
due to the linearity of the corresponding differential equation (Kaiser and Röckmann,
20061). As noted in most previous publications on stratospheric N2O isotopes (e.g.,25

Rahn et al., 1998; Röckmann et al., 2001; Toyoda et al., 2001), the stratospheric mea-

1Kaiser, J. and Röckmann, T.: Apparent isotope effects in atmospheric and oceanic environ-
ments, in preparation, 2006.
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surements clearly fall below the δ−µ relationship defined by the intrinsic isotope effect,
which is due to transport and mixing effects. The magnitude of the intrinsic isotope
effect used here is only an estimate because, on the one hand, the photolytic iso-
tope effect is larger at lower (stratospheric) temperatures (Kaiser et al., 2002b; von
Hessberg et al., 2004) and, on the other hand, the contribution of the photo-oxidation5

sink may vary (Sect. 3.5). In any case, a simple Rayleigh model fails to describe the
measurements. For mixing ratios below 70 nmol mol−1, the attenuation of the intrin-
sic isotope effect due to diffusion and advection can explain this discrepancy because
the observations lie mostly above the apparent fractionation constant under transport-
limited conditions. However, at mixing ratios greater than 70 nmol mol−1, some δ values10

are even smaller than expected for the one-dimensional, transport-limited case. This
means that other effects such as mixing have to be invoked the explain the observa-
tions (see Sect. 3.3). It should also be noted that the above analysis is simplified in
the sense that it uses only tropospheric N2O mixing ratios and δ values as initial con-
ditions for the Rayleigh fractionation approximation and does not consider variations15

of the fractionation constant as N2O gets depleted. A more appropriate approach will
therefore be used in the following section, in which we use the local slope in a Rayleigh
fractionation plot to estimate the apparent fractionation constant.

3.2.1 Corrections for atmospheric trends and stratospheric age of air

For a quantitative analysis of the observed δ values in a Rayleigh fractionation frame-20

work, we have to apply corrections for the time of sampling (the samples span a range
of 16 years) and the age of stratospheric air. In order to make the different profiles
intercomparable, we first adjust the measured isotopic compositions to a specific date
in order to correct for the changing isotopic composition of modern atmospheric N2O.
Due to anthropogenic inputs of isotopically light N2O, the δ values are decreasing with25

time, as deduced from analyses of Antarctic firn air (Bernard et al., 2006; Röckmann et
al., 2003a; Sowers et al., 2002) and direct atmospheric measurements (Röckmann
and Levin, 2005). As a base date, we arbitrarily chose the sampling date of the
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SIL-N2O reference tank (15 March 2002). The correction we apply is based on re-
cent direct measurements of the position-dependent isotope composition of archived,
clean southern hemisphere background air samples collected at the German Antarc-
tic “Georg von Neumayer” Station (70◦39′ S, 08◦15′ W). Röckmann and Levin (2005)
found linear trends of (−0.040±0.003)‰/a for δ15N, (−0.064±0.016)‰/a for 1δ15N,5

(−0.014±0.016)‰/a 2δ15N, and (−0.021±0.003)‰/a for δ18O over the time-span of
available samples (between March 1990 and November 2002). We assume that these
linear trends were constant over the time-span defined by the stratospheric samples
(March 1987 to March 2003).

In order to investigate the influence of transport and chemistry on the isotopic com-10

position of stratospheric N2O, we linearize our data in a Rayleigh fractionation plot
of ln(1+δ) vs. ln(µ/µT) (The error due to using N2O rather than 14N16

2 O mixing ra-
tios can be neglected; see Kaiser et al., 2002a). The local slope then corresponds
to an apparent fractionation constant. To pursue this approach as accurately as pos-
sible, we have to estimate µT, the N2O mixing ratio at the tropopause when the air15

parcel entered the stratosphere, and apply a further correction to δ to take the age
of air into account. These corrections are small relative to the measurement error
(usually <1%), but were deemed necessary in order to achieve a closer analogy to
a Rayleigh fractionation system. Therefore, we consider the age of stratospheric air
in order to normalize all data to a single stratospheric entry datum. The age of air is20

defined as the time elapsed since an air parcel has passed the tropopause. We base
our age-of-air estimate on the relationship between N2O mixing ratios and the age of
mid-latitude/lower polar vortex air found by Boering et al. (1996) for samples from the
years 1992 to 1996. A polynomial regression of the age of air Γ versus µ/µT gives
Γ(µ/µT)/a=−(7.43±0.34) (µ/µT)3+(3.68±0.56) (µ/µT)2−(1.94±0.28) µ/µT+5.69±0.0425

(R2=0.998), with the tropopause mixing ratio µT adjusted to 311.6 nmol mol−1 to give
an age of zero for µ=µT. The value of 311.6 nmol mol−1 agrees with AGAGE obser-
vations at the northern hemisphere background station Mace Head/Ireland in 1994.
However, given the time range of observations (1992 to 1996), the global extent of
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sampling locations used by Boering et al. (1996) and the age difference of tropopause
air relative to tropospheric air, one might have expected a slightly lower value than
311.6 nmol mol−1. The difference might be due to different N2O calibration scales. The
use of µ/µT for the Γ parameterization rather than µ itself minimizes errors due to the
increase of the N2O mixing ratio with time. The parameterization will differ slightly for5

polar and tropical samples, but the differences only lead to second-order corrections
for the present application and can be neglected. Engel et al. (2002) have derived a
similar third-order polynomial regression of Γ versus the N2O mixing ratio. The age
differences to the parameterization based on the data of Boering et al. (1996) are at
most 4 months, which can be neglected for the present application.10

We use the estimated age of air and assume that the age difference between
tropopause and tropospheric air is 0.8 years (Volk et al., 1997). We then calculate the
isotopic composition of the stratospheric sample relative to its composition when it left
the tropopause, using the same isotope trends as above (Röckmann and Levin, 2005).
Similarly, we estimate the tropopause N2O mixing ratio for individual samples. The15

northern-hemisphere AGAGE data from Mace Head (Ireland) are used as reference
for the correction because all our data are from the northern hemisphere. Second-
order effects due to intrahemispheric N2O mixing ratio gradients are neglected. For the
pre-AGAGE period before 1994, we use the GAGE data from Cape Grim (Australia) in-
stead because they display more consistent interannual variations and a cleaner sea-20

sonal signal than the GAGE data from Mace Head record. In order to account for
interhemispheric N2O mixing ratio differences, the Cape Grim data are time shifted for-
ward by 0.8 months and adjusted upward by 0.7 nmol mol−1. This adjustment is based
on a comparison between the AGAGE data from Cape Grim and Mace Head for the
years 1994 to 2002.25

3.2.2 Calculation of εapp from global fits and local slopes

Using the corrected N2O isotope and mixing ratios, apparent fractionation constants
(εapp) can be calculated from ln(1+δ) and ln(µ/µT) (Fig. 6). We use two different ap-
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proaches to do this. First, we calculate average linear least-squares εapp values for in-
dividual lower stratosphere profiles using only samples with ln(µ/µT)>−0.6. An ln(µ/µT)
value of −0.6 corresponds to N2O mixing ratios between 168 and 174 nmol mol−1 for
the age range of our samples. The same cut-off has already been used by Kaiser
(2002) and von Hessberg et al. (2004) and corresponds to the region of the Rayleigh5

fractionation plot without noticeable curvature. Below ln(µ/µT) values of −0.6, the
Rayleigh fractionation plots show positive curvature and a linear fit is therefore no
longer appropriate. Instead, we fit a second-order polynomial to the individual pro-
files and calculate local slopes from the first derivative of the fit at exemplary ln(µ/µT)
values of −1.0, −1.5 and −2.0. This serves to illustrate how εapp values change for10

higher altitude samples. We exclude samples with ln(µ/µT)<−2.4 from the fit because
these samples are influenced by mixing with low-N2O upper stratospheric and meso-
spheric air (Sect. 3.3). Compared to previous studies, in which linear fits were both
applied to the middle and to the lower stratospheric samples (Kaiser, 2002; Park et al.,
2004; Toyoda et al., 2001, 2004), our present approach has the advantage to expose15

differences between individual profiles more clearly and to decrease the influence of
the highest-enriched samples on the overall fit.

3.2.3 Vertical and meridional trends in εapp

The apparent Rayleigh fractionation constants we derive according to the two ap-
proaches described above are shown in Table 2 and, for ε15N, in Fig. 7 as a function of20

latitude (the trends look qualitatively the same for other N2O isotope signatures due to
their high correlation, see Sect. 3.5). In general, the magnitude of εapp increases with
altitude and decreases with increasing distance from the equator. The latter relation-
ship is what one would expect qualitatively for faster vertical transport time-scales near
the equator (photochemistry is rate-limiting). This effect outweighs the faster photolysis25

rates due to higher actinic fluxes at low latitudes. However, the increase of the magni-
tude of the apparent fractionation constant with altitude is opposite to what one would
expect from a simple vertical reaction-diffusion-advection model (Kaiser, 2002; Toyoda
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et al., 2004). Despite the conceptual usefulness of this one-dimensional description, it
has to be stressed that stratospheric transport cannot be characterized as a function of
altitude only and that vertical diffusion is actually not an important process, even though
it can be helpful to describe stratospheric transport to some extent. Meridional trans-
port schemes have to be included to explain the variation of εapp. Possible schemes5

based on mixing processes are discussed in Sect. 3.3.
Specifically, average ε15Napp values at ln(µ/µT)>−0.6 are about −19‰ at tropical

latitudes, −17‰ at mid-latitudes and −15‰ at polar latitudes. This is clearly less than
half the intrinsic fractionation constant of about 1/2 (−50‰) at a lower stratospheric
temperature of 217 K (Kaiser et al., 2002b), estimated from broadband N2O photol-10

ysis with an ultraviolet (UV) lamp that simulates the solar spectrum at stratospheric
altitudes. The influence of spectral UV irradiance variations with altitude on the pho-
tolytic fractionation constant is small (Kaiser et al., 2003b). The discrepancy to the
observations can be explained by at least a 25% contribution of photo-oxidation to the
total N2O sink or by mixing effects other than vertical diffusion. Toyoda et al. (2004)15

based their analysis of the diminished apparent fractionation constants compared to
their intrinsic values on photo-oxidation only, which led to estimated contributions of
photo-oxidation between 70 and 80% to the total sink. However, this analysis is flawed
because reductions of the intrinsic fractionation constant due to vertical diffusion and
mixing were neglected. In Sect. 3.5, we show that correlations between isotope signa-20

ture do indicate an unambiguous contribution of photo-oxidation, but to a much lesser
degree than 70%.

As already mentioned, |εapp| increases with altitude, but even at middle stratospheric

altitudes (ln(µ/µT)=−2.0), ε15Napp values are far below −48‰, corresponding to pho-
tolytic fractionation constants at temperatures of about 233 K (Kaiser et al., 2002b).25

|εapp| is usually above half the intrinsic fractionation constant, in line with simulated
values based on vertical eddy diffusion coefficients and N2O destruction rates (Kaiser,
2002; Kaiser et al., 2002a; Toyoda et al., 2004).
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3.2.4 Seasonal trends in εapp

Seasonal trends in the apparent fractionation constants are difficult to discern (Table 2),
because the available balloon profiles are biased towards specific months, even if we
combine our data-set with that of Toyoda et al. (2004). The two tropical profiles are both
from spring, and the polar profiles are from winter/early spring. Only the mid-latitude5

profiles allow for a limited comparison between late spring/summer and autumn. The
Gap 06/99 profile shows generally smaller |εapp| values than the fall ASA profiles. This
is in contrast to model simulations by Morgan et al. (2004) that did not show variations
in εapp at mid-latitudes. However, the simulations did show variations at polar and
tropical latitudes, which were attributed to transport effects. Therefore, we tentatively10

associate the observed variations at mid-latitudes with transport effects as well.
Similar variations were observed by Toyoda et al. (2004) for balloon profiles acquired

over Japan. For example, in a plot of isotope versus mixing ratios (not shown), the
Sanriku 08/00 and 09/98 profiles behave similar to the ASA 09/93, 10/01 and 09/02
samples (late summer/fall), whereas the Sanriku 05/99, 05/01 and 06/90 profiles bear15

closer resemblance to the Gap 06/99 profile and the polar samples (spring/early sum-
mer). Modeling attempts therefore have to consider seasonal and meridional varia-
tions of the N2O isotope signature if quantitative agreement with observations is to be
achieved. However, it might even be necessary to include longitudinal variations as a
comparison between the Gap 06/99 and Sanriku 05/99 profiles shows (Fig. 8). Both20

profiles were obtained at nearly the same time of the year (three weeks apart) and
nearly the same latitude (44◦ N and 39◦ N), but nevertheless show distinct differences
especially in the middle stratosphere.

3.3 lnfluence of end-member mixing on N2O isotope ratios

In our data interpretation so far, we have focused on vertical diffusive effects on the25

apparent fractionation constants. However, meridional transport and mixing can also
influence the observed relationship between N2O isotope signatures and mixing ratios
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(Kaiser et al., 2002a). Specifically, Park et al. (2004) mentioned two mixing scenarios,
“end-member mixing” and “continuous weak mixing” (Plumb et al., 2000), in the context
of δ−µ relationships for the polar vortex. In the following, we will investigate to what
degree these scenarios can explain the observed stratospheric N2O isotope profiles,
not only in the polar vortex, but also in other stratospheric regions. We start with5

“end-member mixing”, followed by “continuous weak mixing”, with a short mathematical
introduction to each scheme.

3.3.1 Theory

“End-member mixing” corresponds to the mixing of two air masses in different relative
volumetric ratios. It is “linear” in terms of concentrations; however, δ values have to be10

weighted by the corresponding concentrations. Mathematically, this can be expressed
by the following relationships for two air masses, A and B (Kaiser et al., 2002a):

c = xAcA + (1 − xA)cB (2)

cδ = xAcAδA + (1 − xA)cBδB (3)

The symbol x designates a volumetric air mass fraction, the symbol c designates con-15

centrations. Indices denote the air mass. Non-indexed symbols correspond to the
mixed air mass. If both air masses have the same density, mixing ratios (µ) can be
used instead of concentrations. This condition is assumed to be always valid, because
both air masses have to be at the same altitude in order to mix. Therefore, we replace
concentrations by mixing ratios and solve Eq. (2) for x:20

x =
µB − µ
µB − µA

, (4)

which is then substituted into Eq. (3) and solved for δ:

δ =
µB − µ
µB − µA

µAδA

µ
+
µ − µA

µB − µA

µBδB

µ
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=
µBδB − µAδA

µB − µA
+

δB − δA

µ−1
B − µ−1

A

1
µ

(5)

Thus, end-member mixing should lead to linear relationships between δ values and
inverse mixing ratios (1/µ). This kind of plot is better suited to diagnose mixing than
δ−µ plots (Park et al., 2004), because both mixing and Rayleigh fractionation appear
as similar non-linear curves in a δ−µ plot. Note that after correction for a sign error,5

Eq. (8) derived for oceanic O2 in Bender (1990) corresponds to Eq. (5) above.

3.3.2 Evidence for mixing from balloon samples

Without restriction of generality, we develop our analysis using δ15N (the other iso-
tope signatures behave very similarly, see Sect. 3.5). The δ15N values of the present
stratospheric dataset have been plotted versus their inverse mixing ratios in Fig. 9.10

Most of the samples cluster near the origin of the plot. At this scale, the tropical,
mid-latitude ASA and low-altitude polar samples follow a linear relationship. However,
the mid-latitude Gap 06/99 and the high-altitude polar samples deviate from this lin-
ear relationship at mixing ratios below 180 nmol mol−1. Contrary to the suggestion of
Park et al. (2004), the behavior of the latter samples cannot be explained by simple15

end-member mixing because they do not describe a linear array in δ−µ−1 space.
Figure 10 shows the same data as in Fig. 9 restricted to mixing ratios above

50 nmol mol−1. Again, the non-linearity of the δ vs. µ−1 relationship for polar sam-
ples is apparent, while the mid-latitude ASA samples nearly follow a linear relationship
down to mixing ratios of 60 nmol mol−1. The green line in Fig. 10 shows a linear fit to the20

ASA 09/93 data, δ15N(ASA 09/93)=4.0·10−9 µ−1−12.4‰ (R2=0.997). This indicates
that the mid-latitude N2O isotope profiles could be described by a simple end-member
mixing relationship, to a good degree of approximation. The advantage of using the re-
lationship between δ and the inverse mixing ratio to diagnose mixing is that it is based
on the photochemistry of a single trace gas only. If transport is fast with respect to25

photochemistry of N2O, then linear mixing relationships between δ and µ−1 result. In
4292

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/4273/2006/acpd-6-4273-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/4273/2006/acpd-6-4273-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 4273–4324, 2006

Stratospheric N2O
isotope distribution

J. Kaiser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

contrast, CH4−N2O correlations are only linear if transport is fast with respect to the
chemistry of both trace gases. This may explain why the mid-latitude samples follow an
end-member mixing relationship closely in δ−µ−1 space, but not in CH4−N2O space
(Fig. 4). Nevertheless, the linearity of the δ−µ−1 relationship is not perfect and the
scatter about the linear regression line is significantly larger than the analytical errors.5

It must therefore be due to natural variability. Moreover, even the mid-latitude ASA
samples show a decrease in the slope towards lower mixing ratios, which indicates
that – despite the strong correlation between δ and µ−1 – it cannot be end-member
mixing alone that is responsible for the mid-latitude N2O isotope profile.

3.3.3 Evidence for mixing from aircraft samples10

Figure 10 also shows two dense data-sets from aircraft campaigns into and out of
the Arctic polar vortex (SOLVE 2000; see Park et al., 2004; and EUPLEX 2003).
Again, for mixing ratios above about 200 nmol mol−1, δ follows a linear relation-
ship relative to µ−1. However, overall the relationship is curved. E.g., for EU-
PLEX 2003, the δ15N values can be approximated by a second-order polynomial:15

δ15N(EUPLEX 2003)=−1.4·10−16 µ−2+4.9·10−9 µ−1−14.2‰ (R2=0.998). Neither lin-
ear mixing nor Rayleigh fractionation can explain the observed behavior at mixing ra-
tios below 200 nmol mol−1. A different transport scheme must therefore be invoked,
possibly “continuous weak mixing” (Sect. 3.4).

Figure 11 demonstrates this behavior in greater detail. The left panel shows the20

residual for the EUPLEX 2003 and SOLVE 2000 data after a linear least-squares fit
has been applied to the data between 200 and 320 nmol mol−1. The right panel shows
an analogous fit of the data between 170 and 320 nmol mol−1. In both cases, the
residuals become very large below the lower boundary of the fit region. However,
in the 170 nmol mol−1 case, the residuals also show a pattern in the range between25

170 and 320 nmol mol−1, with foremost positive residuals in the 170 to 260 nmol mol−1

range and negative residuals in the 260 to 320 nmol mol−1 range. Such a pattern is
absent in the 200 nmol mol−1 range. This neatly demonstrates the suitability of linear
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mixing to describe the lower polar vortex relationship between N2O mixing ratios and
isotope ratios, for mixing ratios above approximately 200 nmol mol−1.

As noted above, a Rayleigh plot yields a linear array in ln(1+δ)−ln(µ/µT) space, for
ln(µ/µT)>−0.6, corresponding to mixing ratios >160 nmol/mol, so that the correlation
between δ and µ for mixing ratios >200 nmol mol−1 could potentially be explained by5

Rayleigh fractionation under the influence of vertical advection and diffusion. How-
ever, the slope of a linear fit to the Rayleigh plot is smaller even than the reduced
fractionation constant under diffusion-limited conditions, i.e. half the value of the in-
trinsic fractionation constant, and this simple explanation model alone is therefore not
sufficient.10

The failure of “end-member mixing” to describe the N2O isotope variations in polar
aircraft samples with N2O mixing ratios below about 200 nmol mol−1 can be interpreted
as a hint to the mechanism by which upper stratospheric air in the polar vortex mixes
with extra-vortex mid-latitude air. Rather than a single, “late” mixing event, “continuous
weak mixing” between vortex and extra-vortex air might be the relevant mechanism.15

This process was first proposed and developed conceptually by Plumb et al. (2000).
In Sect. 3.4, we include isotopes in a two-dimensional transport scheme similar to the
one used by Plumb et al. and evaluate whether the observed isotope variations could
indeed be due to continuous weak mixing.

3.3.4 Upper stratospheric or mesospheric air intrusions20

Figures 9 and 10 also show that polar balloon samples with N2O mixing ratios be-
low 100 nmol mol−1 strongly deviate from the mid-latitude δ−µ−1 relationship, espe-
cially in the case of the Kiruna 03/03 profile. The latter profile comprises three sam-
ples with mixing ratios between 7 and 19 nmol mol−1, but nearly identical δ15N val-
ues around 60‰. They were obtained at altitudes of 23.9 km (7 nmol mol−1), 25.3 km25

(13 nmol mol−1), and 28.4 km (19 nmol mol−1). The nearly horizontal array of these
three samples in δ−µ−1 space can be explained by mixing with N2O-free upper strato-

4294

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/4273/2006/acpd-6-4273-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/4273/2006/acpd-6-4273-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 4273–4324, 2006

Stratospheric N2O
isotope distribution

J. Kaiser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

spheric or mesospheric air, descending diabatically in the polar vortex, as was first
suggested by Toyoda et al. (2004). In the polar night, no photochemical destruction
of N2O occurs and transport is therefore the only process that can influence the rela-
tionship between N2O isotope and mixing ratios. The fact that the high-latitude Kiruna
03/03 samples contained mesospheric air was first established by CO2 and SF6 anal-5

yses of the same set of samples analyzed here (Engel et al., 2006). Meteorological
observations and age of air estimates derived from these trace gas measurements
showed that in the boreal winter of 2002/2003, there was indeed an mesospheric intru-
sion into the Arctic polar vortex, which descended in the vortex throughout the winter.
Based on Fig. 9, a similar event must have occurred in the winter of 1992.10

3.4 Influence of continuous weak mixing on N2O isotope ratios

Plumb et al. (2000) showed that tracer-tracer relationships in the Arctic vortex are better
interpreted by continuous weak mixing across the vortex than by simple end-member
mixing. They used a conceptual two-dimensional model to illustrate the effects of con-
tinuous mixing and showed that compact tracer-tracer relationships develop for exterior15

air and vortex air, with a small transition region in between. We have used the same
conceptual model as Plumb et al. (2000) to investigate whether continuous mixing is a
useful concept to better interpret the isotope variations in our polar vortex samples.

Briefly, a simple advective-diffusive model in cylindrical geometry is set up with 41
grid points in the r-direction and 101 grid points in the z-direction, corresponding to20

latitude and altitude. Latitudinal downwelling with vertical velocity w(r)=−cos(1/2πr) is
assumed, so that the maximum downwelling occurs at the pole (note the correction of
a typo in the definition of w in Plumb et al., 2000). The model is dimensionless with
spatial co-ordinates from 0 to 1 and mixing ratios expressed relative to their value at
the tropopause (χ=µ/µT). The unit of time is the time it takes for air to descend at the25

pole from top to bottom of the domain. With K being the horizontal (eddy) diffusivity,
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the normalized mixing ratios evolve according to

∂χ
∂t

= −w∂χ
∂z

+
1
r
∂
∂r

(
rK
∂χ
∂r

)
.

The horizontal diffusivity K was defined by Plumb et al. (2000) as piecewise uniform
over several regions (numerical values correspond to the first case discussed in Plumb
et al., 2000):5

Vortex z>0.2 r <0.3 K=Kv = 0.25

Edge region z>0.2 0.3< r <0.4 K=Ke=0.05

Exterior r >0.4 K=Km=2.0

Subvortex 0.1<z<0.2 r <0.3 K : linear transition between Km and Kv

Subvortex 1 < z < 0.2 0.3< r <0.4 K : linear transition between Km and Ke

Subvortex z < 0.1 r <0.4 K=Km

We use continuously defined horizontal diffusivities instead with the same transition
points at r=0.3, r=0.4 and z=0.1 as in Plumb et al. (2000):

Kr (r)=(Kv−Ke)e−(r+0.7)38

+(Km−Ke) e−(r−1.4)62

+Ke10

Kr (r, z)=(Kr−Km)e−(z−1.1)38+Km

As boundary conditions at the exterior edge of the domain (r=1), we set
χ (1,z)=1/2[cos(πz2)+1], at the bottom χ (r ,0)=1 and at the top χ (r ,1)=0. At r=0,15

we specify ∂χ /∂r=0. For the sake of argument, we assume that the mixing ratio of
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the minor isotope at the exterior edge is given by χ ′(1,z)=χ (1, z)1+ε with ε=−38‰
(corresponding to the 15N isotope effect used in Figs. 5 and 6).

The resulting steady-state dependence of the isotope ratio on χ=µ/µT is shown in
Fig. 12. Two compact δ−µ/µT relationships of finite width develop in the vortex and
in the exterior, just as found by Plumb et al. (2000) for conceptual tracer-tracer rela-5

tionships between NOy–N2O and CFCl3–N2O. A horizontal (quasi-isentropic) cross-
section at z=0.7 clearly shows a different δ−µ/µT relationship than expected for end-
member mixing. The modeled tracer-tracer relationships can also be evaluated in a
Rayleigh plot (Fig. 13a) or as mixing plot (Fig. 14a). The Rayleigh plot (Fig. 13a)
for a constant value of r bears some similarity to a Rayleigh fractionation plot for a10

one-dimensional reaction-diffusion-advection scheme with an isotope effect below the
intrinsic isotope effect although in the present case no chemistry takes place in the
model region. The mixing plot (Fig. 14a) shows that continuous weak mixing leads to
curved quasi-isentropic arrays in a δ−µ−1 plot, which does suggest that the polar N2O
isotope profiles are more likely caused by continuous weak mixing than by end-member15

mixing.
A comparison of the continuous weak mixing model with stratospheric measure-

ments (Figs. 12b, 13b, and 14b) shows that it captures the features in the stratospheric
N2O isotope data for mixing ratios above 200 nmol mol−1, just as the other two con-
ceptual models discussed here (modified Rayleigh fractionation in a one-dimensional20

reaction-diffusion-advection scheme and end-member mixing). However, only the con-
tinuous weak mixing model seems to simulate the qualitative behavior at both high and
low mixing ratios. Modified Rayleigh fractionation leads to linear correlations between
ln(1+δ) and ln(µ/µT). It thus fails to simulate the curvature of the EUPLEX measure-
ments. End-member mixing should yield linear correlations between δ and µ−1, and25

thus fails at mixing ratios below 200 nmol mol−1. In contrast, in the continuous weak
mixing model even the increase of the magnitude of the apparent fractionation con-
stant with decreasing N2O mixing ratio is noticeable, which means that this conceptual
transport model can go a long way towards explaining the observed stratospheric N2O
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isotope variations. This does not mean that the conceptual model presented here
should be construed as an attempt to realistically simulate stratospheric transport and
chemistry. It only serves to illustrate that the level of precision we have achieved in
stratospheric N2O isotope measurements warrants moving beyond simple Rayleigh
fractionation and end-member mixing models. For a full appraisal of the observations5

two- or three-dimensional atmospheric chemistry models are needed and are in fact
already being used (McLinden et al., 2003; Morgan et al., 2004).

3.5 Correlations between position-dependent isotope enrichments

In this final section, we demonstrate that position-dependent N2O isotope measure-
ments are not only useful to make inferences about stratospheric transport, but also10

bear some signal of variations in the relative contributions of the two photochemical
N2O sinks in the stratosphere, photolysis and reaction with O(1D), as first suggested
by Röckmann et al. (2001) and Toyoda et al. (2001) and further elaborated by Kaiser et
al. (2002a, b, 2003b). The effects of transport and mixing on the correlation between
apparent fractionation constants essentially cancel (Kaiser et al., 2002a). This can be15

exploited to discern variations in stratospheric chemistry with respect to altitude or lat-
itude. Based on their data-set of polar aircraft samples, Park et al. (2004) questioned
the possibility to detect altitude variations in the relative contribution of the photolysis
and O(1D) sink, but proposed instead that meridional differences in the correlation be-
tween different isotope signatures might be apparent, with a stronger influence of the20

O(1D) sink at tropical latitudes.
Toyoda et al. (2004) calculated the contribution of the O(1D) sink from apparent

stratospheric fractionation constants and the fractionation constants measured for UV
photolysis and the reaction of N2O with O(1D) in the laboratory. However, they did
not allow for transport effects and the ensuing reduction of the apparent fractionation25

constant from its intrinsic (i.e., photochemical) value. This led them to conclude er-
roneously that the contribution of photolysis to the total N2O sink is significantly less
than the value of 90% derived from integrating stratospheric chemistry models (Min-
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schwaner et al., 1993). Toyoda et al. (2004) indicated that their dataset was not com-
prehensive enough to use correlations between individual N2O isotope signatures to
derive the contribution of different photochemical N2O sinks.

With the present comprehensive, high-precision dataset, we are now revisiting the
suggested variations of η, i.e., the correlation between ln(1+2δ15N) and ln(1+1δ15N),5

and ψ , i.e., the correlation between ln(1+δ15N) and ln(1+δ18O) (Kaiser, 2002; Kaiser
et al., 2002a; Park et al., 2004). Instead of taking the ratio of apparent fractionation con-
stants over larger stratospheric regions (Röckmann et al., 2001; Toyoda et al., 2004),
the large number of available samples now allows pursuing an approach with higher
resolution. We compute η and ψ values directly for each individual sample, using the10

isotope values normalized to a single tropopause date of 15 March 2002. Using η
and ψ specifically in this combination of isotope signatures as chemical fingerprints
ensures that quantities with comparable errors are combined, in order to minimize sta-
tistical errors. By plotting ln(1+2δ15N) vs. ln(1+1δ15N) and ln(1+δ15N) vs. ln(1+δ18O),
it was verified that there are no significant offsets from the origin for samples with low15

enrichments, which means that the normalization procedure has effectively removed
all artifacts, which might otherwise be present in the computed η and ψ values. The
results were then binned in 25 nmol/mol intervals and are shown in Fig. 15.

At high N2O mixing ratios, both η and ψ show low values, which approach the values
expected for photo-oxidation alone (0.25 and 0.5 (Kaiser et al., 2002a), in contrast to20

values of about 2.5 and 1.2, which would be expected for photolysis; see Kaiser, 2002).
This indicates that in the lower stratosphere a much larger fraction than 10% is removed
by photo-oxidation (cf. Introduction) and for the samples in the highest bin it might be
the primary N2O sink. This was initially suggested by Röckmann et al. (2001). Note,
however, that the error bars are large in spite of the high measurement precision of the25

present data-set. Especially, the η value has larger analytical errors, even though it
should in principle be more sensitive to variations of the O(1D) contribution to the total
N2O sink, because its end-member values span a larger range than for ψ .

At low N2O mixing ratios, both η and ψ decline. This is expected from the temper-
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ature dependence of η and ψ in N2O photolysis (Kaiser et al., 2002b) which leads to
η and ψ decreases due to the gradual decrease of stratospheric temperatures with
altitude. Stratospheric spectral ultraviolet variations are too small to cause effects due
to the wavelength dependence of N2O isotope fractionation (Kaiser et al., 2003b).

Note that the η and ψ values shown here do not correspond to their local values at5

the point where the sample was obtained, but are convoluted with the η and ψ varia-
tions at higher mixing ratios. Nevertheless, any decrease in the local η and ψ values
will necessarily also show up in the “globally” calculated values shown here. We tried to
derive η and ψ variations from polynomial fits to plots of ln(1+2δ15N) vs. ln(1+1δ15N)
and ln(1+δ15N) vs. ln(1+δ18O). However, this requires polynomial fits of at least third10

order, with associated large uncertainties in the regression coefficients. The polyno-
mial fits show negative curvature, i.e., η and ψ decrease with increasing 1δ15N or δ18O
values. However, the uncertainties of the calculated inflection point from this analysis
are too high to allow for detecting a change in curvature near the origin.

In conclusion from the position-dependent N2O isotope measurements, it seems now15

that they do bear an unambiguous signature of varying contributions of photolysis and
photo-oxidation as tentatively established previously (Kaiser, 2002; Röckmann et al.,
2001). We also searched for meridional variations in η or ψ by binning the data into
polar, mid-latitude and tropical samples. However, no significant meridional contrasts
were found and we attribute the suggested lower tropical η values derived from Park et20

al.’s (2004) re-analysis of our previously published subset of the India 04/99 samples
(Röckmann et al., 2001) to analytical artifacts.

4 Conclusions

Apparent fractionation constants (εapp) for stratospheric N2O are shown to be depen-
dent on the time of sampling (season and year), latitude and altitude. |εapp| is highest25

near the equator and decreases towards the poles. Seasonal differences are difficult
to discern at polar and tropical latitudes because of limited data coverage, but point
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to higher |εapp| values in fall than in late spring/summer. This can be attributed largely
to transport effects (Morgan et al., 2004), with faster transport time scales in the trop-
ics and in fall leading to higher apparent fractionation constants of greater magnitude.
Modeling attempts therefore have to consider seasonal and meridional variations of the
N2O isotope signature if quantitative agreement with observations is to be achieved. It5

might even be necessary to include short-term temporal or longitudinal variations as
a comparison between the Gap 06/99 and Sanriku 05/99 profiles shows (Fig. 8 and
Sect. 3.2).

In the lower stratosphere (mixing ratios below 200 nmol mol−1), N2O isotope and mix-
ing ratios display a compact relationship, which can be exploited for calculations of the10

atmospheric N2O isotope budget (Kaiser et al., 2004b; Park et al., 2004; Röckmann et
al., 2003a). In spite of this compact relationship, lower stratospheric N2O clearly shows
a fingerprint of photo-oxidation in its isotopic signature, as diagnosed from correlations
between individual isotope signatures. Stronger variations in the correlation between
δ15N, δ18O and the position-dependent δ15N values can be unambiguously detected15

in the upper stratosphere. These might be explained by temperature effects (Kaiser,
2002; Kaiser et al., 2002b).

We have also discussed conceptual models to rationalize stratospheric N2O iso-
tope variations in the framework of modified Rayleigh fractionation (considering a one-
dimensional reaction-diffusion-advection scheme), end-member mixing and continu-20

ous weak mixing between intravortex and extravortex air (Plumb et al., 2000). None
of the models captures all stratospheric features. Especially, aircraft samples from
the polar vortex at N2O mixing ratios below 200 nmol mol−1 deviate both from isotope
variations expected for Rayleigh fractionation and end-member mixing, but could be
explained by continuous weak mixing between extravortex and intravortex air. More25

detailed three-dimensional model simulations will be needed to fully appraise the ex-
panding set of stratospheric N2O isotope measurements.
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Brenninkmeijer, C. A. M. and Röckmann, T.: Mass spectrometry of the intramolecular nitro-
gen isotope distribution of environmental nitrous oxide using fragment-ion analysis, Rapid
Commun. Mass Spectrom., 13, 2028–2033, 1999.

Engel, A., Strunk, M., Müller, M., Haase, H.-P., Poss, C., Levin, I., and Schmidt, U.: Temporal
development of total chlorine in the high-latitude stratosphere based on reference distribu-20

tions of mean age derived from CO2 and SF6, J. Geophys. Res., 107, 1–11, 2002.
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Table 1. Sampling dates and locations of past upper tropospheric and stratospheric N2O iso-
tope measurements. Unknown dates are marked by x’s. Most isotope measurements have
been performed by isotope-ratio mass spectrometry (IRMS), except for the Fourier transform
infrared spectroscopic (FTIR) data of Griffith et al. (2000).

Location Date Latitude Longitude Altitude Samples Reference
or campaign ◦ N ◦ E km

Mildura, Australia xx xxx 197x −34 142 21 1 Moore (1974)

Kiruna, Sweden 10 Jan 1988 68 20 13 1 Kim and Craig (1993)
10 Feb 1988 68 20 18 1

Kiruna, Sweden 10 Feb 1988 68 20 14+23 2 Rahn and Wahlen (1997)
Contiguous USA 27 Jan 1988 46 −94 17 1

10 May 88 39–45 −94 17+18 2
12 April 1989 40–48 −94 15+17 2

Fort Sumner, USA 14 Sep 1992 34 −104 18–35 1 profile Griffith et al. (2000)
15 Sep 1992 34 −104 18–35 1 profile
25 Sep 1993 34 −104 18–35 1 profile
26 Sep 1993 34 −104 18–35 1 profile
22 May 1994 34 −104 18–35 1 profile
28 Sep 96 34 −104 18–35 1 profile

Fairbanks, USA 8 May 1997 65 −148 18–32 1 profile
7 July 1997 65 −148 18–30 1 profile

Kiruna, Sweden 3 Dec 1999 68 1 18–32 1 profile

POLARIS I 26 April 1997 81–88 n/a 17–19 4 Park et al. (2004)
POLARIS II 29 June 1997 62 n/a 21 1

30 June 1997 63–66 n/a 19–21 3
7 July 1997 73–89 n/a 17–21 3
10 July 1997 64 n/a 21 1

POLARIS III 15 Sep 1997 65 n/a 13–19 4
18 Sep 1997 79 n/a 19 1

SOLVE 23 Jan 2000 63–65 n/a 11–18 3
27 Jan 2000 63–66 n/a 20 3
2 Feb 2000 64 n/a 19 1
3 Feb 2000 69 n/a 18 1
5 March 2000 68–70 n/a 17–19 2
11 March 2000 61–72 n/a 17–20 5
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Table 1. Continued.

Location Date Latitude Longitude Altitude Samples Reference
or campaign ◦ N ◦ E km

Sanriku, Japan 4 June 1990 39 142 16–35 9 Toyoda et al. (2001, 2004),
3 Sep 1998 39 142 15–30 11 Yoshida and Toyoda (2000)
31 May 1999 39 142 15–35 11
28 Aug 2000 39 142 15–32 10
30 May 2001 39 142 15–34 11

Kiruna, Sweden 22 Feb 1997 68 20 10–26 11
Syowa, Antarctica 3 Jan 1998 −69 40 10–30 9

Hyderabad, India 26 March 1987 18 79 17–26 5 Röckmann et al. (2001; this work)
29 April 1999 18 79 10–28 10

Aire sur l’Adour 30 Sep 1993 44 0 10–32 14
(ASA), France 9 Oct 2001 44 −1 12–31 14

24 Sep 2002 44 0–1 12–32 9
Gap, France 23 June 1999 44 3–6 8–34 15
Kiruna, Sweden 18 Jan 1992 68 21 6–27 2

6 Feb 1992 68 21 7–23 9
20 March 1992 68 21 7–25 9
7 March 1995 68 21 7–30 11
1 March 2000 68 24–28 9–21 11
6 March 2003 68 22–27 11–30 13

EUPLEX 19 Jan 2003 77 21 20 1
23 Jan 2003 66–73 16–18 18–20 13
26 Jan 2003 66–73 21–23 18–19 5
6 Feb 2003 66–79 9–19 17–20 16
8 Feb 2003 67–72 15–27 17–20 18
9 Feb 2003 68–80 23–49 14–19 19
11 Feb 2003 67–70 12–26 8–15 16
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Table 2. Apparent Rayleigh fractionation constants (εapp) derived for lower stratospheric sam-
ples (linear fit for ln(µ/µT)>−0.6) and for middle stratospheric samples at ln(µ/µT) values of
−1.0, −1.5 and −2.0 (first derivative of second order polynomial fit for ln(µ/µT)>−2.4). Extrap-
olated values are shown in parentheses.

−ε15Napp −ε18Oapp

ln(µ/µT) >−0.6 −1.0 −1.5 −2.0 > −0.6 −1.0 −1.5 −2.0
India 03/87 19±1 16±1
India 04/99 18±1 (27±1) 16±1 (22±2)
ASA 09/93 17±0 23±1 30±1 (36±1) 14±0 19±1 25±1 (31±1)
ASA 10/01 19±1 25±2 (30±3) 15±1 20±2 (25±2)
ASA 09/02 16±0 24±4 (30±4) 12±0 19±4 (24±4)
Gap 06/99 17±1 21±1 24±1 27±1 14±1 17±1 20±1 22±1
Kiruna 01/92 17±0 20±0 23±1 25±1 14±0 17±1 19±1 21±1
Kiruna 02/92 14±0 21±3 25±3 28±4 13±1 18±1 21±1 24±2
Kiruna 03/92 17±1 17±0 18±1 20±1 16±1 14±1 16±1 17±2
Kiruna 03/95 17±1 21±2 23±3 (26±3) 13±1 17±2 20±2 (22±2)
Kiruna 03/00 15±1 19±1 22±1 25±1 13±1 16±1 18±1 21±1
Kiruna 03/03 14±0 17±0 19±0 21±0 9±1 13±1 15±1 18±1
EUPLEX 02/03 15±0 18±0 (20±0) 12±0 14±0 (16±0)

−2ε15Napp −1ε15Napp

ln(µ/µT) >−0.6 −1.0 −1.5 −2.0 >−0.6 −1.0 −1.5 −2.0
India 03/87 27±2 11±1
India 04/99 25±2 (37±3) 10±1 (16±3)
ASA 09/93 23±1 33±2 42±2 (51±2) 10±1 13±1 16±1 (20±1)
ASA 10/01 27±1 37±4 (46±5) 9±1 12±3 (12±3)
ASA 10/02 22±1 33±9 (40±12) 9±1 16±3 (23±4)
Gap 06/99 25±1 31±1 34±2 38±2 9±1 10±1 12±2 14±2
Kiruna 01/92 23±1 28±1 32±1 35±1 11±0 12±0 13±0 15±1
Kiruna 02/92 23±1 31±2 35±2 39±3 5±0 12±3 14±4 17±5
Kiruna 03/92 22±2 26±1 27±1 28±1 11±3 8±2 10±2 11±2
Kiruna 03/95 25±2 30±3 34±4 (37±4) 8±1 10±2 12±2 (14±2)
Kiruna 01/00 22±2 29±0 32±0 36±0 4±1 9±0 12±0 14±0
Kiruna 03/03 19±2 24±2 27±2 29±2 8±3 9±2 10±2 12±2
EUPLEX 02/03 22±0 26±1 (29±1) 9±0 10±1 (11±1)
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Fig. 1. Difference between N2O mixing ratios derived from the NO+ fragment ion and the N2O+

molecular ion peak areas versus N2O mixing ratios derived from the N2O+ molecular ion peak
area (195 of 213 samples). The average difference is (1.3±2.1) nmol mol−1.
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Fig. 2. Relative difference between N2O mixing ratio determined with mass-spectrometric (MS)
and electron capture detection (ECD) versus N2O mixing ratio determined by ECD (47 of 213
samples). The average relative difference is (−0.3±2.1)%, excluding two outliers of 11% and
−18%. 4311
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Fig. 3. Vertical profiles of N2O mixing ratios from the balloon flights (ASA: Aire sur l’Adour). The
EUPLEX 2003 aircraft samples have been omitted to avoid congestion of the plot. The mixing
ratios have not been adjusted for the sampling date and the stratospheric age of air (Sect. 3.2).
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Fig. 4. Correlation between CH4 and N2O mixing ratios, measured by gas chromatography-
isotope ratio mass spectrometry. Reference curves for vortex, mid-latitude and tropical air are
from ATMOS measurements (Michelsen et al., 1998).
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Fig. 5. Compact relationship between δ values and mixing ratios down to 200 nmol mol−1,
divergent relationship below, with higher δ values for mid-latitude samples than for polar loca-
tions. However, note the mid-latitude profile for Kiruna 03/95 (outside of polar vortex), which
was classified as a mid-latitude profile based on its CH4-N2O correlation (Sect. 3.2 and Fig. 4),
but is within the range of other polar profiles in δ-µ space. δ values are relative to SIL-N2O. Also
shown are two hypothetical Rayleigh fractionation lines, which have been calculated assuming
isotope effects ε of −38.0‰ and −19.2‰, respectively. These two limits for ε correspond to an
intrinsic photochemical isotope effect as expected from broadband photolysis at room tempera-
ture with a 10% contribution from N2O photo-oxidation and the apparent isotope effect expected
for transport-limited conditions (about half the intrinsic isotopic effect) (Kaiser et al., 2002a, b).
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Fig. 6. Rayleigh plots for bulk nitrogen, oxygen and position-dependent nitrogen isotope sig-
natures of stratospheric N2O. The δ values are expressed relative to the isotopic composi-
tion of tropopause N2O at the time the sample entered the stratosphere, which takes the
decreasing heavy isotope content of tropospheric N2O and the age of the stratospheric air
sample into account. Similarly, the mixing ratio of tropopause N2O that we use to calculate
ln(µ/µT) is corrected for the increasing atmospheric N2O mixing ratio and the age of air (see
Sect. 3.2 for details). Black and red dotted lines correspond to Rayleigh fractionation with
fractionation constants ε15N=−38.0‰/−19.2‰, ε18O=−33‰/−16.6‰, 1ε15N=−22.0/−11.1‰,
and 2ε15N=−54.0‰/−27.4‰, respectively.
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Fig. 7. Dependence of the apparent Rayleigh fractionation constant, ε15Napp, on latitude and
remaining N2O fraction (µ/µT). For better visibility, data points at the same latitude have been
separated by 0.5◦ in the plot. Extrapolated values are shown as open symbols. The apparent
fractionation constants have been derived from a linear fit to the data points with µ/µT>−0.6
and from the local slope of second-order polynomial fits at µ/µT=−1.0, −1.5, and −2.0.
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Fig. 8. Comparison between two stratospheric N2O profiles obtained at nearly the same time
and same latitude, but at different longitudes (Gap 23 June 1999: 3−6◦ E, Sanriku 31 May
1999: 142◦ E). The mixing ratios and δ values have been normalized to the same stratospheric
entrance date.
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Fig. 9. Mixing plot of the bulk nitrogen isotope ratio. End-member mixing would lead to a
linear relationship in a δ−µ−1 plot. One Kiruna 03/03 sample at 0.283 mol nmol−1/139.6‰
(3.5 nmol mol−1) has been omitted in order to show details for samples with higher mixing ratios
more clearly.
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Fig. 10. Linear end-member mixing for some mid-latitude samples, e.g. δ15N(ASA
09/93)=4.0·10−9 µ−1−12.4‰ (R2=0.997); weak mixing (?) at polar latitudes, δ15N(EUPLEX
2003)=−1.4·10−16 µ−2+4.9·10−9 µ−1−14.2‰ (R2=0.998). Also shown is a Rayleigh-
fractionation curve with a fractionation constant of ε=−17‰.

4319

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/4273/2006/acpd-6-4273-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/4273/2006/acpd-6-4273-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 4273–4324, 2006

Stratospheric N2O
isotope distribution

J. Kaiser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

 

  

Fig. 11. Residuals of linear fits to polar aircraft N2O measurements. No structure is visible in the
residuals for a lower cut-off of 200 nmol mol−1 (left panel), but if a lower cut-off of 170 nmol mol−1

(right panel) is used for the linear fits, samples closer to 170 nmol mol−1 fall mostly above the
x-axis, while samples closer to 300 nmol mol−1 fall mostly below the x-axis.
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Fig. 12. (a) Plot of δ value vs. normalized mixing ratio for a continuous weak mixing model on a
41×101 (r×z) grid (based on Plumb et al., 2000). Grid boundaries at r=0.0 and r=1.0, a hori-
zontal cross-section at z=0.7 as well as a hypothetical mixing curve between the (0.0, 0.7) and
(1.0, 0.7) end-members are indicated. Continuous weak mixing leads to a clustering of the δ
values near the curves defined by the grid boundaries. These correspond to the intravortex (po-
lar) and extravortex (midlatitude) regions. The values the r=1.0 grid boundary corresponds to
the assumed constant isotope effect of ε=−38‰. (b) Comparison between polar stratospheric
measurements from balloon and aircraft campaigns at Kiruna with continuous weak mixing
model results at the grid boundaries. The normalized mixing ratios from the model runs have
been multiplied by an N2O mixing ratio of 314 nmol mol−1 (1998) to facilitate the comparison to
stratospheric measurements.
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Fig. 13. Same as Fig. 12, but now plotted as ln(1+δ) vs. ln(µ/µT).
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Fig. 14. Same as Fig. 12, but now plotted as δ value vs. normalized inverse mixing ratio, µT /µ,
or inverse mixing ratio, µ−1.
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Fig. 15. Dependence of binned ψ- and η-values on the N2O mixing ratio. Error bars correspond
to the standard error of the mean for the respective mixing ratio bin.
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