

Comparison of raingauge observations with modeled precipitation over Cyprus using Contiguous Rain Area analysis

N. Tartaglione, S. Mariani, C. Accadia, A. Speranza, M. Casaioli

▶ To cite this version:

N. Tartaglione, S. Mariani, C. Accadia, A. Speranza, M. Casaioli. Comparison of raingauge observations with modeled precipitation over Cyprus using Contiguous Rain Area analysis. Atmospheric Chemistry and Physics Discussions, 2005, 5 (2), pp.2355-2376. hal-00301212

HAL Id: hal-00301212 https://hal.science/hal-00301212

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Atmos. Chem. Phys. Discuss., 5, 2355–2376, 2005 www.atmos-chem-phys.org/acpd/5/2355/ SRef-ID: 1680-7375/acpd/2005-5-2355 European Geosciences Union

ACPD

5, 2355–2376, 2005

Contiguous Rain Area-based verification over Cyprus

N. Tartaglione et al.

Title Page Introduction Abstract Conclusions References Tables Figures ► Back Close Full Screen / Esc **Print Version** Interactive Discussion

EGU

Comparison of raingauge observations with modeled precipitation over Cyprus using Contiguous Rain Area analysis

N. Tartaglione¹, S. Mariani², C. Accadia², A. Speranza³, and M. Casaioli²

¹Department of Physics, University of Camerino, Camerino, Italy ²Agenzia per la Protezione dell'Ambiente e per i Servizi Tecnici, Rome, Italy ³Department of Mathematics and Informatics, University of Camerino, Camerino, Italy

Received: 19 January 2005 – Accepted: 31 March 2005 – Published: 18 April 2005

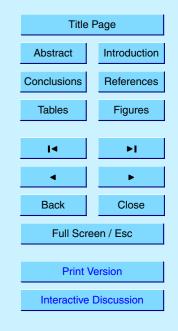
Correspondence to: N. Tartaglione (nazario.tartaglione@unicam.it)

 $\ensuremath{\textcircled{O}}$ 2005 Author(s). This work is licensed under a Creative Commons License.

Abstract

Verification of modeled rainfall with precipitation observed by a rain gauge network has been performed in a case study over the Cyprus Island. Cyprus has a relatively dense rain gauge network. The applied verification method is the Contiguous Rain
⁵ Area (CRA) analysis. In this work some drawbacks are pointed out when CRA method is applied in such a case study. Impact on CRA results, when considering different dimensions of the compared model domain and different types of indicators (correlation and mean square error) used in the comparison, are discussed. Results indicate that care has to be taken when verification of modeled rainfall is performed over some of
¹⁰ islands or hydrological basins.

1. Introduction


Oceans cover a large part of our planet; as a consequence of that, much rainfall falls in the sea. Unfortunately, it is difficult to measure oceanic rainfall. Although many climatologic studies (Ikai and Nakamura, 2003; Imakoa and Spencer, 2000; Michaelides

- et al., 2004) show that satellite sensors can provide enough information on hydrological cycle, verification of limited area models for short term forecasting (up to 2 days) remains problematic over marine regions. It is possible to have enough information where islands are present, for instance from available rain gauge networks. It is known that numerical models provide area average information on grid points, not point val-
- ²⁰ ues. Thus comparison between rain model outputs and observations collected in small islands with very few rain gauges may produce misleading results, since in such a case small islands can be thought about as point locations. Cyprus is an island large enough to have a dense rain gauge network, but it is not so large as to be considered as a land region. Its orography is simple enough, having an isolated mountain in the western part (Mt. Olympus; 1951 m) and a thin barrier in northern part. This work was carried out within the framework of the VOLTAIRE European project (Validation of

ACPD

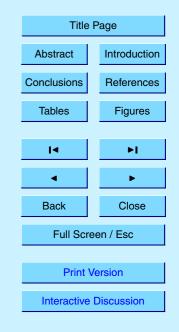
5, 2355–2376, 2005

Contiguous Rain Area-based verification over Cyprus

multi-sensor precipitation fields and numerical modeling in Mediterranean test sites), where the island of Cyprus is one of test sites.

One of the tasks of this project is the comparison between all available observations and numerically modeled rain fields. Comparison between model outputs and observations is useful for assessing the capacity of models to well predict variables like precipitation. Comparison between model outputs and observations is useful for assessing the capacity of models to well predict variables like precipitation. A method for evaluating forecast precipitation quality, in order to assess horizontal displacements, is the Contiguous Rain Area (CRA) analysis (Ebert and McBride, 1998, 2000). The CRA analysis allows decomposing the total spatial error into three different error sources:

- ¹⁰ analysis allows decomposing the total spatial error into three different error sources: displacement, rain volume and pattern errors. Usually, verification of rain events is performed over large domains, often at national scale (Accadia et al., 2005; McBride and Ebert, 2000; Mesinger, 1996). However, for large domains, verification of a single event might be difficult when others simultaneous events are present. McBride and
- Ebert (2000) pointed out that a way to avoid this problem is to perform regional verification. The verification problem is also complicated by the presence of different rainfall patterns in a single event. Orographic precipitation and frontal rainfall might alter model skill assessment, especially where observations are available over small areas. In this paper, the authors study a rain event where this kind of problem is present.


²⁰ In this work a numerical model is verified over Cyprus for a relatively heavy precipitation event during 5 March 2003. Actually observed rainfall was due to a cold front that advected moist air from south associated to a trough with its main axis lying west of the island. This synoptic system was originally associated to an upper level cold air pool over Italy during 3 March 2003. This cyclone moved then eastwards, affecting

²⁵ southern Greece and Crete the 4th as shown in Fig. 1. The system slowed down the 5th remaining almost stationary over eastern Mediterranean Sea, probably because of the presence of a high pressure system over the Caspian Sea region (Fig. 2). The persistence of this cyclone over the Eastern Mediterranean produced very intense precipitation over the southern part of Turkey and moderate rainfall over Cyprus (Fig. 3).

ACPD

5, 2355–2376, 2005

Contiguous Rain Area-based verification over Cyprus

This article is divided as follows. Section 2 describes the model, data and methodologies used for estimating the displacement and intensity errors of the forecast rain system. In Sect. 3 the CRA analysis is applied and results are described, problems met in this case are discussed. Finally in Sect. 4, conclusions are presented.

5 2. The model, data and methods

2.1. The BOLAM Model

The model used in this comparison is the BOlogna Limited Area Model (BOLAM) developed at FISBAT-CNR (now ISAC-CNR) (Buzzi et al., 1994). BOLAM is a finite difference, hydrostatic primitive equation model. The dynamical core is based on the Forward-Backward Advection Scheme (FBAS) developed by Malguzzi and Tartaglione 10 (1999). This scheme, formally equal to the leapfrog scheme, is much more efficient since it can run with a Courant number greater than two, and it can be coupled with a forward-backward scheme for solving the gravity wave. The numerical diffusion is based on ∇^4 operator. The model presents a few hydrometeors that are advected by a lagrangian scheme. The convection scheme consists in the Kain-Fritsch parameteri-15 zation (Kain and Fritsch, 1990, 1995), and the radiation parameterization is derived by the Geylen scheme (Geleyn and Hollingsworth, 1979). The model runs on a rotated Arakawa C grid (in geographical coordinates), where the rotated equator goes across the domain's midlatitude, in order to minimize grid anisotropy. The standard 6-h, 0.5° resolution, 60 hybrid level, European Centre for Medium-Range Weather Forecasts 20 (ECMWF) analyses and forecasts were first horizontally interpolated to the BOLAM outer domain, which has a 30 km resolution, and covers the entire Mediterranean region, and then vertically interpolated to 40 equally spaced sigma levels. A smaller domain (with 0.09° grid spacing) covering the Eastern Mediterranean (Fig. 3) was nested in the larger and coarser one that provides initial and boundary conditions. 25

ACPD

5, 2355-2376, 2005

Contiguous Rain Area-based verification over Cyprus

Title Page						
Abstract Introduction						
Conclusions	References					
Tables	Figures					
_						
• •						
Back	Close					
Full Scr	een / Esc					
Print	Print Version					
Interactive Discussion						

2.2. Observed precipitation

The Cyprus rain gauge that was available in the European Project VOLTAIRE (http://www.voltaireproject.org) were used to compare rainfall modeled by BOLAM.

- The Cyprus rain gauge network (managed by the Cyprus Meteorological Service) is composed of 147 rain gauges, covering the Western part of island. The precipitation is accumulated in 24 h, starting from 06:00 UTC of every day and ending at 06:00 UTC of the next day. The event occurred on 5 March 2003 when a cyclone interested the Eastern Mediterranean. Thus precipitation analyzed in the present paper was accumulated from 06:00 UTC of 5 March 2003 up to 06:00 UTC of 6 March 2003.
- ¹⁰ Gridded analysis of the observed precipitation field has been performed using a twopass Barnes scheme (Barnes, 1973). This technique assigns a gaussian weight to an observation as a function of distance between the observation and grid box center. The two-pass implementation described by Koch et al. (1983) has been applied. A first pass is performed to produce a first guess precipitation analysis, followed by a second
- pass that increases the amount of detail from the previous pass. The convergence parameter is set to 0.2 for both passes, while the average data spacing has been set to 0.2°. This setting is consistent with the constraint that the ratio between grid size and average data spacing lays between 0.3 and 0.5 (Barnes, 1964, 1973). Grid points that do not have any rain gauge within a radius of 0.15 degrees were neglected to avoid the
 excessive rainfall spreading introduced by the analysis scheme on grid points far from
- the actual locations of rain gauges.

2.3. Forecast precipitation

The precipitation used for the comparison was the one forecast by the model having a grid spacing of 0.09°. Modeled rain was accumulated in the same time period of the observations. Contours of the forecast precipitation over the integration domain are shown in Fig. 3. In order to perform a homogenous comparison, model output was interpolated from the native grid to a latitude-longitude grid with a horizontal grid spac-

ACPD

5, 2355–2376, 2005

Contiguous Rain Area-based verification over Cyprus

ing of 0.09°. The scheme used to interpolate modeled rain from the native grid to the latitude-longitude one is the remapping procedure, used operationally at the National Centers for Environmental Prediction/Environmental Modeling Center (NCEP/EMC). Accadia et al. (2003) have recently shown that the NCEP remapping scheme is better
 than a simple bilinear interpolation scheme. Contours of the remapped precipitation, zoomed over the region of Cyprus, are shown in Fig. 4

2.4. Methods

Comparisons between forecast and observed field, both in a statistical and in a deterministic (case-study) approach, can be performed in many ways, by using visual verification, continuous and categorical statistics or joint distributions (Wilks, 1995), just to mention a few.

These techniques also called standard verification methods can be joined to diagnostic verification methods like scale decomposition, entity-based and event-oriented analysis (Ebert, 2004).

- In particular, in an operational forecasting activity context, the most commonly used tools for statistical evaluation of quantitative precipitation forecasts (QPFs) are nonparametric skill scores (i.e., ETS, BIA, POD, FAR, etc.) based on contingency tables. However, single case-study verification by means of standard nonparametric statistical methods may lead to unstable results, due to the paucity of the statistical sample. Since
- the interest is in the assessment of pattern and volume differences between observations and model forecast for a single event, the use of an object-oriented technique like CRA (Ebert and McBride, 1998, 2000) analysis was preferred. This object-oriented technique is simply based on a pattern matching of two contiguous areas, defined as the observed and forecast precipitation areas delimited by a chosen isohyet. The event
- magnitude, although intense for the Cyprus Island, did not reach particularly high levels; hence the isohyet (CRA rain rate contour) was set to 0.0 mm/24 h.

Thus, to perform the pattern matching and obtain the best agreement between observations and forecasts, the forecast field is shifted within a rectangular domain enclosing

5, 2355-2376, 2005

Contiguous Rain Area-based verification over Cyprus

Title Page							
Abstract Introduction							
Conclusions References							
Tables	Figures						
•							
Back Close							
Full Scre	Full Screen / Esc						
Print Version							
Interactive Discussion							

the CRA, whose size (shifting value) is selected by the user.

When dealing with precipitation or, more in general, when the question is about forecast ability in matching the field maxima the most suitable criterion to measure the spatial error is the mean square error (MSE) minimization. Hence, in this study the displacement error was assessed by appropriately shifting the forecast precipitation field so that the total squared difference against the observed rain field was minimized. This approach has the appealing feature that it is possible to simply decompose the error into three component sources: the displacement, the pattern and the volume errors (Ebert and McBride, 2000). However, to determine the horizontal displacement of the precipitation event the maximum pattern correlation criterion was also considered.

the precipitation event the maximum pattern correlation criterion was also considered. This criterion tends to match the pattern structure of the observed and forecast fields. In general, over a small or irregular CRA domain, the two criteria may produce different results, opposite to verification over a large CRA domain (Ebert and McBride, 2000). Moreover, using the MSE criterion in a limited spatial domain may lead to
 misleading results. This happens when the algorithm minimizes the MSE shifting the forecast field out of the domain instead of matching up with the nearby observation field (Grams et al., 2005).

The CRA analysis has been performed using three shifting values sv: 9, 13 and 17; hence, the precipitation forecast field was shifted from -sv to sv grid points (i.e., from $-sv \times 0.09^{\circ}$ to $sv \times 0.09^{\circ}$) both in latitude and in longitude. However, to eliminate those matches that are not statistically significant at the 95% confidence level, a minimum correlation value between forecast and observation fields had to be achieved. The statistical significance of each shift was assessed using the F test (Panofsky and Brier, 1958; Xie and Arkin, 1995).

25 3. CRA applied to rain field over Cyprus

Figure 5 shows the observed rainfall, accumulated in 24 h, obtained with the Barnes analysis method. 73 model grid points are included in the area covered by rain gauges.

5, 2355-2376, 2005

Contiguous Rain Area-based verification over Cyprus

N. Tartaglione et al.

Title	Title Page							
Abstract	Abstract Introduction							
Conclusions	References							
Tables	Figures							
14								
	►I							
•	►							
Back	Close							
Full Scr	reen / Esc							
Print	Print Version							
Interactive	Interactive Discussion							

EGU

Figure 4 shows the 24-h accumulated forecast precipitation over the Cyprus region. The classical visual subjective verification indicates a slight westward displacement of the forecast precipitation field with respect to the observed one. This displacement can be evaluated about 0.6° westward, and 0.1° southward. Maximum precipitation recorded during the considered time was about 40 mm in 24 h. This value has the same magnitude of maximum precipitation modeled by BOLAM over Cyprus. Overall, the BOLAM rain forecast can be assessed (subjectively) as a good forecast.

5


The Barnes analysis method produces a smoother observed precipitation field, so the precipitation assigned to each grid point is different from observations available at single stations. In this case, the rain gauge network sources on error ameller than

- at single stations. In this case the rain gauge network covers an area smaller than the integration domain of the model, hence it is natural to ask which subset of the model domain is the best to use for CRA comparison. The subsets used in this work have been described in Sect. 2. Results obtained with the criterion of the maximum correlation criterion are shown in Table 1 and those obtained with the minimum MSE are shown in Table 2.
- Figures 6 and 7 show the shifted rain fields with displacement values as in column 2 of both tables. Although highest correlation values of data, in Table 1, and lower values of MSE, in Table 2, are found for a maximum allowed shift of 17 grid points, they seem to be the least reliable. In fact, using the maximum correlation criterion, the best found
 ²⁰ shift is actually associated with an increase of MSE. Thus, a negative displacement error was obtained, then it was impossible to perform the MSE decomposition (see dashes in Table 1). The corresponding displacement found using the minimum MSE criterion is not consistent with the one found using the other criterion, although MSE
- is the lowest and the associated correlation is the best of those shown in Table 2. A
 visual inspection of Figs. 5, 6c and 7c indicates that the forecast displacement found using both methods with such a relatively large maximum allowed shift (17 grid points) yields to an unphysical comparison between forecast an observed fields. A larger domain over a relatively small verification area might produce incorrect pattern matching due to the presence of many precipitation patterns that satisfy either minimum MSE

ACPD

5, 2355-2376, 2005

Contiguous Rain Area-based verification over Cyprus

or maximum correlation criteria. Considering the results associated to the other shifts, the correlation seems to be more stable than MSE criterion (cf. Tables 1 and 2). Displacements found with the former method remain the same using either 9 or 13 grid points maximum shifts. For 17 grid points maximum case, this is not true. Moreover, results obtained using the correlation criterion seems to be more physically plausible (cf. Figs. 4, 6 and 7).

It is worth noting in Table 2 that when the maximum allowed shift is 9 grid points the pattern error represents about 77% of total error, whereas volume error is close to zero. This should not come as a surprise since minimization of mean square error implies a minimization of the volume error. These results are different from those obtained with

- ¹⁰ minimization of the volume error. These results are different from those obtained with the maximum correlation criterion, where volume error is higher, accounting for about 54% of total error. The maximization of correlation instead implicates a minimization of the pattern error. Such a minimization should be obtained by the modeled rain pattern that is closest to the observed pattern, if the forecast is good, inducing also a low value of the displacement error, as observed in this case. Shift for the maximum and
- significant correlation is 0.27° West, 0.09° South as shown in Table 1. These values are close enough to ones obtained in the subjective and qualitative visual comparison and indicate a quite good forecast.

Considering the low value of the grid points shift (0.09° corresponds to 1 grid point) in the first row of Table 2, it can be noted that for a domain allowing a 9 grid point shift, the MSE criterion indicates that this forecast was specifically good.

4. Conclusions

Although the verification of rainfall using contiguous rain area analysis is an effective approach to verify systematic errors in quantitative precipitation forecasts (McBride

and Ebert, 2000) some care has to be taken in the evaluation of precipitation for small areas. This is especially important where small rain gauge networks are present, as in small islands or small hydrological basins. Thus verification of modeled precipitation in 5, 2355–2376, 2005

Contiguous Rain Area-based verification over Cyprus

Title	Title Page							
Abstract	Abstract Introduction							
Conclusions	References							
Tables	Figures							
14	►I							
•								
Back Close								
Full Scr	een / Esc							
Drint								
Print	Print Version							
Interactive	Interactive Discussion							

ocean regions presents problems completely different from large land regions, where large rain gauge networks and more weather events may coexist.

In this paper the authors investigated the CRA approach in a single rain event over Cyprus. Two closes together forecast precipitation bands make the CRA analysis un-5 stable when observations are compared with precipitation forecast far off the island.

Actually, verification of modeled rain is currently performed over large land regions as, for example, Australia and USA. However, as remarked by Ebert and McBride (2000), verification at national scale using standard techniques might produce misleading results when multiple weather systems are present. Instead, an objective-oriented technique, such as the CRA analysis, is able to separate the multiple weather systems' effects by separately focusing on the regional domain of each system.

In the case discussed in this paper, the verification area seems to be too small compared to the forecast rain field in order to have a physically significant CRA analysis. Since the considered observations are limited over the Cyprus area, the comparison

was performed considering only a small model sub-domain covering the rain gauge 15 network. However, it must be pointed out that the presented results were always statistically significant. This indicates that area verification may be still dependent on a subjective choice of dimensions of the forecast domain to be verified. This could be a real problem when verifying precipitation forecasts using the CRA method over small areas like islands or hydrological basins.

20

Although defining the right dimension of the verification area is a real problem, as showed earlier, it is necessary to define also the statistical indicator to use in the verification.

Correlation seems to be a better indicator than mean square error. It should be remarked that this is true in this specific case. In other cases other indicators, as the 25 same mean square error, might be better than correlation. However, in many cases maximization of correlation and minimization of mean square error give similar displacements. Decision of the type of indicator to use likely will depend on region or/and season (i.e. from the phenomenology). For example, Grams et al. (2005) found that

ACPD

5, 2355-2376, 2005

Contiguous Rain Area-based verification over Cyprus

Title Page						
Abstract Introduction						
Conclusions	References					
Tables	Figures					
• •						
Back	Close					
Full Scre	een / Esc					
Print Version						
Interactive Discussion						

the maximization of correlation worked better when considering convective systems. Thus an assessment of the reliability of the indicator should be performed by an operational centre using the CRA method. Actually, the presence of different patterns on the control domain can induce in some kind of errors, especially if the method is applied in
 an automated unsupervised way.

Evaluation of a precipitation forecast skill with indicators like MSE involves use of differences between observed and forecast fields. When different patterns of forecast rain are present close to the area of observation, the pattern associated to the best value of the selected indicator might not be the one actually associated with observed rainfall. On the other hand correlation could not be the best indicator in other situations, for instance when the analyzed field is very smooth. Thus the choice of an appropriate verification methodology seems to be crucial for assessing model forecast quality.

Acknowledgements. This research was funded by EU project VOLTAIRE (EVK2-2002 CT-00155). Authors are grateful at Meteorological Service of Cyprus for rain gauge data. ECMWF provides data for the synoptic analysis and initial and boundary conditions for BOLAM. The authors wish to thank E. Amitai and U. Germann for some useful suggestions.

References

10

20

25

- Accadia, C., Mariani, S., Casaioli, M., Lavagnini, A., and Speranza, A.: Sensitivity of precipitation forecast skill scores to bilinear and a simple nearest neighbor average method on high resolution verification grids, Wea. Forecasting, 18, 918–932, 2003. 2360
- Accadia, C., Mariani, S., Casaioli, M., Lavagnini, A., and Speranza, A.: Verification of precipitation forecasts from two limited area models over Italy and comparison with ECMWF forecasts using a resampling technique, Wea. Forecasting, in press, 2005. 2357

Barnes, S. L.: A technique for maximizing details in numerical weather map analysis, J. Appl. Meteor., 3, 396–409, 1964. 2359

Barnes, S. L.: Mesoscale objective analysis using weighted time-series observations, NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, Norman, OK 73069, 60 pp. [NTIS COM-73-10781.], 1973. 2359

ACPD

5, 2355–2376, 2005

Contiguous Rain Area-based verification over Cyprus

Title Page							
Abstract Introduction							
Conclusions	References						
Tables	Figures						
•	►						
Back	Close						
Full Scr	een / Esc						
	·						
Print	Print Version						
Interactive Discussion							

Buzzi, A., Fantini, M., Malguzzi, P., and Nerozzi, F.: Validation of a limited area model in cases of Mediterranean cyclogenesis: Surface fields and precipitation scores, Meteor. Atmos. Phys., 53, 53–67, 1994. 2358

Ebert, E. E.: Forecast Verification – Issues, Methods and FAQ, available online at http://www. bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html, 2004. 2360

bom.gov.au/bmrc/wetor/statt/eee/verit/verit_web_page.html, 2004. 2360 Ebert, E. E. and McBride J. L.: Routine verification of NWP quantitative precipitation forecasts for weather systems, 12th Conference on Numerical Weather Prediction, Phoenix, AZ. Am. Meteorol. Soc., J119–J122, 1998. 2357, 2360

Ebert, E. E. and McBride J. L.: Verification of precipitation in weather systems: determination of systematic errors, J. Hydrol., 239, 179–202, 2000. 2357, 2360, 2361, 2364

Geleyn, J. F. and Hollingsworth A.: An economical analytic method for the computation of the iteraction between scattered and line absorption of radiation, Contrib. Atmos. Phys., 52, 1–16, 1979. 2358

Grams, J. S., Gallus, W. A., Koch, S. E., Wharton, L. S., Loughe, A., and Ebert, E. E.: The use

- of a modified Ebert-McBride technique to evaluate mesoscale model QPF as a function of convective system morphology during IHOP 2002, Wea. Forecasting, in press, 2005. 2361, 2364
 - Ikai, J. and Nakamura, K.: Comparison of rain rates over the ocean derived from TRMM microwave imager and precipitation radar, J. Atmos. Ocean. Technol., 20, 1709–1726, 2003. 2356
- 20 2

30

10

- Imakoa, K. and Spencere, R. W.: Diurnal variation of precipitation over the Tropical Oceans observed by TRMM/TMI combined with SSM/I, J. Climate, 13, 4149–4158, 2000. 2356 Kain, J. S. and Fritsch J. M.: A one-dimensional entraining/detraining plume model and its
- application in convective parameterization, J. Atmos. Sci., 47, 2784–2802, 1990. 2358
- Kain, J. S. and Fritsch, J. M.: Convective parameterization in mesoscale models: The Kain-Fritsch scheme, The representation of cumulus convection in numerical models, A.M.S. Monograph, edited by: Emanuel, K. A. and Raymond, D. J., 165–170, 1995. 2358
 - Koch, S. E., desJardins, M., and Kocin, P. J.: An interactive Barnes objective map analysis scheme for use with satellite and conventional data, J. Climate Appl. Meteor., 22, 1487– 1503, 1983. 2359
 - Malguzzi, P. and Tartaglione, N.: An economical second order advection scheme for numerical weather prediction, Quart. J. Roy. Meteorol. Soc., 125, 2291–2303, 1999. 2358
 McBride, J. L. and Ebert, E. E.: Verification of quantitative precipitation forecasts from opera-

ACPD

5, 2355-2376, 2005

Contiguous Rain Area-based verification over Cyprus

Title Page							
Abstract Introduction							
Conclusions	References						
Tables	Tables Figures						
• •							
Back Close							
Full Scr	een / Esc						
Print Version							
Interactive Discussion							

tional numerical weather prediction models over Australia, Wea. Forecasting, 15, 103–121, 2000. 2357, 2363

- Mesinger, F.: Improvements in quantitative precipitation forecasts with the Eta regional model at the National Centers for Environmental Prediction: The 48-km upgrade, Bull. Amer. Meteorol.
- 5 Soc., 77, 2637–2649, 1996. 2357

10

- Michaelides, S., Gabella, M., Constantinides, P., Perona, G.: Comparison between TRMM data and in situ measurement in the island of Cyprus, Proceedings 2nd VOLTAIRE workshop, Ljubljana 6–8 October 2004. 2356
- Panofsky, H. A. and Brier, G. W.: Some applications of statistics to meteorology, Pennsylvania State University, University Park, 224, 1958. 2361
- Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic Press, 467, 1995. 2360
 - Xie, P. and Arkin, P. A.: An intercomparison of gauge observations and satellite estimates of monthly precipitation, J. Appl. Meteorol., 34, 1143–1160, 1995. 2361

5, 2355–2376, 2005

Contiguous Rain Area-based verification over Cyprus

Title Page						
Abstract Introduction						
Conclusions	References					
Tables Figures						
• •						
•	•					
■ Back	► Close					
	Close					
Full Scre						

5, 2355-2376, 2005

Contiguous Rain Area-based verification over Cyprus

N. Tartaglione et al.

Title Page					
Abstract Introduction					
Conclusions	References				
Tables	Figures				
I4 ►I					
•					
Back Close					
Full Screen / Esc					
Print Version					
Interactive Discussion					

Table 1. CRA Verification for 24 h rainfall from 06:00 UTC of 5 March 2003 to 06:00 of 6 March 2003. A CRA rain rate contour of 0.0 mm/24h (rain-norain areas) has been selected. The maximum observed precipitation value (from Barnes analysis) is equal to 28.1 mm/24 h. CRA matching criterion: correlation maximization.

Shift in grid points	Maximum forecast (mm/24 h)	[E, N] displacement (degree)	Compar. grid points	Initial MSE (mm ²)	Shifted MSE (mm ²)	MSE displ. (%)	MSE vol. (%)	MSE patt. (%)	Initial corr.	Shifted corr.
9	47.9	[0.27,0.09]	73	84.28	78.15	7.30	54.34	38.36	0.506	0.693
13	56.5	[0.27,0.09]	73	84.28	78.15	7.30	54.34	38.36	0.506	0.693
17	77.9	[0.36,-1.35]	73	84.28	126.83	-	-	-	0.506	0.746

Compar. grid points = Number of comparing grid points used in the CRA verification

MSE displ. = Percentage of spatial error due to displacement error

MSE vol. = Percentage of spatial error due to volume error

MSE patt. = Percentage of spatial error due to pattern error

Initial corr. = Pearson correlation coefficient between observation and forecast fields

Shifted corr. = Pearson correlation coefficient between observation and the best matching forecast fields.

5, 2355–2376, 2005

Contiguous Rain Area-based verification over Cyprus

N. Tartaglione et al.

Title Page					
Abstract Introduction					
Conclusions	References				
Tables	Figures				
Back Close					
Full Scr	een / Esc				
Print Version					
Interactive Discussion					

 Table 2. As Table 1, but CRA matching criterion: MSE minimization.

Shift in grid points	Maximum forecast (mm/24 h)	[E, N] displacement (degree)	Compar. grid points	Initial MSE (mm ²)	Shifted MSE (mm ²)	MSE displ. (%)	MSE vol. (%)	MSE patt. (%)	Initial corr.	Shifted corr.
9	47.9	[0.09,-0.09]	73	84.28	65.24	22.60	0.51	76.90	0.506	0.524
13	56.5	[1.17,0.54]	73	84.28	33.63	60.10	0.58	39.31	0.506	0.627
17	77.9	[1.35,0.54]	73	84.28	29.97	65.62	0.44	33.93	0.506	0.684

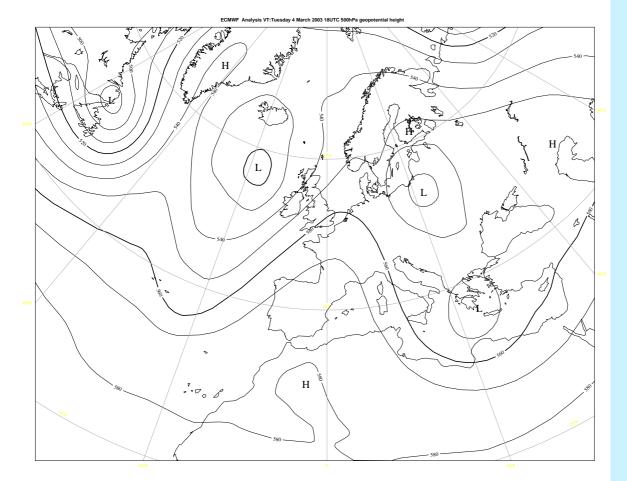


Fig. 1. 500 hPa geopotential at 18:00 UTC of 4 March 2003.

5, 2355-2376, 2005

Contiguous Rain Area-based verification over Cyprus

N. Tartaglione et al.

Interactive Discussion

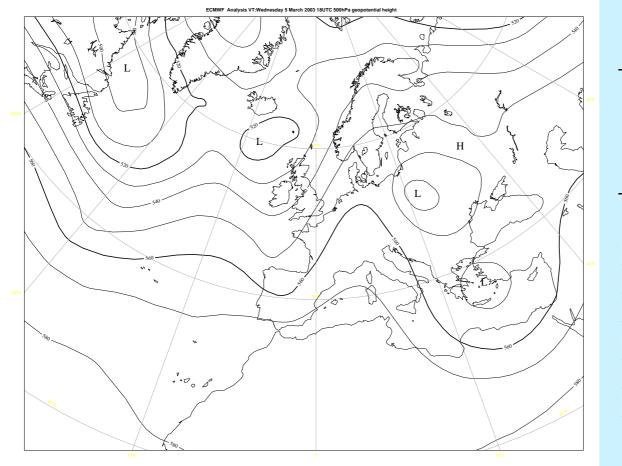
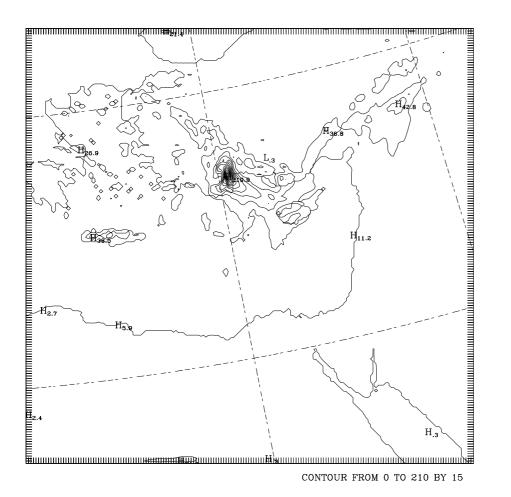
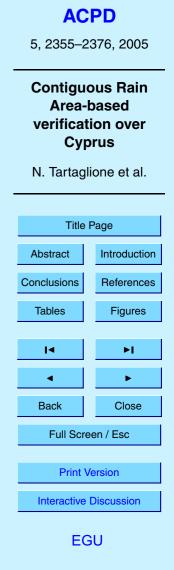


Fig. 2. 500 hPa geopotential at 18:00 UTC of 5 March 2003.

5, 2355-2376, 2005

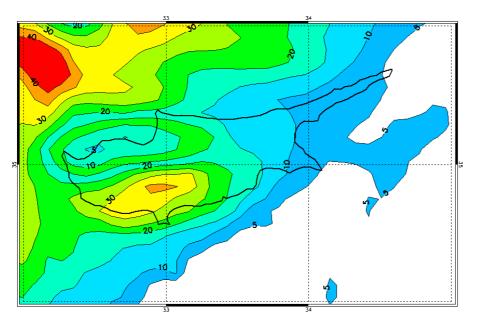

Contiguous Rain Area-based verification over Cyprus


N. Tartaglione et al.

Print Version

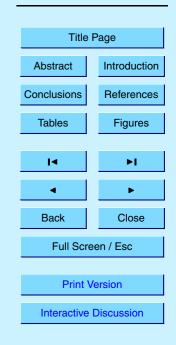
Interactive Discussion

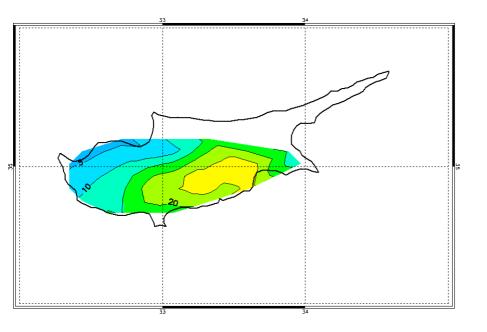




5, 2355-2376, 2005

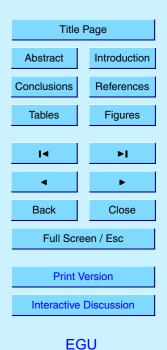
Contiguous Rain Area-based verification over Cyprus



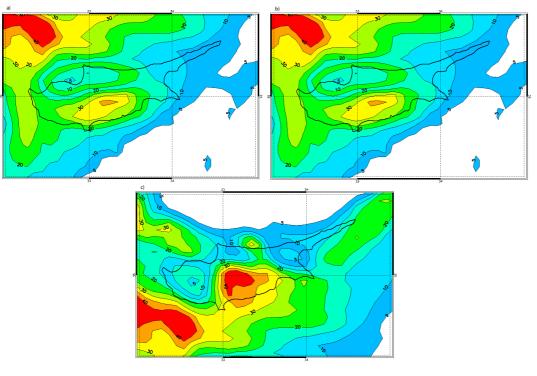

Fig. 4. Contours of precipitation, in mm, forecast in 24 h (from 06:00 of 5 March 2003 to 06:00 of 6 March 2003) remapped on a longitude-latitude grid. This area was used in the comparison.

5, 2355-2376, 2005

Contiguous Rain Area-based verification over Cyprus


Fig. 5. Isohyets, in mm, observed in 24 h (from 06:00 of 5 March 2003 to 06:00 of 6 March 2003) interpolated on a latitude-longitude grid, over the Cyprus region.

EGU


5, 2355–2376, 2005

Contiguous Rain Area-based verification over Cyprus

N. Tartaglione et al.

Fig. 6. Contours of modelled precipitation, for the three cases described in the text **(a)** 9 grid points, **(b)** 13 grid points, **(c)** 17 grid points, shifted by an amount in according with column 3 of the Table 1 (correlation criterion).

5, 2355–2376, 2005

N. Tartaglione et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
I	۶I
•	►
Back	Close
Full Screen / Esc	
Print Version	
Interactive Discussion	

EGU

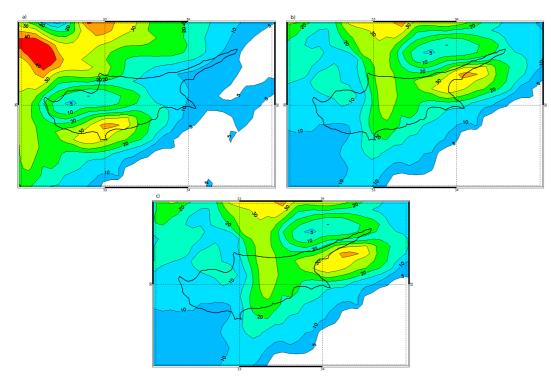


Fig. 7. As Fig. 6, but for MSE criterion (see Table 2).