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Abstract

This paper presents a procedure for performing and optimizing inversions for DOAS
tomography and its application to measurement data. DOAS tomography is a new
technique to determine 2- and 3-dimensional concentration fields of air pollutants or
other trace gases by combining differential optical absorption spectroscopy (DOAS)5

with tomographic inversion techniques. Due to the limited amount of measured data,
the resulting concentration fields are sensitive to the inversion process. Therefore de-
tailed error estimations are needed to determine the quality of the reconstruction. In
this paper we compare different row acting methods for the inversion, present a pro-
cedure for optimizing the parameters of the reconstruction process and propose a way10

to estimate the error-fields by numerical studies. The procedure was applied to data
from the motorway emission campaign BAB II. Two dimensional NO2 cross sections at
right angles to the motorway could be reconstructed qualitatively well at different mete-
orological situations. Additionally we present error fields for the reconstructions which
show the problems and skills of the used measurement setup. Numerical studies on an15

improved setup for future motorway campaigns show, that DOAS tomography is able
to produce high quality concentration maps.

1. Introduction

The measurement of trace gas concentration distributions in the atmosphere is an im-
portant tool for quantifying atmospheric emissions, chemistry and transport. It can20

contribute to the validation of chemical transport models (CTM), the improvement of
emission inventories or for emission monitoring (e.g. leakages in industrial installa-
tions).
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1.1. Tomography for mapping trace gas distributions

Two and three dimensional concentration distributions of trace gases can be obtained
by combining path-integrating measurement techniques along a large number of light
paths with tomographical inversion techniques. In comparison point sampling tech-
niques can only give local details of the concentration maps and conclusions to larger5

scales may be falsified by small scale fluctuations. Tomographic line-integrating mea-
surement techniques for trace gases were proposed by Wolfe (1980) and first indoor
measurements were realized by Yost et al. (1994) using open-path Fourier infrared ab-
sorption spectroscopy. Since then there have been improvements in speed and spatial
resolution (e.g. Drescher et al., 1996; Fischer et al., 2001), but to our knowledge all10

experiments have been restricted to the laboratory environment so far.

1.2. DOAS tomography

Differential optical absorption spectroscopy (DOAS) (e.g. Platt, 1994; Perner et al.,
1976) is a path-integrating measurement technique for trace gases like ozone, nitro-
gen oxides, SO2, halogen oxides (BrO, IO, OClO) and many hydrocarbons. In a typical15

so-called long-path (LP) setup a beam of white light, emitted by a telescope, travels
through the atmosphere to a retro-reflector and back to the telescope. Absorption
patterns in the recaptured light allow to determine the column density (the integrated
concentration) of the trace gases along the light path. One advantage of DOAS is the
simultaneous measurement of several trace gases (e.g. NO2, SO2, HCHO, HONO, aro-20

matics and ozone in the UV region) which allows detailed direct conclusions on the air
chemistry. LP-DOAS was already used to produce one-dimensional trace gas profiles
by placing retroreflectors on balloons (e.g. Veitel et al., 2002) or on a mountain at dif-
ferent heights (Platt, 1978). First outdoor DOAS tomography experiments were carried
out during the motorway campaign BAB II in 2001, which was organised by Fiedler et25
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al. (2001). More details are given by Pundt et al. (submitted, 2004)1, Knab (2003) and
in Sect. 2.

In comparison to other tomographic applications like in medicine, DOAS-tomography
has only a very limited number (10–100) of well known light paths. Therefore the re-
construction technique is not time critical but attention has to be paid on the a-priori5

information added to the ill-posed problem, implicitly by the algorithm or explicitly by
the selected parameters. This requires extensive studies on the reliability of the recon-
structed concentration fields. These studies are a main subject of this paper.

1.3. Overview over inversion techniques

Due to the limited amount of data in DOAS-tomography a discretization is needed10

which describes the concentration field by a finite number of parameters accepting
losses in accuracy.

Drescher et al. (1996) proposed an inversion algorithm called smooth basis function
minimization technique (SBFM) for the reconstruction of indoor trace gas measure-
ments. The concentration field is parameterized nonlinearly as a sum of several Gaus-15

sians with some free parameters. A global optimization algorithm is used to determine
the set of parameters fitting the measurement data best. While SBFM is reported to
be suitable for indoor measurements examining the mixing of trace gas from located
sources (Fischer et al., 2001), it could not be applied successfully in our case of a
motorway exhaust plume. The plume shapes for the motorway campaign estimated20

by a chemical transport model (D. Bäumer, personal communication) could not be de-
scribed by Gaussians with a number of parameters determinable by the measurement
data. Sharp concentration slopes are appearing near emission sources, if the wind is

1 Pundt, I., Mettendorf, K.-U., Laepple, T., Knab, V., Xie, P., Lösch, J., v. Friedeburg, C., Platt,
U., and Wagner, T.: Measurements of trace gas distributions by long-path DOAS-tomography:
2-D mapping of NO2 during the motorway campaign BAB II, J. Atmos. Environ, submitted,
2004.
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blowing from one specific direction. This is not the case in indoor situations. Other pa-
rameterizations for the use at the motorway situation involved an unquantifiable amount
of a priori information. One main problem is the difficulty to determine the quality of the
reconstruction due to the nonlinearity of the inversion and the long computation time
for the global optimization (in the order of hours for our problem size) which doesn’t5

allow extensive numerical sensitivity studies.
The more common approach is to discretize the continuous concentration field by a

linear combination of a finite number of basis functions. The advantage of this linear
approach is that the resulting discrete linear inversion problem is better to handle and
doesn’t require the knowledge of the algebraic form of the concentration field. (The10

nonlinear approach SBFM only works well if the concentration field can be described
by superposition of few Gaussians). Therefore we use the linear approach. In the liter-
ature many methods can be found to solve this linear inversion problem (e.g. Groetsch,
1993).

In environmental science a popular class of methods are iterative row-acting-15

methods (RAM). They were often used to deal with large size problems because they
only act on the rows of a matrix and save memory space. Their simplicity and their good
regularization and smoothing characteristics still makes them interesting and they are
successfully applied on tomographic problems (e.g. Kak and Slanley, 1988). In environ-
mental sciences, Ziemann et al. (2001) use the simultaneous iterative reconstruction20

technique (SIRT) a member of this algorithm class in acoustic tomography for deter-
mining small scale land surface characteristics. Todd and Ramachandran (1994) use
row acting methods for numerical studies on FTIR-tomography. The disadvantage of
these techniques is that the a priori information which is always needed to solve the
ill-posed inversion problem is not added explicitly but is included in the nature of the25

algorithm, the first guess and the number of iterations.
There are inversion techniques which include the a priori information explicitly. Ap-

plication of a statistical approach to atmospheric remote sensing can be found in
Rodgers (2000). A constrained optimization method – where a smoothness function
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is used as quadratic constraint – is used successfully by Fehmers et al. (1998) in the
field of the tomography of the ionosphere. If good a priori information is available these
inversion techniques are useful to include such information. Further work has to be
done to investigate these techniques and to investigate which a priori information can
be integrated depending on the problem.5

Due to their regular use in tomographic problems similar to our problem we decided
to use row acting methods as a starting point for the new tomographic DOAS technique
and the study described here. First we describe the discretization process and discuss
different basis functions and different row acting methods in Sect. 3. In contrast to
other studies we try to investigate the complete characteristics of the chosen RAM’s by10

numerical studies in Sect. 5 and choose the best parameter set for our reconstruction.
In Sect. 6 we apply this optimized algorithm on the motorway data.

Independent of the inversion technique it is important to quantify the quality of re-
constructions. To our knowledge the absolute reconstruction error has not yet been
estimated in tomographic applications in atmospheric sciences. Drescher et al. (1997)15

compared reconstructed concentration fields with real point measurements. Todd and
Ramachandran (1994) performed numerical experiments judging the reconstruction
quality by some quality criteria, but only considering concentration fields constructed
as sum of several randomly located Gaussians and ignoring the errors caused by the
discretization. Price et al. (2001) mentioned errors due to measuring the light paths20

sequentially but did not quantify them.
In Sect. 4 we analyse the types of occuring errors and estimate them in Sect. 6

for the motorway campaign. For further reduction of uncertainties in the results of
the motorway campaign we propose in Sect. 6.6 an improved measurement setup for
future campaigns.25
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2. DOAS tomography measurements at a motorway

During the field campaign BAB II (Experimental determination of emissions from motor
vehicle traffic on motorways and comparison to calculated emissions) at the motorway
A 656 in Germany , organized by the Institute for Meteorology and Climate Research
(IMK) of the Forschungszentrum Karlsruhe, first Longpath DOAS tomography mea-5

surements took place in April, May 2001. It was the first path-integrating tomographic
2-D outdoor measurement of trace gases. For details on the campaign please re-
fer to Fiedler et al. (2001). The DOAS tomography measurements are described by
Knab (2003) and Pundt et al. (submitted, 2004)2.

A setup of 16 light paths was realized by using two conventional long-path DOAS10

systems and directing them successively towards eight retro-reflector arrays. The en-
vironmental conditions for the time period studied here were chosen deliberately: Dur-
ing that time there were both, a relatively continuous vehicle flux and undisturbed air
crossing the motorway. Thus the situation was assumed to be homogeneous in the
direction of the carriageway and a concentration cross section at right angles to the15

motorway could be derived. The measurement setup is shown on the left part of Fig. 1.
The motorway induced turbulences and chemical transformations at the measure-

ment site which had been examined by Vogel et al. (2000) and Bäumer (2002) with
the mesoscale chemistry transport model system KAMM/ DRAIS. A NO2 concentra-
tion field generated with this model (D. Bäumer, personal communication) was used20

for numerical experiments in this study and will, in the following, just be referred to as
CTM BAB II plume (see Fig. 4a).

2 Pundt, I., Mettendorf, K.-U., Laepple, T., Knab, V., Xie, P., Lösch, J., v. Friedeburg, C., Platt,
U., and Wagner, T.: Measurements of trace gas distributions by long-path DOAS-tomography:
2-D mapping of NO2 during the motorway campaign BAB II, J. Atmos. Environ., submitted,
2004.
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3. Tomography

The distribution of a trace gas in the atmosphere is usually described as a continuous
concentration field c(r). Assuming the concentration field is known, a DOAS measure-
ment along a light path LPi gives the data (slant column density)

di =
∫

LPi

drc(r). (1)
5

This is the forward model and is well known in our case. The unit of the data used
here is ppb∗m which corresponds to the integrated concentration over the light path.

3.1. Discretization

A model is needed which describes the continuous concentration field with a finite num-
ber of parameters. We will call this a discrete state model. If there are m lightbeams10

resulting in m values of measurement data d1 to dm, they are assembled to a data
vector d and the n parameters s1 to sn describing the state model concentration field
in a state vector s.

Data vector d = (d1, d2, ..., dm)t ∈ D (2)

State vector s = (s1, s2, ..., sn)t ∈ S (3)15

The according vector spaces are called data (vector) space D and state (vector) space
S. A discrete state model can be realized by a family of n basis functions (bj )j∈{1..n}.
Then the model concentration field c(s, r) is a linear combination of the basis functions
bj (r) with the state vector components sj as coefficients.

c(s, r) =
∑

sjbj (r) = s · b(r) (4)20

The basis functions have to be linearly independent. Then for each continuous con-
centration field c(r) a unique state vector s exists that minimizes the misfit ‖c(r)−s · r‖.
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In the following we assume the concentration to be invariant of the z-axis. This refers
to the reconstruction of 2-dimensional cross sections of 3-dimensional trace gas fields.
We investigate two kinds of discrete state models: the box model and the bilinear in-
terpolation model.

3.1.1. Box model5

For the box or pixel model (e.g. Kak and Slanley, 1988) the area of interest is divided
into (usually rectangular) boxes. Each box corresponds to a basis function

bj (r) =
{

1 if r ∈ box j
0 else

(5)

The model concentration fields thus are step functions which are constant within the
boxes.10

c(s, r) =


s1 if r in box 1
s2 if r in box 2
.
.

(6)

Here the state vector components are the model concentrations of the different boxes.
Figure 2a shows a representation of a one-dimensional model field by such box func-
tions. The concentration field c(r) is approximated best, if the height of the step sj is
the average concentration in the referring box: sj= 〈c(r)〉boxj

.15

3.1.2. Bilinear interpolation model

For the bilinear interpolation model (e.g. Ingesson et al., 1998) a point lattice is laid
over the area of interest. Each lattice point rj=(xj ,yj ) refers to a bilinear basis function
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bj :

bj = txj (x)tyj (y)

txj =
{

1 − 1
∆x

∣∣x − xj
∣∣ i f

∣∣x − xj
∣∣ ≤ ∆x

0 else

tyj = analog,

(7)

where ∆x is the lattice width in x-direction. The basis functions are pyramid-shaped
and have a peak of height 1 above the affiliated lattice point. The value of the modeled
concentration field at the lattice points is given by the components of the state vector5

c(s, rj ) = sj for all lattice points rj . (8)

At the other points the model field is determined by bilinear interpolation of the values
at the four neighboring lattice points. Figure 2b shows a representation of a one-
dimensional model field by such bilinear basis functions.

Due to the continuity of the bilinear basis function they can describe a continuous10

concentration field better than the discontinuous box-basis functions. Therefore they
are more appropriate in our case. In Fig. 2c and 2e, this is demonstrated by modeling a
test concentration field using the two types of basis functions. The advantage of bilinear
basis functions will also be confirmed in Sect. 5, where we compare the reconstruction
quality, using the box and the bilinear representation in turns.15

3.1.3. Resolution of the discretization

The state model has to describe the real concentration field as accurately as possible
with a small number of basis functions n.

If the chosen resolution is not fine enough (too small dimension of the state vector)
the difference between the continuous concentration field and the best discrete approx-20

imation leads to errors due to the discretization, so-called “discretization errors” in the
2444
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reconstruction. If the resolution is too fine, the problem gets highly underdetermined
and more a priori information is needed to solve the inversion problem. (A further dis-
cussion of these errors can be found in Sect. 4.) The best resolution is dependent on
the information content of the measurements and the a-priori information available and
will be determined in numerical studies in Sect. 5.5

3.2. Discrete linear inverse problem

Approximating the real concentration field by the model field, the forward model (1)
becomes d=Fs with forward matrix:

fi j=
∫

LPi

drbj (r) (9)

In the case of the box model the entry fi j of the forward matrix corresponds to the10

length of light path i through box j. The problem of solving Eq. (9) for a given data
vector d is a discrete linear inverse problem.

This problem is in general ill-posed: If Eq. (9) is over- or mixed-determined no ex-
act solution exists, but only an approximate solution. If Eq. (9) is mixed- or under-
determined the solution is not unique. If the condition number (e.g. the ratio of largest15

to smallest singular value of the matrix) of F is large, the solution is not stable, i.e. it is
sensitive to small errors in the data.

The first problem can be overcome by using the approximate minimum misfit solu-
tion (least squares solution) as physical solution. The latter two problems can only be
remedied by adding additional a priori information, e.g. the information, that the con-20

centration field either is positive allover or that it fulfills certain smoothness conditions.
Often the minimum norm solution is demanded, but the a priori information to favor the
state with the smallest norm is physically not reasonable in our case. The approximate
minimum norm minimum misfit solution is also known as generalized inverse, and can
be calculated by singular value composition (SVD) (e.g. Groetsch, 1993).25
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To take the measurement error on the data into account, a weighting matrix W can
be introduced which is the inverse of the covariance matrix. If the noise on the data can
be assumed to be uncorrelated W is given by the elements W ii=1/ε2

i . The weighting is
applied by the substitution:
∼
d←→W1/2d ,

∼
F←→W1/2F and

∼
s←→ s (10)5

This is assumed to be already done in the following discussion.

3.3. Row acting methods

As mentioned in the introduction we use row acting methods (RAM) in this study to
solve the discrete linear inverse problem.

RAM are a class of iterative algorithms to solve linear systems of equations – espe-10

cially tomographic discrete linear inverse problems. The common names of row acting
methods like Algebraic Reconstruction Technique (ART) (Herman et al., 1973) combine
an inversion technique (i.e. the technique for solving the system of Eq. 9) with a special
discretization model (e.g. box, bilinear). As we want to use the algorithm independantly
from the discretization model, we use the separate names “ClassicalName-like” to al-15

low a better comparison. (Our “ART-like” algorithm for example is the algorithm ART
from the literature but independent of the discretization model.)

3.3.1. The ART-like method

The sequential iterative projection method or Kaczmarz method (Kaczmarz, 1937) was
firstly used in tomography in combination with box basis functions under the name20

algebraic reconstruction technique. It is based on the following idea: Each row fi ·s=di
of matrix Eq. (9) refers to one data-point and fixes a (n-1) dimensional hyperplane in
a n-dimensional state space, on which any existing solution must lie. This is shown
graphically in Fig. 3a for one dimensional hyperplanes in a two dimensional space. If a
solution exists, it is thus situated on the intersection of all n hyperplanes. The algorithm25
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starts with an initial guess s(0). The solution is determined by iteratively projecting the
actual guess onto a hyperplane and taking the result as new actual guess.

s(k+1) = s(k) + α(
di

‖ fi‖
− s(k) fi

‖ fi‖
)

fi
‖ fi‖

, (11)

where i=(k mod m)+1.
Here k is the iteration number and i is the number of the hyperplane onto which s(k)

5

is projected in the actual iteration step. The damping parameter α is 1 for the basis
algorithm. The optimal termination of the iteration can be determined in numerical
experiments.

If a unique solution exists, the iteration sequence
(

s(k)
)
k∈N

converges to this solu-

tion. If the system of equations is underdetermined,
(

s(k)
)

converges to the solution10

closest to the initial guess in the sense of the Euclidian vector norm. If the system
of equations is mixed- or over-determined and the data vector is “noisy”, generally no
solution exists. Then ART is cyclically convergent, i.e. after a lot of iteration the se-

quence
(

s(k)
)

follows to a fixed closed trajectory of period m (e.g. Censor et al., 1983).

In Fig. 3a this is the case because this example is overdetermined and has no exact15

solution (three hyperplanes in a two dimensional state space). In such cases a better
convergence can be obtained by using a damping parameter α decreasing from 1 to
0 in the course of the iteration. If the concentration field is zero at some locations, the
convergence can be ameliorated, by setting negative values back to zero in each pass.
For the motorway situation it would not have made any sense to use this technique .20

The row acting methods looked at here are implicitly smoothing the solution if the itera-
tion is terminated prematurely. An optimum iteration number can be found by surveying
the Iteration process by eye, by guessing roughly or as done in this study by numerical
experiments.
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3.3.2. The SIRT-like method

The combination of the simultaneous iterative projection method and a box discretiza-
tion model is known as simultaneous iterative reconstruction technique (SIRT) (Kak
and Slanley, 1988).

This method differs from the sequential iterative projection method, by the fact that5

the correction of a state due to the projection is not immediately applied. Instead,
before making any changes to s all m equations are gone through calculating the hy-
pothetical change due to the projection onto the hyperplane. At the end of one pass the
average over all these hypothetical changes is taken and applied to the state vector:

s(k+1) = s(k) +
α
m

∑m

i=1
(
di

‖fi‖
− s(k) ·

fi
‖fi‖

)
fi
‖fi‖

(12)
10

Increasing the iteration number k by 1 in this case signifies a whole pass through all
equations. The state vector sequence converges to a minimum-misfit-solution closest
to the initial guess (Van der Sluis and van der Vorst, 1987). This is shown in Fig. 3b
which is based on the same equation system as in Fig. 3a but with the SIRT algorithm.
The three hypothetical changes for the first step are explicitly plotted. For the other15

steps only the applied change to the state vector are shown. In contrast to Fig. 3a, the
state vector converges to the minimum misfit solution.

3.3.3. The SART-like inversion method

Another modification is an algorithm known – in combination with bilinear basis func-
tions – as simultaneous algebraic reconstruction projection method (SART)(Kak and20

Slanley, 1988).
The projections applied simultaneously as in the simultaneous iterative projection
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method, but the weights of the corrections are different.

s(k+1)
j = s(k)

j +
1∑m

i=1 fi j

m∑
i=1

(di − s(k) · fi )fi j∑n
α=1 fiα

(13)

Here the iteration sequence converges to a minimizer of a weighted least square func-
tional from any initial guess (Jiang and Wang, 2001). The convergence is faster than
that of the SIRT-like inversion method. In DOAS-tomography applications (state vector5

size 10–100) the computation time for the row acting methods is about 1000–10 000 it-
erations per second on a 1 GHZ Pentium processor. Therefore the convergence speed
is not important for our applications.

4. Error estimation

The reconstruction error field ∆c(r) is the difference between the concentration field10

reconstructed by a DOAS-tomography measurement crec(r) and the real concentration
field creal (r).

∆c(r) = creal (r) − crec(r) (14)

For simplicity we will also call continuous test-fields creal (r) which are used in numerical
studies.15

In this section we describe the sources of the reconstruction error and a way to
estimate them. The practical procedures for optimizing the reconstruction process with
respect to a low reconstruction error and for estimating the error for the motorway
campaign are presented in the referring Sects. 5 and 6.

4.1. Sources of the reconstruction error20

The reconstruction error has four causes:
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1. the measurement error

2. the discretization error in the data

3. the discretization error in the state

4. the inversion error.

For a better understanding we introduce the following operator notation:5

– D Discretization operator; maps a concentration field c(r) to the best approxima-
tion state vector s=Dc(r).

– D† Continuization’ operator; leads from the state vector s to the affiliated concen-
tration field c(s, r)=D†s.

– F Forward operator; forward models data from the discrete state vector d=F s10

(see Eq. 9) .

– G Continuous forward operator; forward models data from a continuous concen-
tration field d=Gc(r) (see Eq. 1).

– F † Inversion Operator; describes the application of the inversion method to the
data s=F †d .15

The “continuization” operator D† is a pseudo-inverse to the discretization operator D.
The inversion operator F † is pseudo-inverse to the discrete forward modeling operator
F .

In this notation the reconstruction and the simulation of a measurement and recon-
struction are:20

Reconstruction crec(r) = D†F †d (15)

Simulation crec(r) = D†F †G c(r) (16)
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The measurement error ∆dmeas is the difference between the measured data and the
data that would be obtained from an ideal experiment (i.e. data forward modeled from
the real, continuous field). ∆dmeasconsists of the error in the individual measurement
devices and the so called stepping error, which occurs if the different light paths are
not measured simultaneously. It is propagated through the inversion the same way5

as the data (because of the linearity of the two operators) yielding the propagated
measurement error:

∆cmeas(r) = D†F †∆dmeas (17)

The discretization leads to errors in two ways: Firstly, an arbitrary continuous concen-
tration field generally cannot be exactly approximated by the discretized field: D†D6=1.10

Secondly, the forward modeling of measurement data from the discretized field differs
from the data obtained from the real, continuous field: FD6=G.

If the inverse problem (9) does not have a unique solution, i.e. because it is ill-posed,
a priori information has to be employed to select a solution. The inversion error arises,
because normally the a priori information is not completely correct. F †F 6=1.15

We get the sum of discretization errors and the inversion error in the concentration
as

∆cdi (r) = (1 −D†F †G)creal (r) (18)

which corresponds to simulating a perfect measurement on a concentration field, re-
constructing the field and comparing it to the original concentration field.20

If all operators are linear – as it is the case for linear discretization models and row
acting methods (each projection step is linear and thus also the whole inversion), then
the total reconstruction error is the sum of Eqs. (17) and (18):

∆c(r) = ∆cmeas(r) + ∆cdi (r) (19)

Therefore the two parts can be treated separately which enhances the computational25

speed of the error estimation and the knowledge about the error causes.
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Usually the resolution matrix R=F†F is introduced to investigate the reconstruction
quality. Using this matrix the inversion error can be determined as (1−R)sreal neglect-
ing the discretization error. As we work with a moderate resolution, this disregarding is
not acceptable in our case.

4.2. Estimation of the error fields5

For the error estimation the error fields ∆cmeas(r) and ∆cdi (r) are considered as ran-
dom functions and the aim is to determine their random distribution (for simplicity, we
use the same notation for the random function and it’s realization). In order to get the
total reconstruction error ∆c(r) we have to convolute the two random distributions at
the end.10

The measurement error ∆dmeas is assumed to be a Gaussian distributed random
vector of mean zero. This means the propagated measurement error ∆cmeas(r) is also
Gaussian distributed and of mean zero. Assumed covdmeas is the covariance of the
∆dmeas and the continuous fields are discretized on a finite grid, then the covariance
of the propagated measurement error is15

covcmeas = (D†F †)(covdmeas)(D†F †)†. (20)

The operator D†F † can be determined by applying the inversion method on the m data
basis vectors.

The discretization and inversion error ∆cdi (r) depends on the shape of the field to
be reconstructed. Consequently, a priori information is needed for determining ∆cdi (r).20

Without any a priori information on the concentration field, the reconstruction error
would be infinitely high. Imagine a DOAS tomography setup and a concentration field
with a very steep and high peak in the gap between some light paths. Such peak is
not detectable with the given setup. Only with information about smoothness such a
field can be excluded. The concentration field to be reconstructed is a random function25

creal (r) and the prior information is represented by its probability distribution. Apply-
ing Eq. (18) on it leads to the probability distribution of the derived random function
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∆cdi (r). In practice the probability distribution of creal (r) was realized by generating
a set of test fields (ck(r))k∈N all of which are assumed to have the same probability.
Applying Eq. (18) to all of these test fields produces a set of reconstruction error fields
(∆cdik (r))k∈Nwhich can be evaluated statistically.

4.3. Reconstruction quality criteria5

In simulations and validation experiments the reconstructed concentration field can be
compared with a “real” field. Quality criteria are needed, which summarize the overall
reconstruction quality in a single figure. They can be used in numerical simulations to
determine optimum reconstruction techniques and parameters. Apart from the criterion
“nearness”, which has been used in former studies (e.g. Todd and Ramachandran,10

1994), we suggest here two further criteria, the “normalized maximum difference” and
the “normalized average difference”. The choice of the criterion depends on the further
use of the reconstruction result. All of the proposed criteria are calculated from the
reconstruction error ∆c(r)=creal (r)−crec(r) and the “real” field creal (r).

4.3.1. Nearness15

The quality criterion nearness is a normalized 2-norm (Euclidian norm) of the recon-
struction error:

Nearness = 1
N ‖∆c‖2

= 1
N

√∫
dr2(crec(r) − creal (r))2

where N =
√∫

dr2(creal (r) − creal (r))
2
.

(21)

Normalization makes the nearness invariant to the multiplication of the concentration
field by a scalar factor and to the addition of a constant function. If reconstruction20
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techniques are compared for a whole set of test fields, the normalization is necessary,
because it makes the nearness comparable for plumes of different sizes. The nearness
has the following meaning:

NEARNESS = 0 – ideal agreement5

NEARNESS = 1 – same agreement as constant average field

The quality criteria nearness should be used, if the overall shape of the concentration
field is of interest. Our definition of nearness is based on a similar definition used by10

Todd (e.g. Todd and Ramachandran, 1994) with reference to Herman et al. (1973)
and Herman and Rowland (1973). Todd calculated the nearness on the discrete state
vector and thus ignored the discretization error. Drescher et al. (1997) used a very
similar discrete quality criterion called “figure of merit” by setting the normalization
factor to N=‖sreal ‖ and thus renouncing the compensation of shifting.15

4.3.2. Normalized maximum difference (NMD)

The normalized maximum difference (NMD) is the normalized maximum absolute value
of the reconstruction error.

NMD = 1
N max

r∈F
∆c(r)

with N = 1
2

(
max
r∈F

creal (r) −min
r∈F

creal (r)
) (22)

The normalization factor N is half of the range between the lowest and the highest20

concentration of the real field. The NMD is invariant to multiplication of the field by a
scalar factor and to the addition of a constant function. It is a measure for the maximum
error which occurs.
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4.3.3. Normalized average difference (NAD)

The normalized average difference (NAD) is the average of the reconstruction error in
the area of interest – normalized by the average concentration of the real concentration
field.

NAD =
〈∆c(r)〉
〈creal (r)〉

=

∫
dr2∆c(r)∫
dr2creal (r)

(23)
5

The NAD is invariant to the multiplication of fields by a scalar factor. This quality crite-
rion is a measure how well the average concentration in the area of interest (and also
the total amount of the trace gas species) is reproduced by the reconstruction.

5. Reconstruction optimization

Many parameters are involved in a reconstruction process based on linear discretiza-10

tion and row acting methods:

– dicretization model type (box/bilinear)

– discretization grid size

– first guess of the concentration field

– iteration number of the RAM15

All these parameters implicitly add some sort of a priori information. Due to the
limited amount of measurement data, the parameters have to be chosen very carefully.
Depending on the choice of the discretization model, for example, special kinds of
concentration fields are favored.

The optimal set of reconstruction parameters is derived from another kind of a priori20

information: the assumed probability distribution of the measurement error ∆dmeas
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and the assumed distribution of the random function real concentration field creal (r).
The parameters will be optimized so that the real field will be reconstructed best in
average. “Reconstructed best” means, that certain reconstruction quality criteria, e.g.
the nearness, become minimal. The choice of quality criteria described in the previous
section depends on the further use of the reconstructed trace gas map.5

5.1. Generation of the set of test plumes

The probability distribution of the random function “real concentration field” creal (r) is
realized by a set of test concentration fields (ck(r))k∈N . This set is used for optimizing
the reconstruction parameters and estimating the error. The aim is to generate random
fields in physically reasonable boundaries. It is a compromise between covering all10

cases and not being too general without need. For this study one hundred test fields
were generated by randomly modifying the CTM BAB II concentration field (see Fig. 4).

The following modifications which are a coarse representation of physical processes
where chosen:

– log-normal distributed random squeeze in intensity (different source strength).15

– log-normal distributed random squeeze in position space (different meteorological
situations).

– normal distributed random shift in position (different meteorological situations and
chemistry) .

– addition of a small scale random field (local fluctuations and emissions from other20

sources).

5.2. Parameter optimization procedure

To find an optimum set of parameters the following numerical experiment was used:
FOR ALL sets of parameters DO {LOOP C}
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{
FOR ALL test fields ck DO {LOOP B}
{

simulate measurement by forward modeling the data from the continuous field;
FOR n random meas. errors DO {LOOP A}5

{
add measurement error to data;
reconstruct state vector s and related concentration field c(s, r);
evaluate reconstruction quality criteria;
}10

evaluate φ+1σ
}
evaluate 〈φ+1σ〉;
}
choose set of parameters minimizing 〈φ+1σ〉;15

As we will see from the numerical experiments, the optimum parameters de-
pend on the size of the measurement errors. For illustrating the optimization procedure
we use quality criterion “nearness” (Sect. 4.3.1.).

20

LOOP A:

First the algorithm for a fixed test field with random measurement error (inner
loop) is studied: Due to the simulated noise on the measurements, the simulated data
scatter. Then also the nearness of the reconstructed fields scatter around the average25

nearness value. In Figure 5 the nearness is plotted against the iteration number using
one fixed test field and different realizations of the normal distributed measurement
error. As can be seen in Fig. 5 the average nearness still decreases slightly with
increasing iteration number, when the scattering of the nearness values increases

2457

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/4/2435/acpd-4-2435_p.pdf
http://www.atmos-chem-phys.org/acpd/4/2435/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
4, 2435–2484, 2004

Longpath DOAS
tomography on a

motorway exhaust
gas plume

T. Laepple et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

strongly. Striving for a compromise between low average nearness and low scattering
of the nearness values, we store the average φ plus one standard deviation σ of the
nearness values. (φ+1σ). If we optimized the iteration number with only one test field
the optimum iteration number would be the one which minimizes (φ+1σ). In Fig. 5, for
example 40 iterations are optimal.5

LOOP B:

Averaging over the set of test fields is done by storing the average of (φ+1σ)over all
fields: 〈φ+1σ〉.10

LOOP C:

Finally, the optimum set of parameters is the one which minimizes 〈φ+1σ〉.

5.3. Parameter optimization for the motorway setup15

The numerical optimization procedure was applied to the measurement setup used
during the BAB II campaign (Fig. 1a). As first guess a constant field with the aver-
age concentration of the measured light-paths was used which proved to be suitable
in preliminary examinations. Some optimization results for different quality criteria are
presented in Table 1. For different discretization models and types of row acting meth-20

ods the optimum iteration number is given. As we were interested in the overall shape
of the plume, we decided to employ the quality criterion “nearness” for the rest of this
study. The optimization is graphically illustrated in Fig. 6. In Fig. 6a the Nearness is
plotted against the iteration number for different state models using the SIRT-algorithm.
The bilinear discretization model is superior to the box model because of the smaller25

discretization error. The combination of a simultaneous row acting method and a bilin-
ear discretization model on a 4×3 grid seems to be best. In Fig. 6b the dependence
of the optimal iteration number on the measurement error is demonstrated. If the mea-
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surement error increases, the ideal iteration number decreases. The optimum iteration
number in our case is about 100 for a measurement error of 100–400 ppb∗m which is
about 2% relative error and corresponds to the measurement error during the motor-
way campaign. In spite of the optimization, all nearness values are relatively high, as
the source region above the carriageway where large concentration gradients occur is5

poorly covered by the light paths. This problem can be seen more clearly in the 2-D
error fields and reconstructed concentration fields of the next sections.

5.4. General observations

Applying the optimization procedure to different measurement setups (motorway cam-
paign and other atmospheric setups) the following general observations were made:10

– As discretization model the bilinear interpolation model is superior to the box
model.

– Comparing the reconstruction quality of different row acting methods, the SIRT-
like inversion method was best in the presence of noise on the data, closely fol-
lowed by SART. The ART-like method yielded distinctly worse results.15

– The convergence is much faster for SART than for SIRT, but in our case this is not
of interest because both algorithms are very fast for our problem size.

– If the grid size is optimal the inverse problem is only just or just not anymore well
determined. In other words the resolution matrix R=F†F which should be close to
unity is nearly of full rank. If the grid size is smaller the discretization error gets20

large and the result gets worse.

6. Reconstruction results

For reducing the stepping error the NO2 data from the BAB II-campaign had to be
averaged over several hours. Searching time periods in which the wind direction is ap-
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proximately perpendicular to the motorway and taking into account the measurement
periods of the IMK-Karlsruhe we chose three time periods.

Period 1 10 May 2002 06:00 – 10 May 2002 13:00 CET
5

Period 2 10 May 2002 13:00 – 10 May 2002 19:00 CET

Period 3 10 May 2002 20:00 – 11 May 2002 01:00 CET

Figure 7 shows the reconstructed NO2 concentration fields for the three time pe-10

riods. We used the reconstruction parameters optimized for this setup, as listed in
Table 2. The shape of the exhaust gas plume depends on the strength of the source
(vehicle flux), the wind-speed, the wind-direction and the atmospheric stratification.
During situations with stable stratification the exhaust gas concentrations increase
strongly – especially if the wind speed orthogonal to the motorway is low. The IMK15

Karlsruhe performed measurements of the vertical wind and temperature profiles dur-
ing the campaign (M. Kohler, personal communication). The wind vectors measured
at two different altitudes are shown in Fig. 8. The shape of the reconstructed plumes
agrees with expectations based on vehicle fluxes (B. Vogel, personal communication)
and meteorological conditions. Time period 1 (Fig. 7a) includes the morning rushhour20

around 6 a.m. CET which coincides with a stable stratification. Around 11 a.m. a
convective layer develops and dominates time period 2 (Fig. 7b). Consequently, the
NO2 concentrations are distinctly lower. In both periods (1 and 2) the plume is driven
away to the right of the carriageway by a soft breeze.

During time period 3 (Fig. 7c) the ground wind speed gets very slow. Together with25

a stable stratification and thus a very low boundary layer this leads to a strong accu-
mulation of NO2.

The exact position of the plume maximum cannot be determined well with this mea-
surement setup as one can see in the error maps Fig. 10a, b, Fig. 11a and Fig. 12a,
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c. This will be explained in detail in Sect. 7. For instance it is possible that the real
maximum in period 1 and 2 is located closer to the motorway. It is interesting to note
that the plume shapes and concentration values correspond well to the simulated NO2
profiles of Bäumer (2002). In his simulations for the same motorway situation, emis-
sion data and wind data from a former campaign were used. The simulated results for5

13:00 CET (unstable stratification) and 21:00 CET (stable stratification) show similar
features as the fields derived in this study for period 1/2 and period 3.

7. Estimated reconstruction error

After sketching the determination of the measurement error on the data, our procedure
for estimating the measurement error and the discretization + inversion error are de-10

scribed. Resulting 1-D cross sections and 2-D error maps are presented for the real
data and the CTM BAB II plume, also with an improved motorway measurement setup.

7.1. Stepping error

In our case, the stepping error is the dominating part of the measurement error. It
arises when the stepping technique is used, i.e. different light paths are not measured15

simultaneously but successively. Then the data from different light paths refer to differ-
ent times. Hence the measured data has to be taken for an estimate of the average
value along the light paths. If the observed atmosphere shows temporal fluctuations,
e.g. if vehicles are passing the measurement site, then the measurement data scatters
around the average. This scattering produces the stepping error. The stepping error20

can be reduced by averaging the data over a time period, smoothing or interpolating
the data. We averaged the data to get data values d . The stepping error was estimated
in the following way: The measurement data as a function of time is interpolated with
a smoothing spline (IGOR Pro, Wave Metrics, Inc., with reference to Reinsch, 1967)
where for each measurement point its measurement error derived from the DOAS anal-25
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ysis is taken into account. The smoothness parameter of the interpolation method was
chosen by eye. The distance of the measurement data from the interpolating spline is
taken as the stepping error of a single data point. From this the standard error of the
mean is calculated:

d =
1
K

K∑
k=1

dtk ; ∆d =

√√√√∑K
k=1 (dtk − f (tk))2

(K − 1)K
, (24)

5

where dtk are the data points at time tk , f (t) is the interpolating spline curve and K
is the sample size of the period to be averaged. The stepping error was estimated
separately for all light paths. In Fig. 9 this estimation is shown for one lightpath. The
measured slant column densities, the interpolated spline and the resulting estimated
errors for each single point are plotted. The resulting relative error for the lightpaths10

was about 2% of the average column densities.

7.2. Propagated measurement error

We assume that the measurement error on the data, which in our case is the stepping
error described in the previous section, is independent and Gaussian distributed. Then
we can calculate the measurement error in the reconstruction ∆cmeas(r) from the co-15

variance of the measurement error on the data covdmeas with Eq. (18) from Sect. 4.2.
The diagonal elements of covdmeas correspond to the stepping errors. From covcmeas
a standard deviation map is obtained which gives an impression about the insecurity
of the reconstruction at different points due to the measurement error on the data.

7.3. Discretization and inversion error20

As described in Sect. 4.2. we estimate the discretization + inversion error by a numer-
ical experiment which corresponds to Eq. (17). We simulate the measurement and the
reconstruction on a set of test fields (ck(r))k∈N . The difference between the resulting
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concentration fields and the test fields, ∆ck(r), is evaluated statistically to get the error
fields:

〈∆cdi 〉 (r) =
1
k

K∑
k=1

∆ck(r) (25)

σ(∆cdi )(r) =

√√√√ 1
K

K∑
k=1

(∆ck(r)2 − 〈∆cdi 〉 (r)) (26)

The distribution of the discretization and inversion error ∆cdi (r) is not symmetric around5

zero. Therefore we always show the average map 〈∆cdi 〉 (r) and the standard deviation
map σ(∆cdi )(r) to get an impression about the quality of the reconstruction at each
point.

7.4. 1-D cross-sections of concentration fields

Before discussing the 2-D-error maps we present 1-D cross sections of these maps.10

The plots in Fig. 10 show horizontal NO2 concentration cross-sections perpendicular
to the carriageway, 5 m above ground. Additionally the 1σ and 2σ reconstruction error
limits are plotted. They are derived by adding the average and the standard deviation
of the estimated error ∆c(r) to the reconstruction result. It was tested in a numerical
experiment that in the given situation adding up the standard deviations of ∆cmeas(r)15

and ∆cdi (r) quadratically is a good approximation for folding the distributions.
For Fig. 10a a theoretical measurement was simulated on the CTM BAB II plume and

the concentration distribution reconstructed from the column densities. The uncertainty
of the concentration in the middle area and therefore the difference between the original
and its reconstruction is high. This is due to the missing coverage of lightbeams directly20

above the carriageway on the one hand and the high concentration gradients near
the source on the other hand. The a priori information which is implicitly used in the
underdetermined region smoothes the result. Another reason for the difference is that
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the 4×3 bilinear interpolation model, which can be recognized by the four sharp bends
of the reconstructed curve, cannot grasp the CTM BAB II plume.

In Fig. 10b we show the cross section of the NO2 concentration at time period 1
(taken out of the 2-D field Fig. 7a). The estimated reconstruction error consists of the
same discretization and inversion error part ∆cdi (r) as in 10a and a different propa-5

gated measurement error part derived from the measured data. In the center area the
1σ uncertainty is around 5 ppb. Near the borders, where we have good light beam cov-
erage, it diminishes to 1 ppb. The reconstruction quality is good enough to determine
qualitatively a “plume type” like “evening inversion plume” or “strong wind plume”. For
quantitative statements this measurement setup works only in the areas of the vertical10

profiles on both sides. One might have the idea, that (crec(r)+ 〈∆c(r)〉) (the fine red
curve) is a better estimation for the real field than crec(r). This was true, if the a priori
information represented by the set of model plumes was exactly right. As we don’t
know the reliability of this information and don’t want to force the reconstruction result
towards the CTM BAB II plume which was used to generate the test fields, we don’t15

pursue this idea.

7.5. 2-D error maps

In the error maps Figs. 11 and 12, respectively, the propagated measurement error
field ∆cmeas(r), and the discretization and inversion error field ∆cdi (r) are shown sepa-
rately. With these maps, the uncertainty can be estimated for each point of the field by20

adding the two standard deviation error fields statistically and taking the average map
<∆cdi (r)> into account.

Additionally to the effects explained in Sect. 7.4 the reconstruction is less accurate
directly above the motorway, and more accurate at higher altitude than at five meter
(Fig. 10). The standard deviation due to the measurement error (see Fig. 11) – shown25

for time period 1 – is relatively small compared to the other errors. The average maps
of ∆cdi (r) show that generally the concentrations are underestimated at the location of
the plumes, and overestimated in the other regions. This “watering down” is caused
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by the discretization error (the state model is not fine enough to describe the plume
position accurately) and due to a general smoothing of SIRT at low iteration numbers
in underdetermined regions. In our setup the inversion + discretization error due to the
few measurements is of the order of ten times higher than the propagated measure-
ment error.5

7.6. Reduced errors with an improved measurement setup

The uncertainties of the reconstructions require an improved measurement setup
which is able to quantify the plume shape and concentration accurately over the entire
field and which can be used for possible future campaigns.

In numerical experiments we added two more DOAS telescopes between the existing10

telescopes and one additional retro reflector on a bridge at 5 m altitude above the
motorway (see Fig. 1b). Instead of conventional telescopes, four multibeam telescopes
(a new type of telescope which is able to measure several light paths simultaneously)
are used for measuring six light paths simultaneously. These telescopes measure
four light paths which are stepping between two retroreflectors, respectively, one fix15

light path to the bridge retroreflector (passing the most fluctuating part) and one light
path for intercalibration purposes. The averaging time, and hence the time resolution
are therefore reduced by a factor of five preserving the actual stepping errors size.
The 36 light paths enable us to choose a higher resolved state model. A 6×4 bilinear
interpolation model yielded the best reconstruction results with SIRT in the optimization20

process.
For the error studies the data errors were assumed to be identical for all light paths

and of average size of the errors of the campaign time period 1. In Fig. 10c the 1-D
cross section of the CTM BAB II plume and its reconstruction are shown for the new
measurement setup. The difference between the original plume and the reconstruction25

is smaller than 1 ppb, and the 1σ limits are lower than 2 ppb (even in the problematic
central area).

In Fig. 11b and Fig. 12b, c the two types of errors are shown separately on 2-D
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maps. The asymmetry in the measurement error map is due to the slightly asymmetric
position of the retro-reflector towers. Only the lowest two meters above the motorway
cannot be reconstructed very well as DOAS- light beams cannot be used at this altitude
because of the cars. Also the top middle region can’t be well determined by this setup
but this area is not so important from the scientific point of view.5

8. Conclusions

We have presented a procedure for comparing different reconstruction techniques and
optimizing the reconstruction parameters for DOAS tomography measurements. The
simulations of the measurement and the reconstruction were applied to a set of test
plumes for different combinations of reconstruction techniques and parameters to find10

the optimal reconstruction algorithm and set of parameters. The set of test plumes
represent all concentration fields which are physically reasonable according to our a
priori information. For judging the reconstruction quality the quality criterion “nearness”
was used in this study. For other purposes we suggested the criteria “normalized
maximum difference” (NMD) and “normalized average difference” (NAD).15

We used the procedure for comparing different row acting methods (ART-, SIRT-,
and SART-like) and two types of discretization models (box, bilinear interpolation). The
procedure can also be employed to optimize measurement setups. In the presence of
noise on the data, an extension of the simultaneous iterative projection method SIRT
with a bilinear discretization model yielded the best reconstruction results. The SART20

algorithm was slightly inferior and the ART-like inversion method, came off distinctly
worse.

We applied the optimization, reconstruction and error estimation procedure to the
data of the first tomographic DOAS-measurements carried out during a motorway
emission campaign. For this setup with 16 light beams the extension of SIRT with a25

4×3 bilinear interpolation model worked best. The optimum iteration number depends
strongly on the measurement error. For the BAB II setup it is about 100 iterations for
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a relative average measurement error of 2%. The measurement data had to be aver-
aged over several hours because of the stepping error. The reconstructed NO2 fields
for three time periods agreed well with the prevailing meteorological conditions. The
estimated reconstruction error of σ=5 ppb (around 30% relative error) above the car-
riageway is still quite large however, so that the exact location and the exact value of5

the concentration maximum can’t be determined from our measurements. This can be
seen quite clearly in the presented horizontal 1-D cross sections, on which the 1σ error
limits are marked.

For the error estimation we devided the reconstruction error into propagated mea-
surement error on one side and discretization and inversion error on the other. This10

helps making suggestions to improve the measurements. If the propagated measure-
ment error is too high, one should try to reduce the error on the data (e.g. by averaging
the data over a longer period of time). If the discretization and inversion error is too
high, one should rather modify the measurement setup. In our field-campaign setup
the discretization and inversion error was one magnitude higher than the propagated15

inversion error.
As a consequence, an improved hypothetical motorway setup with 36 light beams

was proposed. Assuming the same average measurement error as during the BAB
II campaign, the concentration several meters above the carriageway can be recon-
structed within 1–2 ppb. Using the new multibeam telescopes (a new type of DOAS-20

telescopes which can measure several light paths simultaneously) such a setup could
be realized with a time resolution of 10 to 60 min.

Summing up, the first DOAS tomography measurement and the applied reconstruc-
tion and error estimation procedures worked out successfully. Measurement and ex-
pectation seem to agree well within the given error limits. With the new measurement25

devices it is now possible to produce high quality 2-D trace gas maps by DOAS tomog-
raphy.
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Table 1. Results of the procedure for comparing reconstruction methods and inversion param-
eters. The optimization procedure was applied to the motorway setup used during the BAB
II campaign. For different discretization models and inversion techniques the optimum itera-
tion number i is given with respect to the three quality criteria nearness, normalized average
difference (NAD), and normalized maximum difference (NMD). We took the optimum iteration
number i for a minimum average plus one standard deviation of the quality criteria, thus mak-
ing a compromise between the value of a quality criteria and its scattering of a quality criteria.
The upper part of the table compares different discretization models for the fixed SIRT algo-
rithm. The lower part compares different inversion techniques and their ideal iteration number
depended on the assumed measurement error. In this part of the table the discretization model
is fixed to be “4×3 bilinear”.

Meas. Err. RAM. Disc. Grid- Nearness NAD NMD
σmeas mod. size < Φ+ 1σ>min 1σ i < Φ+ 1σ>min 1σ i < Φ+ 1σ>min 1σ i

100 SIRT box 3×2 0.71 4.84E-03 20 0.0103 0.0064 40 0.64 7.66E-03 150
100 SIRT Bil 3×2 0.57 4.30E-03 40 0.0114 0.0063 40 0.53 7.86E-03 2000
100 SIRT box 4×3 0.69 4.85E-03 30 0.0206 0.0157 1000 0.60 8.04E-03 40
100 SIRT Bil 4×3 0.53 8.83E-03 100 0.0130 0.0091 400 0.47 1.36E-02 500
100 SIRT box 5×4 0.67 6.02E-03 100 0.0309 0.0073 2000 0.58 1.13E-02 200

SIRT Bil 5×4 0.56 1.43E-02 500 0.0218 0.0076 250 0.45 1.86E-02 1000

100 ART Bil 4×3 0.56 1.58E-02 10 0.0174 0.0136 30 0.49 1.24E-02 4
1000 ART Bil 4×3 0.84 0.1102404 1 0.1029 0.0778 6 0.60 8.51E-02 2
100 SART Bil 4×3 0.54 1.51E-02 40 0.0093 0.0063 6 0.47 1.54E-02 100
1000 SART Bil 4×3 0.75 6.26E-02 4 0.0626 0.0614 6 0.62 0.070997 10
100 SIRT Bil 4×3 0.53 8.83E-03 100 0.0130 0.0091 400 0.47 1.36E-02 500
1000 SIRT Bil 4×3 0.70 6.47E-02 25 0.0716 0.0597 80 0.58 7.78E-02 50
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Table 2. Optimized reconstruction parameters for the motorway campaign.

Discretization model 4×3 bilinear
RAM type simult. iterative projection method
First guess constant average
Iteration Number 100
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Fig. 1. DOAS tomography setups for the measurements of cross sections of vehicle exhaust
gas plumes at right angles to the motorway. Setup (a) was used during the motorway campaign
BAB II. Two DOAS telescopes were placed on opposite sides of the motorway. 4 retro-reflectors
were mounted on two cranes in about 800 m distance. With the stepping technique 16 light-
beams were realized, 8 crossing and 8 going parallel to the carriageway. The enhanced setup
(b), desribed in Sect. 6.7, consists of 4 telescopes and 9 retroreflectors. It is able to mea-
sure the cross sections with much better accuracy. For better clarity only the lightbeams of the
telescopes on the left hand side are drawn in completely.
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Fig. 2. Discretization models. The upper two subfigures show a 1-dimensional cross section
of a concentration field. In the case of the box model (a) the real concentration field (blue) is
approximated by a step function (green), which is constant within each box. For the bilinear
interpolation model (b) the basis functions (red) are pyramid shaped. They have a peak of
height one above the affiliated lattice point and reach zero at the neighboring lattice points. The
resulting model function (green) is continuous and interpolates the values at the lattice points
linearly. In subfigures (c), (d) and (e) the discrete modeling of a continuous 2-D function is
visualized in color contour plots: A continuous concentration field (c), its best approximation
with the 5×4 box model (d) and the 5×4 bilinear interpolation model (e).
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(b) simultaneous RAM (SIRT-like)

Fig. 3. Row acting methods (RAM) graphically. Each data point di refers to a hyperplane in
state space (red lines). If an exact solution exists, it must lie on all these hyperplanes. Here the
inverse problem is over-determined, and there is no exact solution (there is no intersection
for all three hyperplanes). Starting point is the initial guess s(0). For the sequential RAM
(a) the actual guess is iteratively projected onto one hyperplane after another. Because of
the over-determination the iteration sequence (s(j )) (green) oscillates cyclically convergent in
the neighborhood of the intersections of the hyperplanes. For the simultaneous RAM (b) the
hypothetical changes due to projections onto all hyperplanes (pink vectors) are gathered first.
Then their average (green vector) is added to the actual guess. Here the state vector sequence
(s(j )) approaches the real state slowly but consequently.
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Fig. 4. CTM BAB II plume and examples of derived test fields. (a) The NO2 concentration field,
produced by D. Bäumer (personal communication, see Sect. 1.5), for the BAB II situation with
a chemistry transport model. It was used in this study for numerical experiments: (b) A set of
test fields was generated by squeezing the model plume in intensity, squeezing and shifting it
in space and adding small scale random field. Four realizations of this modification procedure
are shown in (b).
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Fig. 5. Minimization in respect to (φ+1σ) of the nearness for one specific test field. The
simulation of the measurement and the SIRT reconstruction are applied 1000 times to a single
test field with normal distributed measurement errors 1σ=1000 ppb∗m (around 10% relative
error). After 40 iterations, the average nearness values still decrease slightly with the iteration
number, whereas the scattering of the nearness values increases strongly. As a compromise
between a small average φ and a small scattering of the nearness values, the iteration number
is chosen that minimizes (φ+1σ).
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Fig. 6. Parameter optimization. The simulation of a measurement and the SIRT reconstruction
are applied on 100 test-fields. The average nearness and its standard deviation averaged
over all test-fields are plotted against the iteration number. The standard deviation shows the
effect of the propagated measurement error on the nearness. In (a) different state models are
compared for fix measurement error σ=100 ppb∗m. For all resolutions the bilinear discretization
model is superior to the box model. The 4×3 grid leads to better results than the 3×2/5×4
grids which correspond to strongly over/under determined problems. (b) For the fixed 4×3
bilinear state model the measurement errors are varied from 0–1000 ppb∗m (around 0–10%
relative error). The optimum iteration number is determined by minimizing <φ+1σ>. It is highly
dependant on the measurement error and decreases when the simulated measurement error
increases.
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Fig. 7. Reconstruction results for the BAB II campaign. The reconstruction was performed
using the simultaneous row acting inversion method and a 4×3 bilinear interpolation model
(SIRT-like). The reconstructed concentration fields are in good agreement with the meteorolog-
ical situation. During day time the exhaust gases were driven away from the carriageway by a
soft breeze. Due to the morning rush hour the plume is stronger in period 1. At nighttime the
wind-speed at ground-level was almost zero and the temperature gradient showed an inversion
situation which leads to high concentrations (also in the background air).
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plotted for the three time periods. The wind component vertical to the motorway is the smallest
during time period 3.
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Fig. 9. Estimation of the stepping error. The scattering of the measurement data is not pri-
marily due to insufficient measurement devices, but to real atmospheric and vehicle emission
fluctuations during the stepping process. The measured NO2 slant column densities (red) for
one lightpath are plotted against the time. The stepping error of an individual data point (blue)
is estimated to be its distance from an interpolating smoothing spline (green).
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Fig. 10. 1-D cross sections of concentration fields and error estimations at 5 m altitude. (a)
Measurements are simulated on the CTM BABII plume using the BABII setup. The inversion
is performed on the simulated data. The reconstructed plume (red) differs from the original
(blue), but remains everywhere within estimated 1σ error limits (green). In the middle area 1σ
is around 5 ppb which allows only qualitative statements about the shape of the plume. (b) The
inversion is performed on the measured data from period 1. Again only qualitative statements
about the shape of the plume are possible. The discretization and inversion part of the error
is the same as in (a) but the measurement error part differs from (a) because the estimated
measurement error from the measurement data is used (Sect. 7.1). (c) Measurements are
simulated on the CTM BABII plume using the enhanced setup. (Fig. 1b, Sect. 7.6). Again the
original and reconstructed concentrations are shown. Here the shape of the plume can be
grasped with much better accuracy. The position of the concentration peak can be determined
well.
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(a) std. dev. map                , original setup (b) std. dev. map                 , enhanced setup

Fig. 11. Measurement error. Subfigure (a) shows the propagated measurement error for the
BAB II setup at time period 1. The error is the largest close to the carriageway. This is due to
the poor coverage of this region with light beams. The shifting to the right results from higher
fluctuations of the concentrations and thus a higher absolute measurement error on the right
hand side of the motorway in this wind situation. Subfigure (b) shows the measurement error
map for the enhanced motorway setup. The error on the data was assumed to be the same
for all light paths and of average size of the errors in subfigure (a). One must be careful in
comparing (a) and (b) as the choice of taking the same error for all light paths in (b) already
results in a smoother and more symmetric field. Independent of the spatial distribution the
average resulting error is smaller than in (a) because more light paths are in the area.
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(d) std. dev. map            , enhanced setup

(b) average map <Dcdi>, enhanced setup

Fig. 12. Discretization and inversion error. The combination of discretization and inversion error
was determined by a numeric experiment with a set of test plumes based on the CTM BAB II
plume for the north-east wind situation. This error is not symmetric around zero, therefore we
plot the average (a, b) and the std. dev. (c, d) of the error distribution. Subfigure (a) and (c)
refer to the original setup. (a) The concentration is underestimated where high concentration
values are likely, but overestimated in the other regions: The plume is smoothed, because the
discretization model is too low resolved and cannot represent the steep concentration gradient
which is likely to occur over the motorway. (c) The standard deviation is the highest above the
road, because the coverage with light beams is insufficient, and smallest on the sides of the
road where a lot of light beams are available. For the enhanced setup the average deviation (b)
is generally low (ignoring the area high above the road, which is not of scientific interest). The
standard deviation (d) exceeds 2 ppb only in the lowest 2 m above the carriageway. Because of
the traffic no light beams could be located here.
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