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Abstract— Polarization dependence of various fiber effects affect-
ing signal quality in wavelength division multiplexing (WDM) sys-
tems has become a major field of research activities. Polarization—
mode dispersion (PMD) and polarization—dependent loss (PDL)
are quite well understood today, but there are still major open
questions with respect to the interaction with nonlinear fiber
effects, although the picture has already become clearer. The aim
of this paper is to provide a better understanding of the impact
of self-phase modulation (SPM), cross—phase modulation (XPM),
and birefrigence on the state of polarization during propagation
in a transmission fiber. For several configurations, closed—form
expressions describing the dependence of different quantities on
propagation distance are presented.

Both phase modulating effects do not induce a power trans-
fer among the channels of WDM system. However, power is
exchanged among the components of the Jones vector of the
individual channels. Without attenuation, this power exchange is
a periodic function of the propagation distance. Furthermore, the
analysis reveals that the sum of the ellipticities weighted by the
corresponding fiber input power is preserved during propagation
as long as the wavelength dependence of fiber attenuation can
be neglected.

In the presence of SPM only, the ellipticity of the channel
under consideration is maintained during propagation and the
powers of the different components of the Jones vector change
sinusoidally as a function of a normalized propagation distance.
Closed—form expressions describing the dependence of the mag-
nitude of the power variation and the period length on initial
conditions at the fiber input are derived. Conservation of the
ellipticity is canceled out by the interaction with birefrigence.
Neglecting fiber attenuation, a different quantity is identified that
is conserved during propagation. Ellipticity as well as the power
of the two components of the Jones vector change periodically
versus propagation distance, but no longer sinusoidally. Further-
more, it is shown that there is a separatrix that cannot be crossed
by the traces embracing the states of polarization adopted during
propagation. Thus, the Poincaré sphere is split into up to three
segments.

The ellipticity of a channel influenced by XPM has a sinusoidal
dependence on the normalized propagation distance with a period
length depending on the ellipticity of the first channel only. Power
variation of both components of the Jones vector of the second
channel can be mathematically described by a superposition of
three sine waves. The magnitude of the power exchange on initial
conditions at the fiber input is pointed out. In addition, this
analysis is extended for the case that a channel is affected by
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SPM, XPM, and birefrigence simultaneously.

Index Terms— Optical communications, optical networks, wave-
length division multiplexing, self-phase modulation, cross—phase
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polarization

I. INTRODUCTION

INGLE—mode fibers, also called monomode fibers, are the
S only kind of transmission medium used today for long—
haul communications. The name of these fibers suggests that
they support the propagation of a single fundamental mode
only [1]. But in fact, there are two modes of propagation [2]
which are mutually orthogonally polarized. Under weakly
guiding conditions, they can be assumed to be linearly polar-
ized. In an ideal cylindrical waveguide, these two modes are
degenerate, which means, that there is no difference between
their propagation constants. Thus, they propagate with the
same phase—velocity.

Real fibers are neither completely circular nor perfectly
straight. In addition, the fiber material is slightly anisotropic.
As a consequence, the propagation constants of the two modes
becomes different, which is referred to as birefrigence [3].
The axis with maximum propagation velocity is called fast
axis, whereas the axis with minimum propagation velocity is
named slow axis. Birefrigence leads to a periodic change of
the state of polarization during propagation. Furthermore, fiber
employed in field environments are exposed to mechanical
stress, temperature variation, twists and bends [4] causing un-
stable fluctuations in the polarization state of the propagating
light.

Random variations of birefrigence give rise to effects summa-
rized under the term polarization—-mode dispersion (PMD) [5].
The interest in these effects has grown with increasing bitrate
of the transmitted wavelength division multiplexing (WDM)
channels. In particular when using older fibers, PMD may
become one of the most serious impairments in high—bitrate
system. Not surprisingly, the impact of PMD on system
performance has been studied widely [6]. As an example,
quite early results on optical transmission system penalties are
described in [7]. A large number of concepts to compensate
or at least to reduce the impact of these effects have been
developed in the last years [8][9]. Polarization—dependent loss
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(PDL) or gain (PDG) [10] is another effect related to the state
of polarization that may affect system performance.

Nonlinear fiber effects constitute another class of effects
having the potential to severely degrade signal quality.
Performance degradation caused by self—phase modulation
(SPM) [11][12] and four—wave mixing (FWM)[13] has been
investigated from the beginning of the commercial deployment
of WDM systems, both, theoretically and experimentally.
However, the effect of cross—phase modulation (XPM) has
been overlooked for a while [14]. Although the influence of
polarization was apparent from some early experiments [15],
polarization has either been completely neglected in theoretical
investigations [16] or only worst case situations have been
considered [17] for several years.

Already in 1995, it has been shown that performance degra-
dation resulting from PMD can be mitigated by means of the
Kerr effect for nonreturn—to—zero signals [18]. Since around
1999, the interaction of PMD with nonlinear fiber effects is
investigated more thoroughly.

Many of the investigations are devoted to XPM and degrada-
tion of the degree of polarization (DOP). It has been shown
experimentally that, from a statistical point of view, PMD
is exacerbated in presence of XPM, as long as polarization
interleaving is not employed. In addition, XPM—-induced de-
polarization can lead to a degradation of PMD compensator
efficiency [19][20]. A closed—form approximate expression
for DOP degradation of a signal degraded by XPM of a
nonlinearly interfering pump is presented in [21]. Furthermore,
it turned out that channel depolarization occurs on a time scale
comparable with the bit period [22].

Significant progresses have also been achieved in the field of
modeling the interaction of PMD with nonlinearity. Funda-
mental aspects are reviewed in a tutorial [23] with focus on
the derivation the Manakow equation. A vector theory of XPM
in optical fibers has been developed [24][25] that is mainly
useful for pump—probe configurations and allowed to derive an
analytical expression for the amplitude of probe fluctuations
by a copropagating pump channel. In addition, the theory
revealed that PMD helps to reduce the XPM—induced crosstalk
in WDM systems, as long as polarization interleaving is not
used. This result is in good agreement with findings based on
system simulations and laboratory experiments [26], leading
to the statement, that evaluations making use of the scalar
nonlinear Schrodinger equation tend to overestimate the XPM
interchannel coupling of WDM transmission. Models includ-
ing the effect of FWM are also available [27]. In a pump—probe
configuration, states of polarization different from the carrier
have been observed for optical spectral components generated
by XPM [28].

In presence of large dispersion, the mean field approach is
useful [29]. It provides results with sufficient accuracy at
significantly reduced computational effects as compared with
techniques based on the Manakov equation. The calculations
are based on the Stokes parameters of the WDM channels
only and they ignore the detailed temporal behavior when
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determining the evolution of the polarization.

First, different representations used to illustrate the evolution
of the state of polarization are described. Next, a mathematical
description is presented and some fundamental properties of
the evolution of the state of polarization are derived. In
section IV, the effect of self—phase modulation on the state
of polarization is investigated, whereas its interaction with
birefrigence is considered in section V. Section VI deals
with the effect of XPM and its interplay with SPM. Subject
of section VII is the interaction of XPM with birefrigence.
Finally, the results are summarized and some conclusions are
drawn.

II. REPRESENTATION OF STATES OF POLARIZATION

Light phenomena in optical fibers can be described by using
the notion of electromagnetic fields propagating as transverse
waves [30]. Conventionally, when considering polarization, the
electric field vector is described only, since the magnetic field
is perpendicular to the electric field and the amplitudes of both
fields are proportional to each other.

Any arbitrary state of polarization can be created by super-
imposing two linearly polarized waves, which are oriented in
orthogonal directions of a Cartesian coordinate system. For
a simple harmonic wave, where the amplitude of the electric
vector varies in a sinusoidal manner, the two components have
exactly the same frequency. In general, the amplitude and the
phase of these waves are different.

Typically, a right—oriented coordinate system is used to de-
scribe the propagation of a lightwave in an optical fibers,
where the z—axis is oriented in the direction of propagation.
Thus, polarized light can be represented by a two—element
complex vector, the elements of which represent the complex
envelopes of the two linearly polarized waves. This so called
Jones vector has the form

— - ua: _ 51 . e]Wz
Eell = EO |:Uy:| = EO |:€y . €j¢y:|
Ey - e o (1)
= 0 /1 _ 6% . e]A</7

with 0 < ¢, < 1 and Ap = ¢, — ;. All parameters on
the right side of the last equal sign represent real quantities.
The real quantity Ej represents the magnitude of the electrical
field vector, whereas the complex quantities u, and u, are
normalized complex envelopes with |uy | + |u,|? = 1. The
variables ¢, and ¢, stand for the respective phase terms.

The pattern traced out by the electrical field has elliptical
shape. In general, the principal axes of the ellipse are tilted
against the x—axis and the y-—axis. The angle between the
x—axis and the larger principal axis of the ellipse will be
denoted by arq¢ in the following, as shown in Fig. 1. Another
important parameter characterizing the polarization ellipse is
the ellipticity

e=26 /1 & sin(Ag) . )
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0.5

Fig. 1. Schematic representation of the polarization ellipse.

The magnitude of this parameter indicates the size of the area
covered by the ellipse, whereas the sign of this parameter
specifies the sense of rotation of the electrical field vector.
Positive numbers indicate that the field vector is rotating
clockwise as seen by an observer from whom the wave is
moving away (0° < Ay < 180°), whereas the electric field is
rotating counter clockwise if the parameter value is negative
(180° < Ap < 360°).

Stokes parameters constitute another common way to describe
the state of polarization of a lightwave. For the following
consideration, the three standard Stokes parameters

S = 2-6-1 3)
Sy = 2-& -/1—£62 cos(Ayp) 4
Sz = 2-&-/1—-&2-sin(Ap)=¢ %)

with
ST+ 834+ 852=1 (6)

are sufficient. The parameter S3 is identical to the already
introduced ellipticity e.

Commonly, the state of polarization of a lightwave is repre-
sented on the Poincaré sphere. However, this three dimensional
representation does not always reveal clearly all important
features. Therefore, two additional kinds of representation
will be used. Both make use of polar coordinates. One of
them is directly based on the Jones representation of the state
of polarization and can always be found on the right side
of figures describing the state of polarization. The radius is
identified with the parameter &, and the angle with reference
to the x—axis corresponds to Ap. As shown by the template
in Fig. 2, all linear states of polarization are found on the x—
axis, whereas the data points (0,+/2) and (0, —/2) represent
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Fig. 2. Stokes and Jones based representation of polarization states.

circular states of polarization. Traces with constant magnitude
of the ellipticity have been marked by closed curves.

Representations on the left side of the figures are related to the
Stokes representation. In this case, the angle with reference to
the x—axis in the plot indicates the rotation of the transverse
axis of the polarization axis, whereas the radius is a function
of the magnitude of the ellipticity and is given by r = 1 — |¢|.
Thus, linear states of polarization are located on the outer
circle with radius one and circular polarization is found at
the origin or coordinates. In both representations, clockwise
rotating states of polarization are found in the upper half—
plane, whereas the lower half—plane comprises all states of
polarization with counter clockwise rotation.

III. MATHEMATICAL DESCRIPTION

Let us consider a wavelength division multiplexing system
with N channels. Since arbitrary elliptical polarizations are
allowed, two linear lightwaves with orthogonal polarizations
have to be considered per channel. In total, there are 2N
lightwaves propagating within the optical fiber.

Four-wave mixing (FWM) is an important effect causing inter-
action between different channels transmitted simultaneously
in an optical fiber. However, this effect is only effective if the
phase matching condition is fulfilled. Therefore, it is generally
assumed that this effect can be neglected in standard single—
mode fibers (SSMFs) due to their large dispersion leading to
phase mismatch already at quite small channels spacings.

In the present case, there is a complementary lightwave to
each lightwave having the same wavelength. Therefore, phase
matching occurs for some of the four—wave mixing products
despite the large dispersion, as long as this is not prevented
by birefrigence or polarization mode dispersion (PMD). In the
following, we will limit our investigations to fibers having
large dispersion, so that only four—-wave mixing mediated
interaction among lightwaves having identical wavelengths
plays an important role.

The mathematical description of the wave propagation within
the optical fiber is based on Cartesian coordinates. The axis
of propagation coincides with the z—axes. The temporal and
spatial evolution of the complex envelope is characterized
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by the normalized parameters w,;(7, z) and u,; (7, ), respec-
tively. In addition, it is assumed that lightwaves with the same
frequency have identical modal field distribution. Furthermore,
the typically small wavelength dependence of attenuation is
neglected. This assumptions lead to the system of differential
equations (7)'. Due to space limitations, the dependence of
the different parameters on time and space is not indicated
explicitly. Average power levels of the different channels
at the fiber input are denoted by P; and P,, respectively.
The parameters [3; stem from an expansion of the mode—
propagation constant § in a Taylor series about the center
frequency. The extent of nonlinear fiber effects is governed
by the nonlinear—index coefficient no [31].

Typically, all channels are located within one transmission
window of the optical fiber. Thus, the difference with respect to
the modal field distributions are small and the overlap integrals
gi: and g;;, respectively, can be assumed to be constant and
can be replaced by the inverse of the effective area Ag.
Replacing the individual wavelengths A; and A; by the average
wavelength \ allows to introduce a normalized effective length

n9 PO

= 27
C /\Aeff «

o)

11

Zeff X

1—exp (—az)] (8)

with

The parameter P, denotes an arbitrary power level greater
than zero. It is a good choice to set this parameter value to
the maximum channel power at the fiber input. Please note
that the parameter ¢ tends towards a finite value

1
Zeff * (X

Cmax = (€))
when increasing the coordinate z continuously in the presence
of fiber attenuation (o > 0). As a consequence, the range of
values of ¢ is limited to the interval [0 {max]-

For the following investigations on polarization changes in-
duced by nonlinear fiber effects, it will be assumed that the
complex envelopes of the electrical field are time independent.
Changes of the amplitude and phase of the complex envelope
are described by separate differential equations. Since the state
of polarization depends on the phase difference between the
two components u,; and u,; only, the propagation of all
lightwaves within the transmission fiber can be described by
3N coupled differential equations containing real numbers
only. The resulting system of coupled differential equations
is given by (10). It follows from the first two equations that
the sum &2, + ffﬂ- is constant during propagation.

'In this work, the propagation of a plane wave with wave vector k is
described by the term expq7 (-7 — k- F) , where  stands for the

position vector and €2 denotes the angular frequency. When using the complete
conjugate description, as done in [31], the sign of terms with leading
imaginary symbol changes.
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Self-phase modulation and cross—phase modulation
do not induce power exchange among the different
channels of a WDM system, but power is exchanged
between the two components of the Jones vectors of
the channels.

From the already mentioned set of differential equations (10)
with real quantities, an additional equation can be derived for
the ellipticity of the lightwaves:

0
% {25“\/ 2. sin (Ago,;)}
2 Z 1 - 2531‘) ajy/1— gj cos (Ag;)
J#l

- (1-2¢)) fm\/?f;icos (Ayp;)

Weighting the ellipticity of all channels with the corresponding
fiber input powers and summing up all these terms leads to
an additional figure that is preserved during propagation.

(1)

2,0/1 - € sin (Ag)
N
“2h

w\w

>

; = const. (12)

”J\“U

The sum of ellipticities weighted by the correspond-
ing fiber input power is preserved during propaga-
tion.

In the following, the powers P,; = &2, of the waves that
are linearly polarized in direction of the x—axis will be used
instead of the amplitudes &,;.

For interpretation of the results presented in the following, it
is of importance to be aware of the effect of birefrigence on
polarization. Fig. 3 shows closed curves representing traces of
the state of polarization that are adopted during propagation
due to birefrigence in a fiber without nonlinearity. In the
Jones based representation, we get circles that are centered
at the origin of the system of coordinates. The Stokes based
representation indicates that the magnitude of the elliptic-
ity changes almost continuously. In addition, the curves are
symmetrical with respect to the x—axis and the y-axis. The
important point is that significant parts of the curves can be
approximated by straight lines. Thus, we can describe the
behavior qualitatively by stating that the orientation of the
polarization ellipse switches between two directions. The angle
with the x—axis corresponds either to its initial value aj,;; at
the fiber input or to 180° —

ini
ll'llt :

Remark: It is common practice to denote all nonlinear
interactions between polarization components of one channel
by SPM. However, this wording is not correct in a strict sense
since the nonlinear effects do no only induce modulation of
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aua:i aumi ﬁ2(/\z) a2uwz 63( ) 8 Uz
A . _
R A I or
2mn
= —J )\i2 exp (—az) {gupzuzz |:uxz + - |uy2| :| + ngzP uzzuyl
N 9 g N
2 2 * *
+ D i Pjiai [2 s | + 3 Ty } t3 > 9i Pruyi [uaguy; +ufjuy] }
J#i J#i
auyi OUy; 52(&') 0?u i 53()\1) Pu i
ABy(N) i _ yi Y
0z + Al ar ' 2 or2 or3
2mn 1
= )\,2 exp (—az) {gi,;Piuy,; [Uyz'Q +3 |um|2} + ggva“yzum
N g N
J#i J#i
o = 3{ [Po] 5@1‘55@' sin (2A¢p;) + 4€,, sin (Ag;) Z [Pi)] €25€y5 cos (Ap;) }
i#i
8§’li 1 P . . P;
85 = —3{ {Po} €yi€2isin (280;) + 46y sin (Agi) > [Pé] Ea5&yj cos (Ap;) }
i
aAQOZ 1 Pz 2 2 2
J#i
g;m g % P;
[5 fy- cos (Ayp;) Z F] &2i€yj cos (Ap,) (10)
yi i i 0
the phase. There is a power exchange also in the absence of analytically by
dispersion caused by degenerate FWM terms. 1 CHe
le—z{lﬂ/l—s%-sin( : 01)} (13)
cl

IV. THE EFFECT OF SELF—-PHASE MODULATION

In this section, the propagation of a single channel affected
by self—phase modulation is considered. According to equa-
tion (12), the ellipticity 1 = 2&:14/1 — &2;sin (Agpy) is
maintained during propagation. With growing value of (, the
state of polarization follows the curves shown in figure 4.
The shape of the polarization ellipse as well as the sense of
rotation of the electrical field vector remain unchanged, only
the principal axes are rotated.

The power of the electrical field vector in direction of the
x—axis as a function of the parameter ( can be described

Two new figures are introduced that depend on the initial
condition at the fiber input as indicated by the following
equations:

s

el - 2|€1| Pl

G = G -aresin [ P01 (14)
V1—¢?

The normalized power of the component in direction of the x—
axis has a sinusoidal dependence on the normalized distance
¢. The average value always equals % 5, irrespectively of the
state of polarization at the fiber input. In contrast, the period
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Fig. 3. Changes of the state of polarization induced by birefrigence.

length as well as the extent of the power exchange depend on
the initial condition. Smaller magnitude of the ellipticity goes
along with a larger period length and increasing extent of the
power exchange. In the borderline case of linear polarization
(vanishing ellipticity), the period length tends toward infinity,
so that there is no power exchange.

Of particular interest are states of polarization that do not
undergo changes during propagation. In the Jones based rep-
resentation, this applies to all polarization states on the unit
circle and all polarization states on the dividing line between
upper and lower semicircle. By the way, this dividing line
constitutes a separatrix, since all states of polarization that a
lightwaves takes during propagation are either above of below
this line. In addition, all points in this plane with a radius of
% and a phase difference of £90° (circular polarization) are

stationary.
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Fig. 4. Changes of the polarization state induced by self-phase modulation
only. The polarization state at the fiber input has been marked by
a dot.

distance ¢ for the polarization states that have been marked
by dots in figure 4.

V. INTERPLAY OF SELF—PHASE MODULATION AND
BIREFRIGENCE

When considering the propagation of lightwaves with time
independent complex envelopes of the electrical field, only dif-
ferences with respect to the phase velocity are of importance.
The different propagation constants can be taken into account
by modifying the set of differential equations (7). The result

fized power

— I
40 50 60
Normailized position

In case of linear and circular polarization, self-phase
modulation does not induce any change of the state
of polarization. In addition, self-phase modulation
alone does not induce changes of the sense of rotation
of the electrical field vector.

In figure 5, the evolution of the power in the x—axis as well
as the ellipticity are shown versus the normalized propagation

1 T

051 4

I
0 10 20 30 40 50 60 70 80 a0
Normalized position

Fig. 5. Evolution of power in the x—axis and ellipticity versus normalized
fiber position for different polarization states at the fiber input due
to self-phase modulation (no birefrigence).
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can be taken from (15). The parameter AS; stands for the
difference of the propagation constants for the two components
of the Jones vector of channel <.

Again, it is helpful to describe changes of the magnitude
of the complex parameters and their phase difference by
separate differential equations. The resulting set of differential
equations can be derived directly from (10) by replacing the
last equation describing the evolution of the phase difference
by equation (16).

A. without attenuation

First, the situation with vanishing attenuation is analyzed. In
the Jones based representation and on the Poincaré sphere, we
again get closed curves that are characterized by the equation

2
360 (1= &) sin®(Ap) + AB - zeir - &7 =
This equation indicates that the quantity
e+ 6AB - zegr - gi

const (17

is conserved during propagation. For different initial states of
polarization but constant birefrigence, the closed curves are
shown in figure 6. The power of the component in direction
of the x—axis versus normalized propagation distance and the
ellipticity along the fiber axis can be taken from figure 7.

As discussed before, self—phase modulation alone does not
alter the ellipticity of a lightwave and induces a sinusoidal
power exchange among the two elements of the Jones vector.
The average power in directions of the x—axis and the y—axis
equals % Combined with birefrigence, there is still a periodic
power exchange among the two element, but it is no longer
sinusoidal and the average power values of the two powers are
in general no longer equal, as shown in figure 9 for different
values of the birefrigence. The ellipticity also shows a periodic
behavior versus propagation distance. At small birefrigence,
the sign of the ellipticity does not changes, which implies that
the corresponding traces on the Poincaré sphere (see figure 8)
are either completely in the lower or the upper hemisphere. In
addition, the amount of the exchanged power as well as the
period length of the power exchange increase with growing
birefrigence until a certain value has been reached at which
the trace of polarization states comprises states with positive
and negative ellipticity. If the birefrigence is further increased,
the amount of exchanged power as well as the period length
decrease. In the borderline case of infinite birefrigence or
infinite product AJ - 2z, the traces degenerate into circles in
the Jones based representation or straight lines in the Stokes
based representation. In addition, there is no power exchange
anymore.

Whether the orientation of the rotation of the electrical field
vector changes during propagation depends on the magnitude
of the product A3 z.¢ and the state of polarization at the fiber
input. For a given value of this product, we can distinguish
between initial states of polarization that lead to a change
of the sign of the ellipticity and states for which such a
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with birefrigence

0

Y100 gp0 S0°

Fig. 6. Changes of the polarization state induced by self—phase modula-

tion and birefrigence without fiber attenuation. The polarization
state at the fiber input has been marked by a dot (constant
birefrigence).

change does not happen. According to this criterion, the area
containing all possible states of polarization in the Jones based
representation can be segmented into different areas that are
separated by separatrices. For the fast axis in direction of the
x—axis, the separatrix is shown in Fig. 6 for AJ - ze = 0.15.
In general, the separatrix is described by

. 3
Psa -sin® (Ap) = 3 |AB zett

where Ps4 = (1 —¢£2,) stand for the power in direction of the

fized power

I
40 50 60
Normaiized position

2 I
0 10 20 30 40 50 60 70 80 a0
Normalized position

Evolution of power in direction of the x—axis and ellipticity versus
normalized fiber position for different polarization states at the
fiber input (no fiber attenuation, with birefrigence).
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+4Z {Pﬂ (&5 — &) +4 |:§y - U} cos (Ap;) Z {Pﬂ £ai&yj cos (Agj) } (16)
J#i i zi o

slow axis. Obviously, the separatrix can be decomposed into
four segments. Two of them are circular arcs of the unit circle,
whereas the other two are horizontal lines with distance

3
\'3 |AB| zefs

to the x—axis. Starting from states of polarization within the
area shaded in light blue, the ellipticity will change sign during
propagation. Since in the absence of absorption each state of
polarization adopted during propagation can be considered as
initial state and the process itself does not have a memory, the
separatrix constitutes a borderline, that will not be crossed by
any possible trace.

Figure 8 shows the polarization states adopted during prop-
agation for a single initial state of polarization but variable
magnitude of the birefrigence. Power exchange and evolution
of the ellipticity are illustrated in figure 9. In this figure, the
curves for |Af| zee = 10 are not shown, since the period is in
this case significantly smaller as compared to the other ones
so that this curve would cover all the other ones.

The red curve shows the trace for |AS|zee = 0, i.e. for
vanishing birefrigence. It is the already presented curve with
constant ellipticity. In case of the green curve, representing
the trace for |AS| zegr = 0.150, the initial state of polarization
is outside of the area encompassed by the separatrix. Thus,
the orientation of rotation of the electrical field vector does
not change during propagation and the trace on the Poincaré
sphere is completely on the upper hemisphere. The other
curves represent traces for |Af|zeg > 1/6, so that the
initial state of polarization is within the area embraced by

the separatrix. Therefore, the sign of the ellipticity changes
periodically. For increasing values of |Af| zeg, the traces in
the Jones based representation tend towards a circle. The traces
on the Poincaré sphere also converge towards a cercle. It can
be generated by rotating the initial state of polarization around
the S1—axis. The constant value of S; implies that there is no
longer a power exchange between the two components of the
Jones vector.

B. with attenuation

The influence of fiber attenuation becomes clear when consid-
ering the first term after the equals sign in equation (16). With
increasing propagation diestance, the normalized effective
length ¢ tends towards its maximum value 1/(c - zefr). As
a consequence, the denominator converges against zero, what
can be interpreted as a continuous increase of the effective
birefrigence

Ap

Abegp = ——2
Befr [P

Therefore, the trace in the Jones based representation follows
first the trace that has been determined for the case without
fiber attenuation, but finally tends more and more towards a
circle, as shown in figure 10. This implies, that the amount of
power exchanged among the two components of the Jones
vector decreases continuously and tends towards zero (see
figure 11). The period length assigned to this power exchange
also decreases with growing (, whereas it is constant if
expressed in terms of the physical propagation distance z.
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Fig. 8. Changes of the polarization state induced by self—phase modula-

tion and birefrigence without fiber attenuation. The polarization
state at the fiber input has been marked by a dot.

VI. THE EFFECT OF CROSS—PHASE MODULATION

A. Cross—phase modulation only

The propagation of two channels with arbitrary polarization
is investigated in order to study the effect of cross—phase
modulation. One channel, named first channel in the following,
is launched at power P into the fiber, whereas the input power
of the second channel is assumed to be negligible (P ~ 0). In
this way, there is no interaction between the two components
of the second channel, but they are influenced by the first

power

Neormalized position
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Fig. 9. Evolution of power in the x—axis and ellipticity versus normalized
fiber position for different polarization states at the fiber input (no
fiber attenuation, with birefrigence).
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Fig. 10. Changes of the polarization state induced by self—phase modula-
tion and birefrigence with fiber attenuation. The polarization state
at the fiber input has been marked by a dot.

channel. Thus, the polarization of the second channel is altered
by XPM only. Fiber attenuation will be neglected in this
section.

Polarization changes of the first channel induced by SPM are
visualized by the blue curve in figure 12. It is the curve with
constant ellipticity. The structure of the polarization traces for
the second channel is significantly more complex. In addition,
this curve crosses the equator, separating the Poincaré sphere
into an upper and lower hemisphere. Its shape depends on
the initial polarizations of both channels. The traces shown in

o | =
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< / NN
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\J
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Normailized position
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™ N /\ A //E I r{l ‘
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\ 1 I/ \ / !& I ‘||
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Fig. 11. Evolution of power in the x—axis and ellipticity versus normalized

fiber position for different polarization states at the fiber input
(with fiber attenuation, with birefrigence).
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1% channel
—— 2 channel

"t gpe 800

Fig. 12. Changes of the polarization state induced by cross—phase mod-

ulation without fiber attenuation and without birefrigence. The
polarization state at the fiber input has been marked by a dot.
Blue curve: channel at large input power, red curve: channel with
negligible input power.

the Stokes based representation indicate that the magnitude of
the ellipticity changes significantly faster than the direction of
the polarization ellipse. The segments in the upper part of the
diagram are very similar to the ray-like traces that we have
already seen as a result of birefrigence (see Fig. 3). However,
the significant difference is that the orientation does not change
between two values, but rather changes in small steps.

As shown in figure 13, the ellipticity is a sinusoidal function

power

gos
& . s ‘
0 20 40 60 80 100 120 140 180 180
Normalized position
1
05
o]
0.5 5
0 20 40 60 80 100 120 140 160 180
Normalized position
Fig. 13. Evolution of power in the x—axis and ellipticity versus normalized

fiber position for different polarization states at the fiber input
(without attenuation, without birefrigence). Blue curve: channel at
large input power, red curve: channel with negligible input power.
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of the normalized fiber position. It can be described by the

equation
gy = 2&04/1— &2, sin (Agps)
= Oyt Acycos (C - COZ’) (18)
<C2
The period length
3 1 P
(o= —F—— 0 (19)

1—3¢2 P

is governed solely by the ellipticity of the first channel. It can
be shown that the power of the x—component of the second
channel can be described by

1 4P
573 {Pﬂ Vi-el C2Cclsin(<1—cfm)

_’_ﬁ Cerbez o (CO2+C01C+C01+C02>

2 Cc2 + Ccl gchcQ Ccl C(:Q
A52 Cchc'Q sin (Cc2 — Ccl Cﬂ

Ac _ So2
* 2 CCQ - Ccl CClCCQ Ccl Cc2>
(20)

Pw2 -

Obviously, the power of the x—component of the second
channel versus normalized propagation distance ( can be
described by the superposition of a constant value and three
sine functions with different period lengths. The average
value of the power of each component equals one half. We
astain here from describing the constants Aey, Co, and (po
in an analytical form. However, the peak—to—peak variation
2Ae5 of the ellipticity of the second channel is illustrated in
figures 14 and 15 versus the initial state of polarization of the
first channel for two initial states of polarization of the first
channel.

First, the case of linear polarization of the first channel at
the input of the fiber is considered. According to figure 14,
the XPM induced change of the ellipticity is minimum if
the principal axis of the initial states of polarization of both
channels are either oriented in identical directions or it they
are orthogonal, whereas maximum variation occurs if the angle
between both transverse axes equals 45° + N x 90° with NV
being an entire number. The variation vanishes completely if
the direction of the polarization of both channels is identical.
In addition, the magnitude of the variation is independent of
sign of the ellipticity.

A different behavior is observed if the first channel is ellip-
tically polarized at the input of the fiber. Again, maximum
variation is observed in case the angle between both principal
axis equals 45° + N x 90°. Minimum variation also takes
now place if the sign of the initial ellipticity is identical for
both channels and the principal axes have the same direction
or if the principal axis are orthogonal for different signs of
the initial ellipticities. But the values of the two other local
minimum are now significantly larger.
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Color coded plot showing the peak—to—peak variation of the
ellipticity 2Ae2 versus the initial state of polarization of the
second channel induced by XPM only. The first channel is linearly
polarized at the input of the fiber. The angle with the x—axis equals
30°.

B. Combined with self-phase modulation

So far, the effect of cross—phase modulation without in-
teraction with other effects has been studied. In order to
investigate the interplay of self—phase modulation and cross—
phase modulation, we will now assume that both interacting
channels are launched at identical power into the fiber. The
states of polarization of the first channel are found on the blue
curves in Fig. 16, whereas the red line represents the trace of
the polarization states of the second channel.

Not surprisingly, the shape of the traces is very similar for
both channels. This statement is also valid with respect to
the evolution of power and ellipticity versus fiber axes, as
illustrated in Fig. 17. Both curves are periodic and the sum of
the ellipticities of the curves is constant. This is in agreement
with equation (12).

As before, the total variation of the ellipticity of the second
channel has been determined for linear polarization of the first
channel at the fiber input. As shown in Fig. 18, there are again
four local minima in the Stokes based representation.

Corresponding results for elliptical polarization of the first
channel at the fiber input are represented in Fig. 19. The most

Color coded plot showing the peak—to—peak variation of the
ellipticity 2Ae2 versus the initial state of polarization of the
second channel. The first channel is elliptically polarized at the
input of the fiber.

remarkable aspect of this representation is that the patterns in
the two hemisphere are no longer identical. In contrast to the
former cases, minimum variation only occurs if the electrical
field vector of the second channel is rotating clockwise, as
the electrical field vector of the first channel does. In contrast,
maximum variation can only be achieved for contrarian senses
of the rotation.

VII. INTERPLAY OF CROSS—PHASE MODULATION AND
BIREFRIGENCE

Evolution of the state of polarization for the combined effect
of XPM and birefrigence without fiber attenuation is shown
in Fig. 20. The structure of the trace for the second channel
is rather complex. However, there are still several segments
where the magnitude of the ellipticity changes very rapidly,
whereas the orientation of the polarization ellipse is rather
constant. Power and ellipticity are shown in Fig. 21 versus
normalized propagation distance for both channels. The two
figures are periodic functions. For comparison purposes, the
trace propagation in the presence of fiber attenuation is shown
in Fig. 22.

Adding now the effect of SPM but neglecting again fiber
attenuation, we get the plot shown in Fig. 23 for the magnitude
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Changes of the polarization state induced by cross—phase modu-
lation without fiber attenuation and birefrigence. The polarization
state at the fiber input has been marked by a dot. Both channels
are launched at equal input power into the fiber.

of the changes of the ellipticity for elliptical polarization of
the first channel at the fiber input. As compared with the
illustration for the case without birefrigence in Fig. 19, the
patterns are quite similar. However, deeply red areas cover a
larger part of the total area in the Stokes based representation.
In addition, there is now also an area with large magnitude of
the variation of the ellipticity for identical sense of rotation.

power
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Fig. 17. Evolution of power in the x—axis and ellipticity versus normalized
fiber position for different polarization states at the fiber input
(without attenuation, without birefrigence). Both channels are
launched at equal input power into the fiber.
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Fig. 18.

Color coded plot showing the peak—to—peak variation of the
ellipticity 2Ae2 versus the initial state of polarization of the
second channel induced by the interplay of SPM and XPM. The
first channel is linearly polarized at the input of the fiber in
direction of the x—axis.

VIII. CONCLUSION

The effect of self-phase modulation (SPM), cross—phase mod-
ulation (XPM) and birefrigence on the state of polarization has
been investigated for continuous wave (cw) configurations.

Starting from the nonlinear Schrodinger equation, it has been
shown that self-phase (SPM) modulation and cross—phase
modulation (SPM) do not induce a power transfer among
the channels of a wavelength division multiplexing (WDM)
system. However, power is exchanged among the components
of the Jones vector of the individual channels. Without at-
tenuation, this power exchange is a periodic function of the
propagation distance. Furthermore, the analysis revealed that
the sum of the ellipticities weighted by the corresponding fiber
input power is preserved during propagation as long as the
wavelength dependence of fiber attenuation can be neglected
and there is no birefrigence.

First, the effect of self—phase modulation without interaction
of birefrigence has been investigated. It has been shown that
the ellipticity of the channel under consideration is maintained
during propagation even under the influence of SPM. In
addition, the power of the different components of the Jones
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Fig. 19. Color coded plot showing the peak—to—peak variation of the

ellipticity 2Ae2 versus the initial state of polarization of the
second channel induced by the interplay of SPM and XPM. The
first channel is elliptically polarized at the input of the fiber.

vector change sinusoidally as a function of a normalized
propagation distance. Closed—form expressions describing the
dependence of the magnitude of the power variation and the
period length on initial conditions at the fiber input have been
derived. The results indicate that the state of polarization is not
affected by SPM for the special cases of linear and circular
polarization at the fiber input. When averaging over complete
periods, the average power is identical for both components
of the Jones vector.

Conservation of the ellipticity is canceled out by the interac-
tion with birefrigence. Neglecting fiber attenuation, a different
quantity has been identified that is conserved during propaga-
tion. Ellipticity as well as the power of the two components
of the Jones vector change periodically versus propagation
distance, but no longer sinusoidally. Furthermore, it has been
shown that there is a separatrix that cannot be crossed by
the traces embracing the states of polarization adopted during
propagation. Thus, the Poincaré sphere is split into up to three
segments. With fiber attenuation, the separatrix does no longer
represent a fix borderline and the magnitude of the power
exchange decreases continuously with propagation.

To determine the effect of cross—phase modulation (XPM)
without interference of other effects, a configuration with a
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Fig. 20. Changes of the polarization state induced by cross—phase modu-
lation without fiber attenuation, but with birefrigence. The polar-
ization state at the fiber input has been marked by a dot.

first channel launched at high power into the fiber and a
second channel with small input power has been analyzed.
The ellipticity of the low—power channel shows a sinusoidal
dependence on the normalized propagation distance with a
period length depending on the ellipticity of the first channel
only. Power variation of both components of the Jones vector
of the second channel can be mathematically described by
a superposition of three sine waves. For elliptical and linear
polarizations at the fiber input, maximum variation of the
ellipticity is observed if the angle between the principal axis of
the polarization ellipses of both channels equals approximately

05
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I T
0 10 20 30 40 50 60 70 80
Normalized position

Etiipticity

"o 10 20 30 40 50 60 70 80
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Fig. 21. Evolution of power in the x—axis and ellipticity versus normalized

fiber position for different polarization states at the fiber input.
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Fig. 22. Changes of the polarization state induced by cross—phase modula-
tion with fiber attenuation and birefrigence. The polarization state
at the fiber input has been marked by a dot.

45° 4+ N x 90° with N being an entire number.

Launching both channels at identical powers into the fiber
gives rise to interaction of SPM and XPM. In case of linear
polarization of the first channel at the fiber input, maximum
variation of the ellipticity is observed if the angle between
the principal axis of the polarization ellipses of both channels
equals approximately 45° + N x 90°. However, in case of
elliptical polarization of the first channel at the fiber input, it
has been shown that — at least in some cases — maximum
variation of the ellipticity can now only be achieved if the
rotation senses of both channels are contrarian. If small bire-
frigence is added, the fundamental behavior does not change,
but the relative portion of initial polarization states leading to
large variation of the ellipticity increases.

IX. APPENDIX

Birefrigence leads to a wave—vector mismatch. In the
frequently used representation of the coupled nonlinear
Schrodinger equations [31], the effect of phase mismatch on
the nonlinear interaction is taken into account by a factor
e1288:2 multiplied with the product of three slowly varying
amplitudes. This factor does not appear in equation (15). How-
ever, we will show in this section that the two representations
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Fig. 23.

Color coded plot showing the peak—to—peak variation of the
ellipticity 2Ae2 versus the initial state of polarization of the
second channel induced by the interplay of SPM and XPM in
the presence of birefrigence (AB - zep = 0.15). The first channel
is elliptically polarized at the input of the fiber.

are equivalent.

To simplify representation, the case of self—-phase modulation
only will be considered. In this case, equation (15) takes the
form

aum A/B e “* | |2 + 2 | |2
—)— U, = - Uy ||Usz = |u
92 772 J Zoff 3
1
+§u2u§
ou A/B e “* 2 2 2
87,: "‘JTuy = —J o Uy [|Uy| + 3 |z
1 * 2
+§uzuy 21

The normalized complex amplitudes u; and u, stem from the
representation

Em(’ﬁ Z) = %{Eéo)\:[lz(x,y)ui(T? Z) :

exp <—%z> exp (QT — ]B(O)z)}
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E,(1,2) = %{E?SO)\IIy(%y)uy(T,Z)-

exp (—%z) exp (QT — jB(O)z) }(22)

for the two components of the electrical field, where R stands
for the real part of the argument in brackets. The constant
E©) accounts for the initial electrical field at the fiber input,
Q stands for the angular frequency, and the modal field
distribution is represented by W. The important difference to
the usually employed mathematical description is that there is
a common mode—propagation constant

0 0
30 = M

2
used for both waves. It is defined as the average of the
: (0) (0)
propagation constants 3, and 3y’ for the two components.
In this way, the differences with respect to the propagation
constant affect directly the complex amplitudes u, and u,.

(23)

However, it is also possible to define the complex amplitudes
for the different waves with respect to their respective mode—
propagation constants. This approach is very suitable if the
evolution of lightwaves is considered separately. However, the
determination of the state of polarization is more difficult. The
electrical field components are now given by

Birs) = ROV @)U
exp (—%z) exp (QT — jﬁfco)z)}
E,(r,z) = %{E;O)Wy(x,y)(]y(ﬂ z) -

exp (—%z) exp (QT — jﬁl(jo)z) }(24)

with the normalized complex amplitudes U, and U,, which
are again related by the equations

Uy = U, - e 757 (25)
%

uy =U,-e?2~ (26)

to the normalized amplitudes used before. As before, the
parameter

AB =B - B

denotes the difference of the propgation constants. Substituting
u, and u, in equation (21) by making use of these relations
gives

8Ux e~ % 2 2 2
S U, ||U12+ 21U,
e LA Ao

+1U*U2 6]2A[hz

3 T Y N—~—

PM 4

3Uy e~ ? 2 2 2
Tyt U, + 2 |U,
e e IR
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1 .
+§U;Uy2 LeTI2ABz L (27)

PMp

where the efect of the phase mismatch due to birefrigence is
introduced by the terms PM 4 and PMp in the well-known
way used in [31].
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