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Abstract

Box model simulations of an uplifting and adiabatically cooling cloud of aerosol have
been performed in order to study the transition between cirrus formation dominated by
homogeneous nucleation of ice to that dominated by heterogeneous nucleation. The
aerosol was assumed to consist of an internal mixture of sulfuric acid solution droplets5

with inclusions of soot. The simulations show that the transition from heterogeneous
to homogeneous nucleation occurs over a narrow range of soot concentration. Thus
it seems to be possible to fix critical concentrations of heterogeneous ice nuclei which
must be exceeded if heterogeneous freezing dominates cirrus formation. A formula
has been derived that allows to compute the critical concentrations of heterogeneous10

ice nuclei as a function of temperature, updraft speed, ambient pressure, and super-
saturation at which heterogeneous freezing occurs. Generally, homogeneous nucle-
ation dominates in regions with updrafts stronger than 20 cm s−1, with the exception of
heavily polluted areas which could be common in the northern hemisphere due to air
traffic, where updrafts of the order 1 m s−1 may be necessary to render heterogeneous15

nucleation unimportant. According to the present results it cannot be excluded that
heterogeneous nucleation plays a more important role for cirrus formation in the north-
ern midlatitudes than anywhere else. A possible consequence of these results is that
air pollution may lead to a higher coverage of cirrus clouds, but then these clouds will
be optically thinner than clouds formed by homogeneous freezing, with the exception20

of regions where condensation trails are frequent.

1. Introduction

Cirrus clouds in the cold upper troposphere (T . −40◦C) are generally thought to
form mainly by homogeneous freezing of aqueous solution droplets (e.g. Sassen and
Dodd, 1988; Heymsfield and Sabin, 1989; Heymsfield and Miloshevich, 1993). When25

there is enough background aerosol present, homogeneous nucleation is a thermo-
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dynamically controlled process, that is, it takes place when a critical supersaturation
(dependent on temperature) is reached in an airmass. It has been shown in the lab-
oratory by Koop et al. (2000) that the critical supersaturation is independent of the
chemical nature of the aerosol. Gierens et al. (2000), comparing and correlating data
of ice–supersaturation from MOZAIC, Measurement of Ozone from Airbus–in–Service5

Aircraft (Marenco et al., 1998), of subvisible cirrus from SAGE II, Stratospheric Aerosol
and Gas Experiment II (Wang et al., 1996), and of thermodynamic conditions for cirrus
formation from re–analysis data of the European Centre for Medium Range Weather
Forecast (Sausen et al., 1998), could show that cirrus formation seems to be ther-
modynamically controlled in the tropics and in the southern midlatitudes upper tropo-10

sphere, but not in the same way in the northern midlatitudes, where the thermodynamic
control is much weaker. This result can suggest that the composition of the freezing
aerosol has a more important effect in the polluted northern hemisphere compared
to the cleaner regions of the world. Since homogeneous nucleation seems not to
depend on the aerosol composition one may conclude that then heterogeneous pro-15

cesses must play a bigger role for cirrus formation in the northern midlatitudes. Such
heterogeneous effects could be brought about inter alia by aircraft soot emissions. In-
deed, Ström and Ohlsson (1998) found that cirrus ice crystals in a region of heavy air
traffic (southern Germany) often contain some kind of “absorbing material” (probably
soot), and moreover such inclusions were most frequent in those altitudes where the20

air routes are concentrated (8–12 km).
The notion “heterogeneous nucleation” is a collective term for various physical mech-

anisms that may occur in the atmosphere (see Vali, 1985, for a definition of the termi-
nology). Deposition nucleation requires the presence of dry solid particles, whose
existence in the upper troposphere has not been shown so far (DeMott et al., 1997).25

Contact freezing, requiring the presence of an external mixture of solid and liquid par-
ticles, is probably unimportant for cirrus clouds because it seems to be suppressed in
updrafts and the collection rates are very small for typical aerosol particle sizes in the
upper troposphere (Young, 1993, cha. 4.5.3). The two remaining mechanisms, con-

2345

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/2/2343/acpd-2-2343_p.pdf
http://www.atmos-chem-phys.org/acpd/2/2343/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
2, 2343–2371, 2002

Heterogeneous vs.
homogeneous

freezing

K. Gierens

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2002

densation and immersion freezing require an internal mixture of aerosol, that is, solid
particles immersed in a liquid coating.

Although pure graphitic soot is hydrophobous, soot particles from other sources, in
particular from combustion, may act as heterogeneous ice nuclei, probably because of
various contaminations on their surface. This has first been shown by DeMott (1990)5

in the laboratory for temperatures between −25◦C and −40◦C. More recent laboratory
experiments of DeMott et al. (1999) explored a lower temperature regime that is more
representative for the upper troposphere. It could be shown that below −53◦C soot
particles with a substantial amount of sulfuric acid solution on their surface (several
monolayers) induce ice formation at supersaturations below the critical supersatura-10

tions necessary for homogeneous nucleation. Such an aerosol may be generated by
aviation since jet engines emit about 1015 soot particles and about 1015 to 4 × 1017

volatile aerosol particles larger than about 5 nm in diameter per kg kerosene burnt,
in particular sulfuric acid solution droplets (Fahey and Schumann, 1999; Schumann,
2002, and references therein). It is thus conceivable that aircraft emissions can lead to15

soot particles that are immersed in a coating of sulfuric acid solution. However, it must
be said that an understanding of the very physical process that induces the freezing
at or around the soot particles is still lacking. For instance, soot from various sources
(combustion soot, Degussa soot, sparc generator soot, etc.) behave differently in freez-
ing experiments, yet the exact reasons for these differences are unknown. One must20

also admit that it is not possible or justified at the current state of knowledge to define
a critical supersaturation at which heterogeneous freezing of soot would commence.

Thus, heterogeneous nucleation is still a closed book in many respects, but it may
have important effects on cirrus clouds. Jensen and Toon (1997) performed numerical
simulations of cirrus formation in slow updrafts and showed that the presence of soot25

can not only enlarge the fractional cover of cirrus clouds, but it can also alter the prop-
erties of the cirrus rather dramatically compared to a case when only sulfate aerosol
was assumed to be present. Kristensson et al. (2000) measured reductions of effec-
tive crystal diameters by 10–30% in cirrus perturbed by aviation (as indicated by the
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“absorbing material” in the crystals, see Ström and Ohlsson, 1998).
Although experimental evidence is lacking that aviation and other anthropogenic

aerosol indeed affects cirrus formation and cirrus cloud cover, the weak thermody-
namic control of cirrus formation in the northern midlatitudes gives reason to study
such potential effects both experimentally and by modelling. Since heterogeneous and5

homogeneous freezing can act simultaneously in the atmosphere it is useful to derive
criteria which tell one which of the two freezing modes is dominant in a given situation.
This will of course depend on the concentration of heterogeneous ice nuclei, that is on
the number of aerosol particles that heterogeneously induce ice crystal formation at a
supersaturation below the critical supersaturation for homogeneous nucleation. I will10

show that it is possible to determine a critical concentration of such ice nuclei, below of
which homogeneous nucleation dominates, while heterogeneous nucleation takes over
the dominant role at higher ice nucleus concentrations. The study has been perfomed
by means of simple box model simulations where sulfuric acid solution droplets with in-
clusions of soot served as heterogeneous ice nuclei. Additionally, I will derive a simple15

analytical formula for the calculation of the critical concentration of heterogeneous ice
nuclei as a function of supersaturation necessary for heterogeneous freezing, temper-
ature, updraft speed, and pressure. This formula can be used in large scale models for
the control of a switch between the two nucleation modes.

2. The box model20

A simple box model with bulk microphysics was employed for this study which simulates
the evolution of an aerosol cloud in uplifting and cooling air. Prognostic variables are
aerosol and ice crystal number densities, ice mass and vapour mass concentration,
and temperature. The updraft yields an adiabatic cooling of 9.77 × 10−5 K s−1 per
1 cm s−1 of updraft velocity. The aerosol is an internal mixture of aqueous solution25

droplets of sulfuric acid with or without insoluble inclusions of soot. A log–normal
size distribution is assumed for the “dry” aerosol (that is, the pure sulfuric acid) with a
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geometrical mode radius of 10 nm and geometrical standard deviation σa of 1.48. The
fraction of aerosol droplets bearing an inclusion, SNF (i.e. soot number fraction), the
soot mass fraction (relative to the mass of the sulfuric acid in the droplet) of a soot
including aerosol particle, SMF, and the number concentration of aerosol particles, Na,
are free parameters. The soot mass fraction can be translated into a soot surface,5

assuming a specific soot surface (i.e. surface per unit mass) of Ωm = 7.5×105 cm2 g−1

(Kärcher et al., 1996). Assuming a direct proportionality between mass (i.e. volume)
and surface of aircraft (kerosene) soot is an expression for the fractal nature of this kind
of soot.

With the given parameters, SNF, SMF, and Na, and assuming the log–normal size10

distribution of the “dry” aerosol, the soot concentration (i.e. mass of soot per unit
volume of air) is given by

Csoot = Na · SNF · SMF · (4π/3)ρaM3, (1)

where ρa is the density of pure sulfuric acid, and

M3 = r3
a exp[(9/2)(lnσa)2] (2)15

is the third moment of the aerosol size distribution. Alternatively, the soot concentration
can be translated into the total soot surface density ΩV (soot surface per unit volume
of air), i.e.

ΩV = Ωm Csoot. (3)

The density of sulfuric acid depends slightly on temperature, it varies from ρa =20

2.09 g cm−3 at −35◦C to 2.22 g cm−3 at −70◦C. All other quantities in the formulae for
Csoot and ΩV are independent of temperature.

As stated above, it is unknown how the ice formation process on the surfaces of
soot particles works. Therefore, I make the same working hypothesis as DeMott et al.
(1997), who extrapolated the laboratory results for temperatures higher than −40◦C to25

lower temperatures and replaced the temperature of pure water droplets by an effec-
tive freezing temperature Teff of aqueous solution droplets. Although I do not know

2348

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/2/2343/acpd-2-2343_p.pdf
http://www.atmos-chem-phys.org/acpd/2/2343/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
2, 2343–2371, 2002

Heterogeneous vs.
homogeneous

freezing

K. Gierens

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2002

whether the soot in the atmosphere actually behaves as this working hypothesis as-
sumes, I think that such a procedure is justified as long as the study aims at how the
transition between homogeneous and heterogeneous looks like. It is not the aim of
these simulations to determine the exact critical soot concentration where the transi-
tion takes place. Such a determination must await better knowledge of the physical5

processes that occur on the soot surface.
The parameterisation of DeMott et al. (1997) uses a number of active sites for for-

mation of an ice embryo per unit surface of soot. This is a very strong function of the
effective freezing temperature, namely:

surface number density of active sites = A(−Teff)B, (4)10

with A = 1.04 × 10−4 cm−2 and B = 7.767.
While cooling, the aerosol may freeze heterogeneously due to their soot inclusions or

homogeneously. Aerosol droplets without inclusions can only freeze by homogeneous
nucleation while those with inclusions can freeze via both mechanisms (which means
that the sulfuric acid solution in such a droplet can ignore the presence of the inclu-15

sion). For the droplets with inclusions the model chooses the freezing pathway with
the higher nucleation rate in each timestep. Homogeneous freezing is parameterised
in the box model following Koop et al. (2000). The integration over the size distribu-
tion is performed via a numerical Gauß–Hermite integration as described by Gierens
and Ström (1998). This gives for each timestep the fraction of aerosol particles that20

freeze. The freshly formed ice crystals begin to grow by vapour deposition, thereby
reducing the supersaturation. The depositional crystal growth is parameterised as in
Koenig (1971), i.e., dm/dt = amb, with crystal mass m, and temperature dependent
parameters a, b, which are listed for temperatures below −40◦C by Gierens (1996).

All simulations run from an initial temperature T = −53◦C or lower. This temperature25

was a threshold in laboratory experiments of DeMott et al. (1999), below which soot
particles enclosed in thick coatings of sulfuric acid solution got effective as heteroge-
neous ice nuclei at supersaturation below that necessary for homogeneous nucleation.
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The initial relative humidity was 70% with respect to liquid water (RH), or 116% with
respect to ice (RHi ) at T = −53◦C and 50% (RHi = 96%) at T = −73◦C.

3. Results and discussion

Figure 1 shows a typical outcome of a boxmodel simulation with the internally mixed
aerosol. The temperature–axis can be read as a reversed time–axis, with time pro-5

gressing to the left. Displayed is the number concentration of ice crystals that form in
the cooling aerosol cloud. The curves of Fig. 1 are computed for an updraft velocity of
10 cm s−1, a number concentration of aerosol particles of 3×108 m−3, and a soot mass
fraction SMF = 0.1. The soot number fraction (SNF) is used as a curve parameter.
The curve with SNF = 0.1 shows the form typical for heterogeneous nucleation only.10

Nucleation starts at about −54.5◦C and proceeds on down to about −55.5◦C where the
growth of the ice crystals has consumed enough water vapour to quench the nucle-
ation. Simulations with higher SNF generally yield a similar behaviour (not shown), al-
though they result in higher final ice crystal concentrations. The curve with SNF = 0.03
already shows strong signs of homogeneous nucleation at T < −55.5◦C where the15

crystal number density suddenly jumps up by a factor of approximately seven. Het-
erogeneous nucleation produces some ice crystals between −54.5◦C and −55.5◦C,
but their number is too low for consuming the supersaturation; hence homogeneous
nucleation takes over crystal production at −55.5◦C. The next curve with SNF = 0.01
(ΩV = 4.1 × 10−9 cm2 L−1) is similar to the previous one but shows the character-20

istics of homogeneous nucleation even more. The fourth curve with SNF = 0.003
(ΩV = 1.2 × 10−9 cm2 L−1) shows homogeneous nucleation almost exclusively on this
plot with linear Ni–axis, in particular the sudden and steep increase on Ni with decreas-
ing temperature. Further decrease of SNF yields nearly congruent curves as the one
for the latter SNF–value shown here. It is noteworthy that the transition between the25

first sign of homogeneous nucleation and full homogeneous nucleation occurs within
about one order of magnitude of SNF–values, viz. between about 0.03 and 0.003 for
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the present case. This implies also that the transition between freezing dominated by
heterogeneous nucleation and freezing dominated by homogeneous nucleation spans
an order of magnitude of the total soot concentration. For the parameterisation of
DeMott et al. (1997) that we use here, the critical concentration for the simulations of
Fig. 1 is about 0.01 ng m−3 (please recall that this number makes only sense within the5

framework of our working hypothesis, namely that the results of DeMott (1990) can be
extrapolated to lower temperatures).

Additional series of simulations were performed with the same initial conditions as
so far, but with changed values of SMF (increased to 0.5) and Na (decreased by an
order of magnitude to 3 × 107 m−3). These simulations resulted in qualitatively similar10

curves Ni vs. T (i.e. vs. time), and the transition between heterogeneous and homo-
geneous nucleation occurred at the same characteristic soot concentration as before
(not shown). Variation of the geometric mean radius from 10 nm to 100 nm, and a vari-
ation of the geometric standard deviation from 1.2 to 2.0 yields similar results, i.e. the
transition between the two freezing modes takes place over an order of magnitude in15

soot concentration that can be fixed at a certain critical value, and the latter does not
depend noticably on the size distribution of the aerosol.

The simulations up to now were all performed with the same initial temperature,
such that the number density of active sites for nucleation in the parametrisation of
DeMott et al. (1997) was the same for the same soot concentration. The potential role20

of the number of active sites for the transition between the two nucleation modes could
therefore not become effective. Figure 2 shows a set of simulations performed with
initial temperature of −73◦C and initial relative humidity of 50%. Soot mass fractions
and aerosol number density are the same as in Fig. 1, but the soot number fractions
are higher by about a factor of three. First one may note, that at this low temperature25

much more crystals are formed than in the warmer case of Fig. 1. The reason for this
is the decreasing growth rate of single crystals with decreasing temperature. Thus
the consumption of supersaturation proceeds slowly and the nucleation processes can
act longer, producing more crystals than in the warmer case. This effect has been
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observed earlier in simulations by Jensen and Toon (1994). Second, one observes
that already the curve for SNF = 0.3 bears signs of homogeneous nucleation, such
that in this case the critical soot concentration is one order of magnitude larger (i.e. ≈
0.1 ng m−3) than in the simulations shown above. It turns out, however, that it is not the
temperature dependence of Teff, hence of the number of active sites, that is responsible5

for the increase of the critical soot concentration. For the boxmodel runs of Fig. 2 the
effective temperature varies approximately between −13 and −52◦C. I have fixed for
a certain choice of parameters (SNF=1, others as in Fig. 2) the effective temperature
to values ranging from −10◦C to −60◦C, yet the number if ice crystals that formed was
hardly affected by this manipulation. (I have found like insensitivity of Ni to a reasonable10

range of Teff at the higher temperatures of Fig. 1). This suggests that the number of
active sites on the soot surface is not a critical factor for the heterogeneous nucleation
in the temperature regime considered here. Anticipating the results of the following
section, one can attribute the increase of the critical soot concentration with decreasing
temperature to (a) the decrease of the diffusion coeffient for water molecules in air, (b)15

the decrease of the saturation vapour pressure with decreasing temperature.
Finally, the updraft velocity is an important parameter that has to be considered.

Previous simulations that took both nucleation modes into account (e.g. DeMott et al.,
1997; Spice et al., 1999; Sassen and Benson, 2000) agree concluding that hetero-
geneous nucleation becomes relatively unimportant for updrafts exceeding a few20

10 cm s−1. This expectation is essentially confirmed by the results of the present model.
Simulations were performed with SMF = 0.1, SNF = 0.1, Na = 3 × 108 m−3, and with
initial temperature of −53◦C. The run with 10 cm s−1 updraft was shown in Fig. 1 as a
case that is dominated by heterogeneous nucleation. Additional runs with updrafts of
20, 40, and 80 cm s−1 show increasing signs of homogeneous nucleation, as demon-25

strated in Fig. 3. Since the soot concentration is the same in all these simulations, this
parameter cannot decide here whether or not homogeneous nucleation is suppressed.
The crucial quantity is the temporal evolution of ice–supersaturation. This is shown
in Fig. 4, where also the critical relative humidity for homogeneous nucleation, RHi ,c,
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(Koop et al., 2000; Kärcher and Lohmann, 2002) is plotted versus temperature. The
figure shows that in the only case that is dominated by heterogeneous nucleation, the
supersaturation does not reach as high values than in the other cases. Although RHi ,c

is surpassed, the homogeneous nucleation rate for w = 10 cm s−1 remains low. The su-
persaturation in the other cases reaches higher values in spite of the fact that the num-5

ber of crystals formed by heterogeneous nucleation at the moment when RHi = RHi ,c
increases with updraft speed. Obviously the consumption of water vapour by growing
ice crystals cannot halt the increase of supersaturation by cooling of the air in an up-
draft of w & 20 cm s−1, at least for the case considered here. The same result applies
when other combinations of SNF and SMF are tried, such that the soot concentration10

remains the same. A corresponding set of simulations with initial temperature of −73◦C
and with SNF = 0.3 (not shown) also leads to the same result, namely that homoge-
neous nucleation is dominant for w & 20 cm s−1. However, homogeneous nucleation
can be suppressed even in strong updrafts when very high soot contamination of the
aerosol is assumed. For example, a test simulation with SNF = 1 at −53◦C initial tem-15

perature (other parameters unchanged) showed no homogeneous nucleation up to at
least w = 40 cm s−1, and in another one where additionally SMF was increased to 0.5,
heterogeneous nucleation dominated still at w = 80 cm s−1, and it was necessary to
increase w to 1.5 m s−1in order to get a substantial contribution by homogeneous nu-
cleation to ice formation. Such heavily polluted cases can principally occur nowadays20

in the upper troposphere of the northern midlatitudes as a result of aviation emissions
(Rahmes et al., 1998).

4. Analytical approach

The latter observation of the previous section, namely that the time evolution of relative
humidity (or supersaturation) is the crucial point to determine whether homogeneous25

nucleation will dominate cirrus formation in an uplifting airmass that contains a number
of heterogeneous ice nuclei (nuclei that undergo heterogeneous freezing at a super-
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saturation below the critical one for homogeneous freezing), allows to derive a simple
estimate of the critical concentration of heterogeneous ice nuclei, which would suffice
to suppress homogeneous nucleation. This can be done by considering the temporal
evolution of the supersaturation after a number of ice crystals have formed hetero-
geneously at a supersaturation s0. Of course, s0 is assumed to be smaller than the5

critical supersaturation for homogeneous freezing. For the sake of simplicity I assume
that there is only one kind of heterogeneous ice nuclei present, all of which freeze at
s0.

Let us assume that the heterogeneous ice nuclei freeze at initial supersaturation
s0. Then the supersaturation changes with time due to crystal growth (deposition)10

and due to further cooling by updraft (and possibly other diabatic processes changing
temperature, hence changing the saturation vapour pressure e∗). Thus we have

ds
dt

=
d
dt

(
e − e∗

e∗

)
=

1
e∗

de
dt

− (1 + s)
d lne∗

dt
= −

c(t)
e∗ − (1 + s)

L
RvT 2

dT
dt

, (5)

where L is latent heat of sublimation, Rv is the gas constant of water vapour. c(t) is the
time dependent deposition rate, for which the following ansatz is possible:15

c(t) = (e − e∗)/τ̃g(t), (6)

with a time dependent growth time scale τ̃g(t). The growth of ice crystals begins very
slowly, when the ice crystals are initially still very small. Only later the nominal growth
time scale

τg = [(4π/3)ND rmax]−1, (7)20

with diffusion coefficient D, number concentration of ice crystals N, and final ice crystal
radius rmax (Kärcher and Lohmann, 2002) will be reached. Thus I parameterise τ̃g(t)
as

τ̃g(t) = τg/[1 − exp(−bt/τg)], (8)
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where b is a small number of the order 1, that depends on temperature. For the
following calculations I simply set b = 1. With this parameterisation the condensation
rate is very small initially when the ice crystals begin to grow, thereafter c(t) increases
and reaches a maximum value, and it decreases again when the ice crystals approach
their final size (i.e. when the supersaturation is consumed). The cooling by updraft can5

be formulated as

dT/dt = Γw with Γ = −g/cp, (9)

with gravitational acceleration g and specific heat of dry air cp. Introducing an updraft
timescale

τu = (RvcpT
2)/(Lgw) (10)10

allows to write the differential Eq. (5) in the following form:

ds
dt

=
1 + s
τu

− s
τ̃g(t)

. (11)

Introducing the abbreviation a(t) = τ−1
u − τ̃g(t)−1, the formal solution of the differential

equation is

s(t) = e
∫
a(t′)dt′

∫
τ−1
u e−

∫
a(t′′)dt′′dt′ + s0 e

∫
a(t′)dt′, (12)

15

where the integrals under the exponentials are∫
a(t′)dt′ =

t
τu

− t
τg

+
1 − e−bt/τg

b
. (13)

For t = 0 we have s(0) = s0 and for t → ∞, s(t) approaches asymptotically the limiting
value s∞ = τg/(τu−τg), provided τg/τu < 1. Of course, the solution explodes to infinity,
that is, homogeneous nucleation will occur for sure if τg/τu ≥ 1.20
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Figure 5 shows some typical curves s(t) for an updraft time scale of 2 h (typical for
10 cm/s uplift), an initial supersaturation s0 = 0.3 and various values of the growth time
scale τg. The most important feature to look at is the initial hump in the curves with a
moderately small growth time scale. In such situations homogeneous nucleation be-
comes dominant when the maximum smax is higher than the critical supersaturation5

for homogeneous nucleation. Therefore, in order to determine this maximum for vari-
ous combinations of {τu, τg, s0}, I have performed further numerical integrations of the
differential Eq. (11).

First, one can note that it is useful to introduce the ratio θ of the two timescales, i.e.
θ = τg/τu. Obviously it suffices to study the range θ ∈ [0, 1). Figure 6a shows that10

the maximum supersaturation smax does depend on the growth time scale only via the
ratio θ, and that smax will normally be high enough to allow homogeneous nucleation
already for the quite moderate value θ = 0.4. The calculations have been performed
for τu = 2 h and s0 = 0.3. Figure 6b shows that the difference between the maximum
and initial supersaturation depends slightly on the initial value. For parameterisation15

purposes for large scale models I would neglect this dependence. Figure 7 shows by
means of a log–log plot that smax−s0 is a power function of θ; indeed, smax−s0 = f θ2

is a very good approximation for the curves. The prefactor f depends on both s0
and b in Eq. (8), hence on temperature. For the following, it should be considered a
tunable parameter, and I found the best match between boxmodel calculations and the20

analytical approximation by setting

f (T ) = 104−0.02 T . (14)

The exponent of θ does not depend on s0 and neither on b.
Thus, one can set up the following criterion: If the supersaturation can increase to

the threshold value for homogeneous nucleation, shom, the latter will dominate in cirrus25

formation, that is, much more ice crystals will be produced by homogeneous than by
heterogeneous nucleation. Whether smax will reach such a high value depends on the
supersaturation necessary for heterogeneous nucleation, s0, on temperature (since

2356

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/2/2343/acpd-2-2343_p.pdf
http://www.atmos-chem-phys.org/acpd/2/2343/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
2, 2343–2371, 2002

Heterogeneous vs.
homogeneous

freezing

K. Gierens

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2002

shom depends linearly on T ), and on the ratio of the relevant time scales, τg/τu. For

checking the criterion one computes smax ≈ f (T ) (τg/τu)2 + s0.
Finally, I derive a formula for the limiting case where smax = shom(T ). First, I define

the threshold supersaturation for homogeneous nucleation as that value where one
ice crystal per cubic metre will be formed in an uplifting airmass. From the boxmodel5

calculations I find

shom(T ) = 2.193 − 7.47 × 10−3 T, (15)

where T is in K. Next we need an expression for the growth time scale (see above).
The coefficient of diffusion of vapour in air, D, can be parameterised as:

D = 2.11 × 10−5
(
T
T0

)1.94 (p0

p

)
, (16)

10

with D in m2/s (Pruppacher and Klett, 1978). Here, T0 = 273.15 K, p0 = 101325 Pa,
and p is air pressure.

Assuming that all N growing ice crystals have equal size and are spherical, they can
reach a maximum radius of

rmax =
(

3 s0 e
∗(T )

4πNRvTρi

)1/3

, (17)
15

with the bulk density of ice ρi = 900 kg/m3. If constant numbers are collected, the
growth time scale can then be written in the following form:

τ−1
g = 1.40 × 10−6 T 1.61 p−1 [s0 e

∗(T )]1/3N2/3. (18)

(All quantities in SI units). In a similar way it is possible to write an expression for the
updraft time scale:20

τ−1
u = 59.9w T−2. (19)
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Now, the condition that homogeneous nucleation does not get effective is

f (T ) (τg/τu)2 + s0 < 2.193 − 7.47 × 10−3 T. (20)

Inserting the expressions for the time scales, and solving for the ice crystal number
density, N, yields a critical number density Nc, when an equal sign is set in Eq. (20).
This is:5

Nc =
2.81 × 1011 f (T )3/4 w3/2 p3/2

T 5.415 [s0 e∗(T )]1/2 (shom(T ) − s0)3/4
. (21)

(Again, everything in SI units, i.e. m−3, m/s, K, and Pa). The critical number density
Nc marks the transition region between homogeneous and heterogeneous cirrus for-
mation. It should be understood as a rough estimate. This means that ice production
will be dominated by heterogeneous processes if the concentration of heterogeneous10

ice nuclei exceeds Nc; in turn, it will be dominated by homogeneous nucleation if N is
smaller than the critical value Nc by about half an order of magnitude or even smaller.

As Eq. (21) shows, the sensitivity of the critical concentration of heterogeneous ice
nuclei, Nc, to changes of temperature and updraft speed are much more important than
those to changes of either s0 or p (although p has also the power 3/2; but the relative15

variation of p in the upper troposphere is generally small compared to variations of w).
The dependences of Nc on temperature and updraft speed is illustrated in Fig. 8.

5. Summary and conclusions

In this study I have investigated the transition between cirrus formation due to het-
erogeneous freezing on the one hand and homogeneous freezing on the other. The20

study was performed by means of boxmodel simulations of the freezing of a certain
type of heterogeneous ice nuclei (aerosol particles that freeze heterogeneously be-
low the critical humidity for homogeneous nucleation). For these I chose an internally
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mixed aerosol consisting of aqueous solution droplets of sulfuric acid where a fraction
of these droplets bears an inclusion of soot. It was assumed as a working hypothe-
sis that such an aerosol freezes according to the parameterisation given by DeMott
et al. (1997). The aerosol cloud was situated in an uplifting and thereby adiabatically
cooling airmass where it eventually formed ice crystals. The initial temperature of all5

simulations was −53◦C or lower.
The boxmodel simulations have shown that the transition between homogeneously

dominated and heterogeneously dominated cirrus formation occurs over a range of
heterogeneous ice nucleus concentration of about one order of magnitude. This tran-
sition can in principle be characterised by a critical concentration of heterogeneous ice10

nuclei which depends in particular on temperature and updraft speed. From the box
model simulations it was possible to determine critical soot concentrations of the order
0.01–0.1 ng m−3. The resulting values from the simulations should, however, not taken
as exact quantities, since the precise mechanism by which ice germs are formed on
soot surfaces is currently unknown.15

The boxmodel simulations suggested to consider the temporal evolution of ice super-
saturation after an assumed heterogeneous freezing event at an initial supersaturation,
s0, to be crucial for the question whether homogeneous nucleation can later take over
cirrus formation or not. An analytical estimate has been derived that provides the crit-
ical concentration of ice nuclei as a function of temperature, updraft speed, ambient20

pressure, and s0. This formula can be used for simple decision measures in cirrus
parametrisations of large scale models, of which nucleation mode should be switched
on and which should be switched off.

In stronger updrafts it needs generally higher concentrations of heterogeneous ice
nuclei to suppress homogeneous nucleation. I expect, in agreement with results of25

earlier simulations by others, that heterogeneous nucleation is mostly unimportant for
updrafts stronger than w = 20 cm s−1. However, in young aircraft plumes or otherwise
heavily polluted areas it is possible to reach higher concentrations of heterogeneous
ice nuclei (e.g. soot). For example, a modern jet aircraft engine with a specific soot
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emission of 0.02 g per kg kerosene burnt (Schumann, 2002), assuming a fuel flow of
0.8 kg s−1 and a flight speed of 250 m s−1 can yield a soot concentration in the first
second after emission of about 10 ng m−3, which is much higher than the critical values
listed above. Thus, cases with Csoot ≈ 1 ng m−3 in internal mixture are not impos-
sible in the atmosphere, and can probably be produced in the northern hemispheric5

tropopause region by aviation (Rahmes et al., 1998). In such heavily polluted cases
homogeneous nucleation would be suppressed until updrafts of about 1 m s−1 or so
are reached. Rahmes et al. (1998) have computed that the 1992 aviation produced
a soot concentration above 10−2 ng m−3 in a considerable atmospheric volume in the
northern hemisphere. Thus it cannot be excluded that heterogeneous nucleation is10

much more important for cirrus formation in the northern hemisphere than anywhere
else. In fact, recent lidar measurements of cirrus clouds in both northern and southern
midlatitudes suggest that just this is the case (Immler and Schrems, 2002).

If the concentration of heterogeneous ice nuclei is just above its critical value, the
corresponding heterogeneously formed cirrus cloud will be much optically thinner (per-15

haps even subvisible) than a cirrus formed homogeneously, because much less ice
crystals are produced via heterogeneous nucleation just above the threshold than via
the homogeneous process. The clouds get, however, optically thicker again with in-
creasing concentration of heterogeneous ice nuclei although they generally will be less
optically thick than those formed homogeneously. Thus, over polluted regions there20

may be a higher coverage of cirrus clouds (because of the lower formation threshold),
but the clouds will probably be thinner. An exception of this rule is the formation of
condensation trails because there the concentration of heterogeneous ice nuclei is by
many orders of magnitude higher than in the background atmosphere. Cirrus optical
depths in regions with a heavy load of air traffic therefore may be on the average larger25

than in other polluted regions of the northern hemisphere.

Acknowledgements. This work has been performed for the project “Dünner Zirrus” (thin cirrus)
which is financed by the Deutsche Forschungsgemeinschaft under grant Gi 333/1-1.
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Kärcher, B., Peter, T., Biermann, U. M., and Schumann, U.: The initial composition of jet con-

densation trails, J. Atmos. Sci., 53, 3066–3083, 1996. 2348
Koenig, L. R.: Numerical modelling of ice deposition, J. Atmos. Sci., 28, 226–237, 1971. 2349
Koop, T., Luo, B. Tsias, A., and Peter, T.: Water activity as the determinant for homogeneous5

ice nucleation in aqueous solutions, Nature, 406, 611–614, 2000. 2345, 2349, 2353
Kristensson, A., Gayet, J.-F., Ström, J., and Auriol, F.: In situ observations of a reduction in

effective crystal diameter in cirrus clouds near flight corridors, Geophys. Res. Lett., 27, 681–
684, 2000. 2346

Marenco, A., Thouret, V., Nedelec, P., Smit, H., Helten, M., Kley, D., Karcher, F., Simon, P., Law,10

K., Pyle, J., Poschmann, G., von Wrede, R., Hume, C., and Cook, T.: Measurement of ozone
and water vapor by Airbus in–service aircraft: The MOZAIC airborne program, an overview,
J. Geophys. Res., 103, 25631–25642, 1998. 2345

Pruppacher, H. R. and Klett, J. D.: Microphysics of clouds and precipitation. D. Reidel publishing
company, Dordrecht (NL), xv and 714 pp., 1978. 235715

Rahmes, T. F., Omar, A. H., and Wuebbles, D. J.: Atmospheric distributions of soot particles by
current and future aircraft fleets and resulting radiative forcing on climate,J. Geophys. Res.,
103, 31657–31667, 1998. 2353, 2360

Sassen, K. and Dodd, G. C.: Homogeneous nucleation rate for highly supercooled cirrus cloud
droplets, J. Atmos. Sci., 45, 1357–1369, 1988. 234420

Sassen, K. and Benson, S.: Ice nucleation in cirrus clouds: A model study of the homogeneous
and heterogeneous modes, Geophys. Res. Lett., 27, 521–524, 2000. 2352

Sausen, R., Gierens, K. Ponater, M., and Schumann, U.: A diagnostic study of the global
distribution of contrails, Part I: Present day climate, Theor. Appl. Climatol., 61, 127–141,
1998. 234525

Schumann, U.: Contrail cirrus, In: Cirrus, Lynch, D., K. Sassen, D. O’C. Starr, G. Stephens
(Eds.), Oxford University Press, Oxford, United Kingdom, 231–255, 2002. 2346, 2360

Spice, A., Johnson, D. W., Brown, P. R. A.,Darlison, A. G., and Saunders, C. P. R.: Primary ice
nucleation in orographic cirrus clouds: A numerical simulation of the microphysics, Q. J. R.
Meteorol. Soc., 125, 1637–1667, 1999. 235230

Ström, J., and Ohlsson, S.: In situ measurements of enhanced crystal number densities in
cirrus clouds caused by aircraft exhaust, J. Geophys. Res., 103, 11355–11361, 1998. 2345,
2347

2362

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/2/2343/acpd-2-2343_p.pdf
http://www.atmos-chem-phys.org/acpd/2/2343/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
2, 2343–2371, 2002

Heterogeneous vs.
homogeneous

freezing

K. Gierens

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2002

Vali, G.: Nucleation terminology, Bull. Amer. Meterol. Soc., 66, 1426–1427, 1985. 2345
Wang, P.-H., Minnis, P., McCormick, M. P., Kent, G. S., and Skeens, K. M.: A 6–year climatology

of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observa-
tions (1985–1990), J. Geophys. Res., 101, 29407–29429, 1996. 2345

Young, K. C.: Microphysical processes in clouds. Oxford University Press, Oxford, xv and 4275

pp., 1993. 2345

2363

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/2/2343/acpd-2-2343_p.pdf
http://www.atmos-chem-phys.org/acpd/2/2343/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
2, 2343–2371, 2002

Heterogeneous vs.
homogeneous

freezing

K. Gierens

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2002

0

50

100

150

200

250

-58 -57 -56 -55 -54 -53

N
i (

1/
L)

temperature (°C)

SMF=0.1, w=10 cm/s, Na=3.E8/m3

SNF=0.100
SNF=0.030
SNF=0.010
SNF=0.003

Fig. 1. Number density of ice crystals forming from internally mixed aerosol of sulfuric acid
solution with soot inclusions in a uplifting and adiabatically cooling airmass as function of tem-
perature (which may be considered a reverse time axis) as simulated in a box–model. Ice crys-
tals form by heterogeneous and homogeneous nucleation. The simulations were performed
with 10 cm/s uplift, with soot mass fraction SMF = 0.1 (of those aerosol droplets that bear an
inclusion), total aerosol number density Na = 3× 108 m−3, and with fraction of aerosol particles
bearing an inclusion, SNF, as indicated on the figure. Homogeneous nucleation is signalled by
the steep increase of Ni with decreasing temperature.
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Fig. 2. As Fig. 1, but computed with initial temperature of −73◦C and initial relative humidity
RH = 50%.
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Fig. 3. As Fig. 1, but with fixed soot number fraction of 0.1, and updraft velocity w as curve
parameter, and with logarithmic y–axis. The solid curve for w = 10 cm s−1is identical to the solid
curve in Fig. 1. This is the only case that shows no indications of homogeneous nucleation. All
other cases with higher updraft velocities show effects of homogeneous nucleation that become
stronger with increasing updraft speed.
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Fig. 4. Relative humidity with respect to ice, RHi versus temperature (i.e. vs. time) for the box
model simulations of Fig. 3, with updraft speed as curve parameter. The dash–dotted nearly
horizontal line labelled “RHi ,c” is the critical relative humidity for homogeneous nucleation. It
is seen that the supersaturation becomes higher for increasing updraft velocities. Although the
critical relative humidity for homogeneous nucleation is surpassed in all cases, this process in
unimportant in the case with w = 10 cm s−1. However in all other cases it dominates.
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Fig. 5. Typical time histories of supersaturation in a cirrus cloud formed heterogeneously at
initial supersaturation of 0.3, and situated in an airmass uplifting at about 10 cm/s, such that the
updraft time scale τu is 2 h. Curves are shown for various growth time scales, given as curve
parameters (in hours).
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Fig. 6. Panel a): smax − s0 (given as curve parameter) as a function of growth time scale τg
(in hours) and the ratio θ = τg/τu. It is evident that smax − s0 does depend on τg only through
θ. Panel b): smax − s0 (given as curve parameter) as a function of initial supersaturation s0
and θ.

2369

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/2/2343/acpd-2-2343_p.pdf
http://www.atmos-chem-phys.org/acpd/2/2343/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
2, 2343–2371, 2002

Heterogeneous vs.
homogeneous

freezing

K. Gierens

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2002

0.0001

0.001

0.01

0.1

1

0.01 0.1

s m
ax

 -
 s

0

θ

s0=0.1
s0=0.3
s0=0.5

Fig. 7. smax − s0 vs. θ = τg/τu for various values of initial supersaturation s0. The three
curves can be fitted very well with quadratic power functions (i.e. parabolas).
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Fig. 8. Critical concentration of heterogeneous ice nuclei as a function of temperature for
various updraft speeds (in m/s, given as curve parameter). The curves are computed from
Eq. (21) with pressure of 250 hPa and initial supersaturation of 0.3.
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