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Abstract

A new method has been developed that provides mass-conserving wind fields for
global chemistry-transport models. In previous global Eulerian modeling studies a
mass-imbalance was found between the model mass transport and the surface pres-
sure tendencies. Several methods have been suggested to correct for this imbalance,
but so far no satisfactory solution has been found. Our new method solves these prob-
lems by using the wind fields in a spherical harmonical form (divergence and vorticity)
by mimicing the physics of the weather forecast model as closely as possible. A 3-D
chemistry-transport model was used to show that the calculated ozone fields with the
new processing method agree remarkably better with ozone observations in the upper
troposphere and lower stratosphere. In addition, the calculated age of air in the lower
stratosphere show better agreement with observations, although the air remains still
too young in the extra tropical stratosphere.

1. Introduction

Mass conservation is a fundamental requirement in global model integrations, both
in chemistry-transport models (CTMs), which use external meteorological fields (the
‘off-line’” mode), and in general circulation models (GCMs), in which the transport is
calculated ('on-line’ mode). Changes in surface pressure should be consistent with the
air mass changes within the model. However, in most models the vertically integrated
mass change is not in balance with the surface pressure during a model time step, so
that the fluxes need to be corrected.
There are several causes for this imbalance.

— The mass fluxes and surface pressure fields are independently calculated so that
mass changes in the model do not necessarily balance the surface pressure ten-
dency. This applies to both CTMs and GCMs.
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— Interpolation of the original spectral data to the desired model grid with different
time and spatial resolutions. This especially applies to models that use external
wind fields to drive the transport.

— Inaccuracies in the horizontal mass fluxes due to the use of hybrid c-pressure
vertical coordinates. Surface pressure changes may lead to vertical mass fluxes
if the vertical model layers have varying pressures.

— The use of meteorological fields that consist of analysis, which represent a mix
between model results and observations, leading to mass flux imbalance. The
way to solve this is to utilize 6-hourly forecasts instead of analysis.

— The differences between model integration time intervals and the discrete time
steps at which meteorological fields are available. This inevitably leads to mass

imbalance, and generally applies to models that use external meteorological fields.

The reader is referred to Jockel et al. (2001) for a detailed overview of potential
causes of mass inconsistence in global chemistry-transport and climate models.

Various correction methods have been employed to achieve mass balance. Stock-
well and Chipperfield (1999) applied a local tracer mass correction at hybrid o-pressure
layers. Jockel et al. (2001) discussed the 'mass-fixer’ problem in flux-form advection
schemes and reported a two-step model grid adjustment to correct for the mass imbal-
ance. They demonstrated that corrections may lead to (spurious) variations in tracer
concentrations, particularly in the case of pronounced vertical gradients.

The most consistent correction for the mass imbalance is achieved when they are
performed on the horizontal mass fluxes. This was done by Heimann and Keeling
(1989) and Heimann (1995) who provided mass-conserving mass fluxes in their 3-D
tracer model version 2 (TM2). The correction method they applied is referred to in this
work as the ’old’ method and described in more detail in Sect. 2.

Bregman et al. (2001) also used this correction method in the next version of the
tracer model (TM3). However, they found significantly higher modeled ozone fields in
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the lower(most) stratosphere than observed, which they attributed partly to errors in
the mass fluxes by interpolation of the spectral meteorological fields to the Cartesian
model grid (the second cause mentioned in the first paragraph). To solve this, they
included the vertical mass fluxes directly from the meteorological fields and corrected
the horizontal mass fluxes accordingly. This gave much better agreement with obser-
vations in the winter, but worse in summer. Moreover, this correction method could not
be applied at pressure levels higher than 300 hPa. Therefore another solution had to
be found.

In this work we report a new method for mass flux processing to solve the mass-
imbalance problem. This method is designed for CTMs, minimizes interpolation errors
and accounts for surface pressure changes in a consistent manner.

We have performed two types of model experiments to evaluate the processing
method. One involves the calculation of the mean age of air, and the second con-
sists of integrations with an ozone tracer version of the model. We will show that, by
using the new method, both the observed age of air and ozone fields are significantly
better represented by the model.

In the following section we describe the tracer model and the old and new mass flux
processing methods. Section 3 contains a description of the model experiment and
presents the results of the model evaluation. The vertical air mass fluxes have been
analyzed in Sect. 4 to explain the model results. This is followed by conclusions.

2. Model description

The global Tracer Model Version 3 (TM3) used in this study is a grid point 3-D Chemistry-
Transport Model (CTM), originally developed by Heimann (1995); Heimann and Keeling
(1989). Different versions of TM3 have been developed and validated recently (Den-
tener et al., 1999; Peters et al., 2001; Houweling et al., 1998; Van den Broek et al.,
2000) 6-Hourly forecasts of the European Centre for Medium-range Weather Forecasts
(ECMWEF) are used to drive the transport. The model contains a Cartesian grid with a
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horizontal resolution of 2.5° x 2.5°. It further contains 31 hybrid o-pressure levels with
the top level at 10 hPa. The vertical resolution varies with altitude, being hundred to a
few hundred meters in the troposphere, one kilometer around the tropopause gradually
increasing to a few kilometers close to the model top. The tracers are advected using
second-order moments (Prather, 1986). More detailed model description can be found
elsewhere (Bregman et al., 2001).

The processing of the mass fluxes is performed using the 'old’ and 'new’ method,
described in the following subsections.

2.1. Old method

In the old processing method the horizontal mass fluxes were derived from ECMWF
spectral data, gridded on a 1° x 1° resolution. The horizontal mass fluxes [kg s~ '],
b, = (P, P,) are balanced with the surface pressure tendency by adding small’
correction fluxes F = (F,, F,), to the vertically integrated horizontal mass fluxes shown
in Eq. (1):

nlev

8- F = = [ms(ty) — my(to)] /At = > [6- Dp(1)] (1)
/=1

with m the air mass [kg] of the grid column, defined by the surface pressure p, the grid
cell area (A), and the acceleration gravity of g (m; = p;A/g). 8, is a discrete equiva-
lent of the horizontal difference operator, which is the horizontal gradient operator, V,
multiplied by the horizontal distance between the grid boundaries.

The correction field, F, needed for mass balance is calculated by changing Eq. (1)
into a Poisson equation, which is solved by discrete Fourier Transform (Heimann and
Keeling, 1989; Heimann, 1995) (see also Segers et al., 2002a,b, for details). F is
distributed over the vertical grid layers, /, weighted arbitrarily with the magnitude of the
uncorrected horizontal mass fluxes. By this method errors in the horizontal mass fluxes
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arise due to (i) interpolation and (ii) the arbitrarily vertical distribution of F, which lacks
a realistic physical interpretation.

2.2. New method

In the new processing method the above mentioned problems have been solved. For
mass balance the divergence, vorticity, and surface pressure are needed. For the sur-
face pressure we have used the natural logarithm (In pg), since this is used by the
ECMWF model. The new processing method requires that these quantities are re-
trieved in the original model representation, i.e. in spherical harmonics. The method is
described in detail by Segers et al. (2002a) and Segers et al. (2002b).

The horizontal mass fluxes [kg s, &b, = (P, D,) are obtained by integrating the
spectral fields over the grid boundaries in the following equations.

R [ UWLBK
CDU—EAé o Bp o @)
R
D, = — VA, G, k) Ap, dA 3
, gl (A, B. k) Apy 3)

In here, 1 is the longitude, g the latitude, Ap, = Aa, + Ab,p, the pressure gradient
over a model level k with a, and b, the hybrid coefficients, and (U, V) = (u, v) cos g,
a scaled velocity vector. The latter is easy to compute in spectral form from spectral
vorticity and divergence. R represents the radius of the earth [m] and g the acceleration
of gravity.

As described above, these mass fluxes should be consistent with the surface pres-
sure p, [Pa], which is calculated from its spectral representation by surface integration
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in Eq. (4).
p. = [ ps1.) cosp drap / 4 )
A

The vertical mass fluxes @, [kg s'1] for a level k are calculated by vertical integration
of the mass divergence and pressure gradients:

RZ Ny k
>, = ?// [(ZQ,)bk+1/2 = ZQ/] cos 3 dg dA (5)
A - = j=1
where
V.
Q, = D, (Da; + Abjp,) + @-(V(mps)) ps Ab; (6)

Here Q = V- (v - Ap) and represents the horizontal mass divergence [kg s'1]. Itis
computed from the "velocity divergence’ D; = V- v [3_1], and the horizontal gradient of
the surface pressure (VInpg). The latter arises because of orography and is relevant
for models with vertical hybrid o-pressure levels. For models with plain pressure levels
the second term on the right in Eq. (6) can be omitted, since Ab; = 0. VInpg can also
be derived from In p, in spectral representation.

After expansion into Legendre functions (Eq. 5 in Segers et al., 2002a), the spectral
fields are integrated numerically over the grid cell boundaries (for horizontal fluxes) or
grid cell area (for average surface pressure and vertical flux).

Similar to the old procedure, a correction flux, F/, is obtained, separately and inde-
pendent from the other layers, and is added to the horizontal fluxes in Eq. (7).

8,-F) = = [m(ty) — m(ty)] /At = 8- Dy(l) - 5,D, (/) (7)

with §, as the vertical difference operator (see also Eq. 15 and 16 in Segers et al.,
2002a). Note that now 6, , is explicitly included, representing the net vertical mass
flux for every vertical layer, /.
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A small mass imbalance is still present between the mass tendency and the calcu-
lated vertical and horizontal mass fluxes. This mass imbalance cannot be avoided,
since the meteorological fields represent a discrete time condition, whereas a CTM
usually employs a specific time interval. In addition, the numerical integration contains
a limited accuracy.

3. Model evaluation

We have performed model experiments with two different versions of the TM3 model to
evaluate the mass flux processing methods. First we calculated the mean age of air in
the stratosphere with a tracer-pulse experiment. Next, we simulated a realistic ozone
distribution by integrations of the TM3 ozone tracer version. By calculating the mean
age of air the large-scale circulation is examined. The ozone tracer experiment allows
us to test the model performance on shorter time scales in regions with large tracer
gradients and strong dynamical mixing. The model results have been compared with
in situ observations.

3.1. Mean age of air experiment

The age spectrum, formally developed by Hall and Plumb (1994), is the probability dis-
tribution function of transit times of parcels from a source region to the sample region.
This concept has shown to be a useful diagnostic for evaluating transport processes in
global models (Hall et al., 1999). However, caution must be taken if a model evaluation
relies on the mean age of air only, since artifacts in different aspects of the circulation,
which are not present in the mean age, may compensate (Schoeberl et al., 2002).
With a global transport model (CTM or GCM) the age spectrum is directly obtained
from a passive tracer simulation where the mixing ratio in a small tropospheric volume
is set equal to a delta-function in time. The source volume is located between 10° S
and 10° N in the lowest 8 models layers, up to about 800 hPa, where the initial mixing
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ratio was set to one during the first model time step and zero hereafter. The response
is then simply the age spectrum (Hall and Waugh, 1997). To allow the model to reach
a stationary solution, the total simulation time was continued for 20 years, using the
ECMWF meteorology of 1996 repeatedly.

Note that the mean age of air represents only the first moments of the age spectrum,
and thus gives no information of higher moments or variability on shorter time scales
(Hall et al., 1999). To evaluate the old and new mass flux processing methods, we
therefore compared the modeled mean age of air with long-term mean observations
only. Such data were derived from a 7-year average in situ CO, data record, sampled
on board the ER-2 aircraft (Andrews et al., 2001).

3.1.1. Comparison with observations

Figure 1 shows the zonally-averaged mean age of air at 20 km from both model simu-
lations (with the old and new mass fluxes) and the observed mean age of air at 20 km
altitude. The mean age derived with the old winds is significantly too small in the extra-
tropics, an earlier recognized problem that exists in many CTMs (Hall et al., 1999).
The new method results in a mean age that is much closer to observations in the
extra-tropics and illustrates a serious impact of the processing method. In the tropical
region the air becomes somewhat older. Nevertheless, the calculated mean age of air
remains too young in the extra-tropics.

3.2. Ozone tracer experiment

This model version of TM3 contains an ozone tracer with prescribed ozone production
and first- and second-order loss rates from a stratospheric 2-D model (Pitari et al.,
1993). The tracer is constrained by an ozone climatology (Fortuin and Kelder, 1998)
down to 50 hPa, scaled with 1996 Global Ozone Monitoring Experiment (GOME) total
ozone column data. More details of this version is given by Bregman et al. (2001).
The studied year is 1996 and we will focus on the northern midlatitude UTLS (upper
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troposphere and lower stratosphere).

Instantaneous 3-D model ozone fields have been compared with two sets of obser-
vations. One set contains ozone profiles from three ozone sounding stations (Hohen-
peissenberg, Wallops Island, and Churchill), taken from the World Ozone Ultraviolet
Radiation Data Centre (WOUDC) at the Meteorological Service of Canada. The sec-
ond data set includes ozone data from the two most frequently flown MOZAIC flight
tracks in the northern midlatitudes, namely Frankfurt — New York (FRA-NEW) and Vi-
enna — Tokyo (VIE-TOK) (Marenco et al., 1998). To compare the model results with the
MOZAIC observations, seasonally averaged flight tracks were created and the model
ozone fields were interpolated to the aircraft location and pressure. The processing and
comparison procedures are described in detail by Teyssédre et al. [manuscript submit-
ted to the Journal of Geophysical Research] and applied in Bregman et al. (2001).

3.2.1. Comparison with observations

Figures 2,3 and 4 show results from comparisons with seasonally averaged ozone pro-
files from Wallops Island, Hohenpeissenberg, and Churchill. The new method yields
significantly better agreement for the whole potential temperature () range shown and
at all three stations, especially at Churchill. The best agreement is found between 6
levels of 330—-370K. Outside this layer considerable deviations remain, which proba-
bly illustrates the limitations of using a parameterized ozone chemistry scheme in the
model. Both at higher and lower 6 levels photochemistry may play a more important
role. In addition, uncertainties in the convection parameterization and the limited model
grid resolution may become more critical in the upper troposphere.

Figures 5 and 6 show the results of a comparison between seasonally averaged
model ozone mixing ratios + one sigma (+10) and MOZAIC observations for the ‘'mean’
flight FRA-NEW and VIE-TOK. The dashed lines represent the results when the old
processing method is applied and are the same as the solid red lines in Plates 2 and
3 in Bregman et al. (2001). In Bregman et al. (2001) several CTMs and GCMs partic-
ipated in a model intercomparison with the same model setup for the ozone integra-
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tions as in this study. The flight track VIE-TOK is chosen because all models showed
significant disagreement with observed mean mixing ratios and variability (the latter
especially in summer) (Bregman et al., 2001).

A remarkable result is the good overall agreement for both mixing ratios and variabil-
ity when the new processing method is used (solid lines). The large overestimate in
all seasons, except for summer, has now disappeared. Even in summer the observed
variability is well represented by our model.

3.3. Analysis of the vertical mass fluxes

To explain the differences between the model results using both processing methods
we have analyzed the vertical mass fluxes. Figure 7 shows the zonal and yearly mean
vertical mass flux and standard deviation at 200 and 100 hPa between 80 S and 80 N.
The old winds contain stronger upward transport in the tropical region and stronger
downward transport in the subtropical jet streams. This explains the older air in the
tropical region using the new winds.

Older tropical air could also have been caused by enhanced lateral mixing with older
extra-tropical air. However, given the steeper latitudinal gradient, enhanced meridional
mixing does not seem to be present in the new winds. The meridional gradient, cal-
culated with the new winds, remains nevertheless less steep than observed, indicating
that the exchange between the tropics and extra-tropics may still be too strong. This
has been found in other CTMs (Hall et al., 1999).

Note further that by using the meteorology of one particular year (1996), the calcu-
lated mean air age in the (sub)tropics may be underestimated, since the quasi-biennial
oscillation (QBO) was in its easterly phase (Baldwin et al., 2001). On the other hand,
the inter-annual variability of the age of air in the tropics is basically unknown, given
the very limited observations (Waugh and Hall, 2002).

The winds derived by the old method most likely caused too much ’'ventilation’ or ver-
tical mixing, an earlier reported shortcoming in CTMs (Schoeberl et al., 2002). Figure 7
indicates that vertical mixing is less pronounced using the new processing method and
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thus leads to an older mean age of air.

Note that in the (sub)tropics the variability of the vertical mass flux at 200 hPa is
slightly larger in the new winds, while it is significantly larger at middle and at high
latitudes in the old winds. Especially for the ozone distribution in the tropopause region
the vertical mass flux variability is an important quantity as will be shown below.

The main causes for the differences in vertical mass flux variability between both
methods are (i) interpolation of spectral data to a Cartesian grid and (ii) a mass cor-
rection by applying a distribution function based on the total vertically integrated mass.
In the new method the surface pressure tendency is taken into account in the mass
balance equation for every vertical model layer. The old processing method therefore
may introduce enhanced spurious variations in the vertical mass fluxes.

The weight of the interpolation errors increase when the grid cells become smaller,
explaining the large increase of vertical mass flux variability closer to the poles with
the old winds. By better representation of the winds the new method improves the
real’ mass flux variability. This is the most likely reason for the larger vertical mass flux
variability in the tropical region using the new winds. The more realistic representation
of mass flux variability is illustrated below.

Figure 8 shows the vertical mass flux variability (20) at 200 and 100 hPa for the
winter period along all longitudes at 50 N. As shown for the zonal mean in Figure 7, the
old fluxes show larger variations than the new fluxes. A notable result in Figure 8 is
the much clearer manifestation of orography using the new method. The two maxima
that are present in the new fluxes indicate orographic effects (the Rocky Mountains and
Tibetan high mountains). In reality orography induce enhanced vertical motion. The
new method resolves this enhancement more accurate since the mass flux corrections
are performed per vertical layer independent from the other layers. In the old method
the corrections are equally distributed in the vertical, leading to smearing out of the
variability.

The important role of the vertical mass flux variability for modeled ozone is further
illustrated by comparing winter with summer. In contrast to the winter situation, in
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summer (see Fig. 9) the differences in mass flux variability between both methods are
small, and so are the differences between modeled ozone distributions (see Figs. 2a—
b). Hence, it seems that the difference in mass flux variability between both processing
methods correlates with the differences in modeled ozone. The vertical mass flux
variability is more pronounced in winter than in summer due to stronger and, most
likely, more variable horizontal winds, associated with a larger latitudinal temperature
gradient in winter.

The observations for the MOZAIC flights were made close to the bottom edge of the
large vertical ozone gradient near the tropopause. Fluctuations of the vertical mass
flux will therefore lead to a net downward transport of ozone. This is the main reason
for the large overestimation of ozone in the lowermost stratosphere when the old mass
fluxes are used. Note that the annually average global downward ozone flux across the
150 hPa level is reduced from about 1700 Tgyr~ ' (Bregman et al., 2001) to 850 Tg yr'1 .
The latter flux is much better in agreement with estimates from observations reported
in other studies (Murphy and Fahey, 1994).

Although in principle the new method applies to all models, the difference between
the old and new method increases when the vertical levels are of a hybrid o-pressure
character. This partly explains why the differences between the old and new method
in Figs. 7 and 8 are larger at 200 hPa than at 100 hPa. Above 100 hPa the vertical
coordinates are fixed pressure levels, while they become increasingly sigma-like with
increasing pressure.

4. Conclusions

A new mass flux processing method has been developed for chemistry-transport mod-
els. The method provides improved tracer-mass conserving wind fields, which solves
the ’'mass-inconsistency’ problem, reported in earlier model studies. It takes into ac-
count spectral fields and the vertical flux changes in the mass balance equation for
every vertical layer independently.
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Two different versions of the TM3 model, a 3-D CTM with ECMWF meteorological
fields to drive the transport, were used to evaluate the mass flux processing methods.
One version contained an artificial tracer in a tracer-pulse experiment to calculate the
mean age of air. The other version contained ozone as a tracer with a prescribed
production and loss rates, constrained with an observed ozone climatology.

The calculated mean age of air and ozone distributions were compared with obser-
vations. The mean age of air is much better represented using the new mass fluxes,
most likely caused by reduced vertical mixing. Nevertheless, the calculated mean age
of air remains somewhat too young in the extra-tropical lower stratosphere. A poten-
tial cause is the limited representation of the large-scale stratospheric circulation when
using a model top at 10 hPa. To investigate this, additional experiments with the new
ECMWF re-analysis (ERA40) are currently underway.

The ozone distribution in the lower stratosphere shows better agreement with balloon
observations, with the best agreement at @ levels between approximately 330-370 K.
Outside this height range deviations remained, probably due to the limitation of the
use of prescribed ozone chemistry. A striking improvement and excellent agreement
with MOZAIC observations was found for ozone in the northern midlatitude tropopause
region in all seasons over all longitudes, both in mean mixing ratios and variability.

By analyzing the vertical mass fluxes, most of the differences in modeled ozone and
mean age of air between the old and the new processing methods could be explained.
We have illustrated that the old mass flux processing method smooths out much of
the real mass flux variability, while on the other hand it may create spurious variability.
We have demonstrated that the model representation of the observations considerably
improves when the spurious mass flux variability is decreased.

The problems reported here are probably not restricted to models that use assimi-
lated meteorological data to drive the transport. In many Eulerian climate models spec-
tral wind fields are transformed into mass fluxes to perform the advection of tracers. For
these models, as well as for off-line models, it is recommended that the vertically in-
tegrated mass divergence is made consistent with the surface pressure changes. All
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relevant terms, including V In p,, should be calculated using their spherical harmonic
representation. Finally, a FORTRAN9Qode of the new processing algorithm is avail-
able at http://www.knmi.nl/"segers
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Fig. 2. Seasonal mean ozone partial pressure (mPa) £10 from ozone sonde observations
(filled grey) at Wallops Island. The dashed and solid lines represent the model results using
the old and new mass flux processing method respectively. The vertical axis is represented by
the potential temperature [K].
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project for the flight Frankfurt — New York (filled grey), and calculated by the model using the
old (dashed) and the new (solid) mass flux processing method.
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Fig. 7. Yearly and zonal mean vertical mass flux (Pa 3'1) and standard deviation (£20) calcu-
lated by the model at 100 and 200 hPa, using the old (thin solid lines) and the new (thick solid

lines) mass flux processing method.
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