Wavelength dependence of isotope fractionation in N2O photolysis
J. Kaiser, T. Röckmann, C. A. M. Brenninkmeijer, P. J. Crutzen

To cite this version:

HAL Id: hal-00300941
https://hal.science/hal-00300941
Submitted on 28 Oct 2002

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Wavelength dependence of isotope fractionation in N$_2$O photolysis

J. Kaiser1, T. Röckmann2, C. A. M. Brenninkmeijer1, and P. J. Crutzen$^{1, 3}$

1Abteilung Chemie der Atmosphäre, Max-Planck-Institut für Chemie, Mainz, Germany
2Bereich Atmosphärenphysik, Max-Planck-Institut für Kernphysik, Heidelberg, Germany
3Center for Atmospheric Sciences, Scripps Institution of Oceanography, University of California, San Diego, USA

Received: 15 July 2002 – Accepted: 1 October 2002 – Published: 28 October 2002

Correspondence to: J. Kaiser (jkaiser@mpch-mainz.mpg.de)
Abstract

In previous reports on isotopic fractionation in the ultraviolet photolysis of nitrous oxide (N\(_2\)O) only enrichments of heavy isotopes in the remaining N\(_2\)O fraction have been found. However, most direct photolysis experiments have been performed at wavelengths far from the absorption maximum at 182 nm. Here we present high-precision measurements of the \(^{15}\)N and \(^{18}\)O fractionation constants (\(\varepsilon\)) in photolysis at 185 nm. Small, but statistically robust depletions of heavy isotopes for the terminal atoms in the linear N\(_2\)O molecule are found. This means that the absorption cross sections \(\sigma\)\(^{(15}N\,14N\,16O)\) and \(\sigma\)\(^{(14}N\,18O)\) are larger than \(\sigma\)\(^{(14}N\,16O)\) at this specific wavelength. In contrast, the central N atom becomes enriched in \(^{15}\)N. The corresponding fractionation constants (±1 standard deviation) are

\[^{15}\varepsilon_1 = \frac{\sigma\)\(^{(15}N\,14N\,16O)}{\sigma\)\(^{(14}N\,16O)} - 1 = (3.7 \pm 0.2) \text{‰}, \]
\[^{18}\varepsilon = \frac{\sigma\)\(^{(14}N\,18O)}{\sigma\)\(^{(14}N\,16O)} - 1 = (4.5 \pm 0.2) \text{‰}, \]
\[^{15}\varepsilon_2 = \frac{\sigma\)\(^{(14}N\,15N\,16O)}{\sigma\)\(^{(14}N\,16O)} - 1 = (-18.6 \pm 0.5) \text{‰}. \]

To our knowledge, this is the first documented case of such a heavy isotope depletion in the photolysis of N\(_2\)O which supports theoretical models and pioneering vacuum ultraviolet spectroscopic measurements of \(^{15}\)N substituted N\(_2\)O species that predict fluctuations of \(\varepsilon\) around zero in this spectral region (Selwyn and Johnston, 1981). Such a variability in isotopic fractionation could have consequences for atmospheric models of N\(_2\)O isotopes since actinic flux varies also strongly over narrow wavelength regions between 175 and 200 nm due to the Schumann-Runge bands of oxygen. However, the spacing between maxima and minima of the fractionation constants and of the actinic flux differ by two orders of magnitude in the wavelength domain. The wavelength dependence of fractionation constants in N\(_2\)O photolysis can thus be approximated by a linear fit with negligible consequences on the actual value of the spectrally averaged fractionation constant. In order to establish this linear fit, additional measurements at wavelengths other than 185 nm were made using broadband light sources, namely D\(_2\), D\(_3\),
Hg/Xe and Sb lamps. The latter lamp was used in conjunction with various interference filters to shift the peak photolysis rate to longer wavelengths. From these experiments and existing data in the literature, a comprehensive picture of the wavelength dependence of N$_2$O photolysis is created.

1. Introduction

N$_2$O isotope fractionation by photolysis at various wavelengths has been the subject of at least eight recent experimental studies (Johnston et al., 1995; Rahn et al., 1998; Röckmann et al., 2000, 2001; Toyoda et al., 2001a; Turatti et al., 2000; Umemoto, 1999; Zhang et al., 2000). In line with theoretical calculations (Johnson et al., 2001; Yung and Miller, 1997), the measured fractionation constants exhibit a dependence on the wavelength of photolysis radiation. Photolysis (reaction 1) comprises approximately 90% of the global N$_2$O sink and is the dominant cause of the observed isotopic enrichment of N$_2$O in the stratosphere (Griffith et al., 2000; Kim and Craig, 1993; Moore, 1974; Rahn and Wahlen, 1997; Röckmann et al., 2001; Toyoda et al., 2001b; Yoshida and Toyoda, 2000) The remaining 10% of the total N$_2$O sink are due to the reaction of N$_2$O with O(1D) (reactions 2 and 3).

$$N_2O + h\nu \rightarrow N_2 + O(^1D) \quad (185 \text{ nm} < \lambda < 230 \text{ nm}) \quad (90\%) \quad (1)$$

$$N_2O + O(^1D) \rightarrow 2 \text{ NO} \quad (6\%) \quad (2)$$

$$N_2O + O(^1D) \rightarrow N_2 + O_2 \quad (4\%) \quad (3)$$

Maximum photolysis rates of N$_2$O in the stratosphere occur between 195 and 205 nm (Minschwaner et al., 1993), but depending on altitude and latitude there are contributions down to 185 nm and up to 230 nm. Below 185 nm absorption by O$_2$ prohibits the penetration of solar light, above 230 nm the photolysis rates are constrained by O$_3$ absorption and the decrease of the N$_2$O cross section.

By way of reaction 2, N$_2$O is the major source of stratospheric NO$_x$ and is thus linked to the O$_3$ cycle. The tropospheric mixing ratio of N$_2$O has increased by about 17% from
its pre-industrial value and grows by 0.2 to 0.3% per year at present. This must be of concern considering the long atmospheric lifetime of about 120 years (Prather et al., 2001) and the role of N₂O as a greenhouse gas and its potential for O₃ depletion. Thanks to the reduced emissions of organic halogen compounds as demanded by the 1987 Montreal Protocol and its subsequent adjustments and amendments, stratospheric chlorine levels are expected to decrease in the future (WMO, 1999). However, this will reinforce the role of N₂O as a source gas for ozone depleting NOₓ radicals (Randeniya et al., 2002). Therefore quantification of N₂O source and sink fluxes are important pieces in global Earth system models. It is hoped that isotope measurements can be used to improve our knowledge of the atmospheric budget of this species, since current estimates suffer from large uncertainties.

Models of atmospheric chemistry and transport require kinetic data on reaction rate constants (k) and photochemical absorption cross sections (σ) as input values. Slight variations of these quantities may occur as a result of isotopic substitution. These kinetic isotope effects are conveniently expressed relative to the most abundant, light species using fractionation factors (α) or fractionation constants (ε). We adopt here the definition of α found in many geological textbooks and used in most previous papers on N₂O isotopologues, but note that it is inverse to custom in chemical kinetics and an IUPAC recommendation (Müller, 1994):

$$\alpha = \frac{k_{\text{heavy}}}{k_{\text{light}}} = 1 + \varepsilon$$

(4)

k_{heavy} and k_{light} denote the reaction rate constants of the isotopically heavy and light species (e.g. 15N14N16O and 14N2N16O). Photolysis rates (J) are proportional to σ, so that in this case k can be substituted by σ.

Heavy isotope enrichments in a single sample of stratospheric N₂O were first noticed by Moore (1974), but it took nearly 20 years before the data were backed up by further measurements (Kim and Craig, 1993). Already then, UV photolysis was suspected as origin of the isotopic enrichment. However, a direct measurement at 185 nm found no
significant oxygen isotope fractionation at 185 nm (Johnston et al., 1995) and – together with an apparent lack of N₂O sources to balance the atmospheric budget (Watson et al., 1990, 1992) – rekindled speculations about a suite of “non-standard” N₂O sources or sinks (McElroy and Jones, 1996; Prasad, 1997; Wingen and Finlayson-Pitts, 1998; Zipf, 1980). Finally though, a zero point energy (ZPE) model of N₂O photolysis (Yung and Miller, 1997) postulated wavelength-dependent isotopic fractionations: Near-zero fractionations at the absorption maximum of N₂O (∼182 nm) were expected as against to isotope enrichments of the residual N₂O at longer and depletions at shorter wavelengths. This explained the stratospheric enrichments (at least qualitatively) and the measurements at 185 nm. In retrospect, this was also in agreement with pioneering vacuum ultraviolet (VUV) spectroscopy of ¹⁵N substituted N₂O species (Selwyn and Johnston, 1981), although they seem to have been overlooked at that time. The further prediction of position-dependent enrichments of ¹⁵N in the N₂O molecule led to the development of new spectrometric techniques (Brenninkmeijer and Röckmann, 1999; Toyoda and Yoshida, 1999; Turatti et al., 2000). Subsequent tests of this theory found it to be in qualitative agreement with new experimental data, but the measured enrichment constants were always higher than predicted (Rahn et al., 1998; Röckmann et al., 2000, 2001; Toyoda et al., 2001a; Turatti et al., 2000; Umemoto, 1999; Zhang et al., 2000). Ab initio calculations by Johnson et al. (2001) gave better fits to the measurements, except for the ¹⁵N¹⁴N¹⁸O isotopomer.

Here, we present high-precision measurements of the ¹⁸O and of the position-dependent ¹⁵N fractionation in N₂O photolysis at 185 nm. They validate the existing VUV spectroscopic measurements (Selwyn and Johnston, 1981) and are supplemented by additional measurements with broadband UV light sources. Together with the data from previous reports, a synopsis of the wavelength-dependent isotope fractionation in N₂O photolysis is created which is then used to evaluate the effects of N₂O photolysis in the region of the Schumann-Runge bands on the overall isotopic fractionation.
2. Experimental methods

The change of isotopic composition by photolysis in a closed-system can be described as a Rayleigh fractionation process (Rayleigh, 1896):

\[\delta = y^\varepsilon - 1 \]

(5)

For applications to isotopes, the so-called \(\delta \) value is defined here as relative enrichment of the isotope ratio at any time of the reaction (\(R \)) against the isotope ratio at the beginning of the reaction: \(\delta = R/R_0 - 1 \). \(y = c/c_0 \) is the total remaining fraction of the light isotopologue, but can be equated to a very good degree of approximation with the total remaining \(\text{N}_2\text{O} \) fraction for samples at natural abundance (Kaiser et al., 2002a).

In this study, the calculation of fractionation constants \(\varepsilon \) was based on a linearised form of Eq. (5) using either the ratio of \(\ln(1 + \delta) / \ln y \) in each individual experiment or least squares fits to Rayleigh plots of \(\ln(1 + \delta) \) vs \(\ln y \). Given sufficient experimental precision and provided the \(y \)-axis offset in a Rayleigh plot is zero, the latter approach is more suitable to detect influences of reaction parameters on \(\varepsilon \).

\(\text{N}_2\text{O} \) in \(\text{N}_2 \) bath gas was irradiated by different light sources using four reactor types. All gases used were of 99.9999% chemical purity. Reactors A, B and C consist of quartz, stainless steel and borosilicate glass tubes, respectively, and were already used in previous photolysis experiments (Kaiser et al., 2002b; Röckmann et al., 2000). No significant influence of reactor type on the experimental results was found. Reactor E is a borosilicate glass bulb (\(V \approx 2.2 \text{ dm}^3 \)) with a quartz insert (Kaiser et al., 2002a).

The photolysis experiments at 185 nm were performed in reactor E. A pencil style, low-pressure Hg(Ar) lamp (“Pen Ray lamp”, LOT Oriel) was put in the quartz insert and usually operated at 18 mA (AC). The spectral output of Pen Ray lamps is known to be remarkably stable and temperature-insensitive, and even the total irradiance is reproducible to within 15% (Reader et al., 1996). The wavelengths of 19 spectral lines in the range 253 to 579 nm were within ± 0.002 nm of published values for Hg emission lines (Sansonetti et al., 1996). However, the 185 nm-line was not investigated. Its intensity relative to the 253.65 nm-line is stated as 3% (LOT Oriel), but may vary
from lamp to lamp. Therefore, additional experiments were performed with a second lamp. The precise wavelength of the “185 nm”-line for the natural Hg isotope mixture is given as 184.950 nm (Lide, 1999). Other intense Hg lines in the emission spectrum of these lamps are located at wavelengths > 250 nm and are not of importance for N₂O photolysis.

The irradiation by the lamp led to temperatures of about 50°C at the inner wall of the quartz inset and as high as 100°C at the lamp itself. Therefore, one experiment was conducted at a reduced current of 10 mA, giving only ≈ 40°C and ≈ 85°C, respectively. The temperature of the gas mixture itself was measured with a thermocouple at different positions of the reactor and amounted to fairly homogeneous values of 28°C/25.5°C for 18/10 mA. To check for any influence of O₂ photolysis and subsequent O₃ production on the irradiation spectrum, the quartz cavity was flushed with N₂ during three experiments. The photolysis times varied from 2.1 to 40.9 h, resulting in final yields of 3.5 to 84.5%.

A mixture of 1.0 mmol/mol N₂O/N₂ was used for the experiments at initial pressures of about 1000 mbar. Higher mixing ratios can lead to artefacts which were traced back in a recent study to O(¹D) production by NO₂ photolysis and subsequent reaction of N₂O with O(¹D) (Kaiser et al., 2002b). Pressures were corrected for non-linearity of the sensor and temperature variations. The remaining N₂O fraction (y) was determined by quantitative extraction in an ultra-high efficient Russian Doll-type trap (Brenninkmeijer and Röckmann, 1996). Blank experiments without photolysis gave an indication of the precision of the degree of conversion (σ_{ln y} = 0.009) and of the δ values (σ_{δ¹⁵N} = 0.1‰; σ_{1δ¹⁵N} = σ_{2δ¹⁵N} = 0.25‰; σ_{δ¹⁸O} = 0.15‰) from which the fractionation constants are calculated. N₂O samples were purified on a preparatory gas chromatograph (Kaiser et al., manuscript in preparation) and analysed on a Finnigan MAT 252 isotope ratio mass spectrometer for ⁴⁵δ, ⁴⁶δ and ³¹δ (Kaiser et al., 2002a). The available Faraday cup configuration of this instrument did not allow to project m/z 30 and m/z 31 beams simultaneously on the centre of a cup. Instead, the cup configuration for O₂ isotope analysis was used and ion currents of the NO⁺ fragment were measured.
on the peak flanks. Thus, precision of the NO$^+$ fragment analysis was slightly impaired, but by no means compromises the conclusions drawn here.

Photolysis experiments with broadband light sources (D$_2$, Hg/Xe and Sb lamps, partly used in conjunction with interference filters) were performed with a 4.0 mmol/mol N$_2$O/N$_2$ mixture using reactors A to C. The possible presence of an artefact from the re-action of N$_2$O with O(1D) for this higher mixing ratio is discussed in Sect. 4. Due to the strong infrared radiation from the Hg/Xe lamp, it was used together with a water filter which protected the photolysis reactor from excessive heating. The filter was filled with high-purity water (MilliQ) and was cooled continuously by water. Unlike the measurements at 185 nm, the $^{31}\delta$ values for the NO$^+$ fragment were measured on a Micromass Prism II mass-spectrometer with adjustable cups, so that the standard-deviation of $^{31}\delta$ (0.04‰) is comparable to that of $^{45}\delta$ and $^{46}\delta$ (0.02‰ and 0.04‰).

3. Isotopic depletions by N$_2$O photolysis at 185 nm

The results of photolysis at 185 nm are shown in Figs. 1a and b. Up to the largest degrees of conversion, the fractionation constants give a consistent picture of isotopic depletions at the terminal positions of the residual N$_2$O (δ^{18}O and $^1\delta^{15}$N). There is no clearly discernible influence of lamp specimen, operating current or nitrogen flushing. The absence of any significant variation of ε with ln y indicates that most probably no other than the desired fractionation process was taking place, as opposed to the artefacts noticed at higher mixing ratios (Kaiser et al., 2002b). The absence of artefacts was also confirmed by irradiation of an O$_2$/N$_2$ mixture (0.62 mmol/mol) for 13.5 h. After the entire extraction and purification procedure, 0.38 µl N$_2$O (standard ambient temperature and pressure, SATP) were recovered corresponding to the system blank of \approx 0.3 µl N$_2$O (SATP). N$_2$O production from N$_2$+O(1D) can thus be neglected, in agreement with its low rate constant of $2.8 \cdot 10^{-36} \text{ cm}^6 \text{s}^{-1}$ (Estupiñán et al., 2002).

Figure 1b shows the directly calculated fractionation constants for each experiment. We argue that the best estimate of the “true” fractionation constants is not the mean...
of these directly calculated fractionation constants since they are subject to a small error if the y-axis offset in a Rayleigh plot is not exactly zero, especially if the degree of conversion is small (ln y ≈ 0). Rather, the slope in a Rayleigh plot (Fig. 1a) is a more reliable estimate of the fractionation constant and is therefore adopted as “true” ε. The results of two calculation methods (“mean direct” and “Rayleigh plot”) are shown in Table 1, together with errors at the 1σ level. The positive values for 15ε1 and 18ε are the first documented cases of isotopic depletion in the residual gas by N2O photolysis.

In contrast to the results presented here, Johnston et al. (1995) did not find any significant oxygen isotope fractionation at 185 nm. Re-analysis of their original data gives 18ε = (0.2 ± 0.2)‰. Although Johnston and co-workers used a low-pressure mercury resonance lamp powered by a microwave instead of an electrical discharge, differences between the light sources are very unlikely to account for the differences in 18ε. In principle, contributions from Hg lines at other wavelengths could have caused the discrepancy in 18ε values, but were not observed for the Pen Ray lamps at wavelengths relevant to N2O photolysis (i.e. λ < 240 nm) and were also absent in the spectrum of the microwave powered lamp (Jeff Johnston, personal communication, 2002). Under exceptional conditions such as dramatically increased nitrogen purge flows and reduced plasma voltages, 194.2 nm-emission from Hg+ was noticed with intensities of up to 20% relative to the 185 nm-line (Cantrell et al., 1997; Lanzendorf et al., 1997), but under thermally normal operating conditions the relative emission intensity does not exceed a few percent. Analytical errors are more probable to be blamed for the discrepancy between the two studies: Rather than analysing N2O directly, Johnston et al. decomposed it first to N2 and O2 in a quartz tube with gold insert at > 800°C and separated N2 and O2 afterwards (Cliff and Thiemens, 1994), since they wanted to analyse 17O/16O variations as well. If separation of N2 from O2 is not quantitative, this may compromise the accuracy of the δ18O and especially δ17O values, because N2 may interfere with O2 isotope measurements (Sowers et al., 1989). This interference is likely to be mass-spectrometer specific and is presumably caused by stray N2+ ions reaching the Faraday cup collectors for O2 species. The unlikely slope of a ln(1 + δ17O)
vs ln(1 + δ^{18}O) plot of −1.5±0.4 derived from re-analysis of Johnston et al.’s data set lends support to this interpretation. A more realistic value of this slope should be close to 0.5.

4. Photolysis with broadband light sources

Additional photolysis experiments were performed with a set of different broadband light sources. The corresponding spectral photolysis rates (Fig. 2) were calculated from direct measurements of the emission spectra of the Sb (Röckmann et al., 2001) and Hg/Xe lamps (Saueressig, 1999), convoluted (where appropriate) with transmission spectra of four interference filters (Melles Griot) and the N₂O absorption spectrum at room temperature (Selwyn et al., 1977; Yoshino et al., 1984). The emission spectrum of the D₂ lamp was not measured directly, but was calculated from measurements of the spectral radiant intensity of a D₂ calibration lamp (Mathias Richter, personal communication, 2001), transmission functions of synthetic silica windows (Hamamatsu) and high-resolution O₂ absorption cross sections (Minschwaner et al., 1992).

Photolysis half-life times were about 11 h for the D₂ lamp and 63 h for the Hg/Xe lamp. Thus, sufficient degrees of conversion were achieved within reasonable irradiation time (extending up to 22 and 33 h, respectively), and the fractionation constants derived from Rayleigh plots have small errors (Table 2).

The fractionation constants measured with the unfiltered Sb lamp and in combination with the 207 nm filter (20 nm FWHM) have been presented before (Kaiser et al., 2002b; Röckmann et al., 2001). To confine the spectrum of the Sb lamp to narrower wavelength regions, 200 nm, 214 nm and 220 nm filters were used in spectral bandwidths of 10 nm (FWHM). However, this also reduced the light available for photolysis and considerably lengthened the required irradiation times. This was aggravated by the low peak transmissions of the filters (13 to 18%) and by light loss due to the fact that the extensive discharge of the Sb lamp could not be well focussed on the filter diameter of 25 mm. Therefore, only small extents of photolysis could be achieved within reason-
able times, e.g. after 216 h of irradiation with the 220 nm filter ln y was only −0.076. Furthermore, the 200 nm filter went blind after 72 h total irradiation time. Rayleigh plots of ln(1 + δ) are still well approximated by linear fits to ln y, but the error introduced by the extraction procedure is not negligible anymore at these low extents of photolysis. Determined from blank runs, the average standard deviation of ln y is σ_{ln y} = 0.004 for reactors A to C. This is smaller than for reactor E, probably because of the better reproducibility of the manual extraction procedure for smaller reactor sizes. Following Williamson (1968) and York (1966) linear least-squares fits are applied to the data that take into account the mass-spectrometric errors of ln(1 + δ) and assume an invariable error of 0.004 for ln y. Therefore the calculated fractionation constants for the experiments with Sb lamp and the 200, 214 and 220 nm filters have larger errors (Table 2). The approach by Williamson/York has the advantage over a simple linear least squares fit that it considers errors of both dependent and independent variables and that it is symmetric with respect to co-ordinate exchange.

We note that these broadband photolysis measurements were obtained with an N₂O mixing ratio of 4.0 mmol/mol. This may introduce artefacts by interference of the reaction of N₂O + O(1D) as discussed for high-precision measurements at 1.0 and 4.0 mmol/mol with the Sb lamp (Kaiser et al., 2002b). The necessary upward corrections depend on ln y, the “true” values for ε and the lamp spectrum. Extrapolating the empirical formula derived for the Sb lamp with and without 207 nm interference filter (Kaiser et al., 2002b) to correct the fractionation constants measured here, gives upward revisions of Δ|¹⁵ε₂| = 6‰ at ln y = −0.39 for the Hg/Xe lamp as the worst case. However, considering the different emission spectra, a direct extrapolation might not be justified. Therefore and since the estimated correction is only 2σ_{¹⁵ε₂}, we leave the measurements uncorrected. It should be noted that corrections could be warranted for the results of other studies, too, but are difficult to quantify in retrospect.
5. Synoptic view of the wavelength dependence

Figure 3 is an overview of measured and theoretically predicted ε values plotted against wavelength, including the data from this paper. In general, both experimental data and theoretical predictions qualitatively agree on increasing enrichments at higher wavelengths and the order $^{15}\varepsilon_2 < ^{18}\varepsilon < ^{15}\varepsilon_1$, but differ in the magnitudes of ε as well as in its sign near the absorption maximum at 182 nm. The experimental results are approximated by a linear fit from 190 to 220 nm (Table 3).

Data were adopted from the original publications and are presented with 1σ y-error bars as stated by the authors. Experimental data from laser photolysis mostly represent “single wavelengths” except for the measurements with ArF lasers at 193.3 nm which were performed at the natural line-width of 0.7 nm (FWHM). In case of the broadband photolysis experiments, data points are located at the median wavelengths for 50% photolysis. The “x-error bars” indicate the 25% and 75% quartiles. If these quartiles are symmetric about the median and if the slope $\partial\varepsilon/\partial\lambda$ does not change too much over the range of photolysis, the fractionation constant is close to a hypothetical “single wavelength” measurement at the median λ. Since the actual slope $\partial\varepsilon/\partial\lambda$ appears to be almost constant between 190 and 220 nm and the spectral photolysis rates of the broadband light sources are fairly symmetric indeed about their median wavelength (Fig. 2), this explains the relative good agreement between broadband and “single wavelength” data. The weighted linear fit shown in Fig. 3 therefore only considers the errors of ε.

The fractionation constants of the 15N isotopomers measured by direct photolysis experiments are complemented by VUV spectroscopic measurements between 173 and 197 nm (Selwyn and Johnston, 1981). The cross-sections are used to calculate ε. The “fine-structure” of ε is in good agreement with the “single wavelength” measurements at 185 and 193.3 nm (Fig. 4) and lends support to the view that the VUV spectroscopic data are most probably adequate to represent the high resolution fractionation constants within their wavelength range. Unfortunately, this range ends at 197 nm, short
of the 195–205 nm region most important for stratospheric N$_2$O photolysis.

The fractionation constants predicted by the zero point energy (ZPE) theory (Miller and Yung, 2000; Yung and Miller, 1997) have been derived by blue-shifting the high resolution absorption spectrum of Yoshino et al. (1984) in addition to the polynomial approximations of ln σ proposed by Selwyn et al. (1977) and Mérianne et al. (1990), assuming that these spectra represent essentially the absorption cross section of the most abundant N$_2$O species, 14N16O. Although the relative order of 18O and position-dependent 15N fractionations is predicted correctly, their magnitudes are about a factor of 2 too low. Also, at wavelengths close to the absorption maximum, the theoretical “fine structure” is not in phase with VUV spectroscopic measurements (Fig. 4).

The ab initio calculations by Johnson et al. (2001) were performed using the Hermite propagator (HP) on a two-dimensional (2-D) potential energy surface (PES) (spanned by NN-O distance and bending angle) at 1 nm resolution and therefore lack the “fine structure” seen in the ZPE predictions and VUV spectroscopic measurements (Matthew S. Johnson, personal communication, 2002). The agreement with the measurements is good for 14N18O and better than the ZPE theory for 14N15N16O, but 15N14N16O is not adequately modelled, also as a consequence of the 2-D-PES.

6. Implications for the stratosphere and modelling

For stratospheric modelling, one now has the choice between various data sets. Considering the underestimated fractionation constants of the theoretical predictions (except for 18ε in the HP model), it seems that the linear fit through the experimental data represents the wavelength dependence of ε more adequately. This fit also agrees reasonably well with the VUV spectroscopic measurements up to 197 nm. In a separate publication (Kaiser et al., 2002b), we have presented temperature dependent measurements of fractionation constants for broadband photolysis with the Sb lamp (median wavelength: 203 nm). At lower temperatures, the HP theory predictions compared slightly better to the experimental measurements than at room temperature, but
were still off by more than a factor of two for 15N14N16O, underscoring the remaining deficiencies of the model. However, one has to be careful in extrapolating the derived temperature dependence to other wavelengths, e.g. values of $^{15}\varepsilon_2$ derived from the VUV spectroscopic measurements at 197 nm and 213 K were identical to those for broadband photolysis at the same temperature and longer wavelengths. This seems to imply a constant value of $^{15}\varepsilon_2$ between 197 and \approx 203 nm, in disagreement to the observed wavelength-dependence at room temperature. However, errors in the VUV spectroscopic cross-sections could also account for this discrepancy and cannot be entirely excluded.

Using the validated VUV spectroscopic measurements, we can now consider additional complications for atmospheric modelling from the “oscillations” and changes of sign of ε below 190 nm. Due to the strong variation of actinic flux over narrow wavelength regions in the Schumann-Runge bands below 200 nm, this may have noticeable influences on the fractionation constants. We have therefore calculated the expected fractionation constants for photolysis using actinic fluxes at 20, 40 and 80 km (US standard atmosphere, solar zenith angle 30°) (Minschwaner et al., 1993). The data were averaged to about 0.1 nm resolution in the Schumann-Runge region and to about 1 nm above 200 nm. This is more than sufficient to sample the maximum and minimum values of the N$_2$O fractionation constants which occur with a period of about 2 nm. Altitudes of 20 and 40 km are below and above the region of maximum N$_2$O photolysis in the atmosphere and should therefore provide limits for the fractionation constants. Mesospheric N$_2$O photolysis at 80 km is negligible, but has been included for comparison. Given the sparse database at lower temperatures, we restrict our calculations to room temperature, although this is clearly not representative for the stratosphere and mesosphere. However, the vibrational structures in the N$_2$O absorption spectrum become less intense with lower temperatures (Selwyn and Johnston, 1981) and so should the oscillations in ε. Therefore, the room temperature calculations are a “worst-case” scenario for any interference of Schumann-Runge bands and N$_2$O isotope fractionation. Two scenarios have been investigated: The first one was created from
the high-resolution VUV spectroscopic data for $^{15}\varepsilon_2$ and $^{15}\varepsilon_1$ (Selwyn and Johnston, 1981) up to 190 nm, complemented by the linear fit (Fig. 3) for higher wavelengths. In the second scenario, the linear fit is extrapolated also to wavelengths below 190 nm. For the sake of argument, the linear fit is extended in both scenarios to wavelengths up to 240 nm. Any errors thus introduced will be minor due to the small contribution of this wavelength range to the total N$_2$O loss at all three altitudes. Table 4 shows the results of the calculations.

Interestingly, the differences between scenario 1 and 2 are negligible for both fractionation constants and all altitudes. More surprising is the small altitude dependence of ϵ. There is barely any variation in ϵ at 20 km and at 40 km due to the change of actinic flux. The minute increase of $|\epsilon|$ with altitude is in line with previous qualitative considerations which postulated an increase of $|\epsilon|$ with altitude due to the decreasing influence of O$_3$ absorption in the Hartley band (Yoshida and Toyoda, 2000). The negligible difference between scenarios 1 and 2 is a consequence of the different spacing between individual rotational lines in the Schumann-Runge bands (≈ 175 to ≈ 200 nm) and the vibrational structure in the N$_2$O UV absorption spectrum (≈ 170 to ≈ 190 nm).

7. Conclusions

The new photolysis measurements at 185 nm have demonstrated for the first-time heavy isotope depletions in the residual gas of N$_2$O photolysis experiments. The absorption cross-sections of N$_2$O species with isotopic substitutions at the terminal positions of the molecule are larger than for the most abundant 14N$_2^{16}$O isotopologue, corresponding to an inverse kinetic isotope effect. In contrast, isotope enrichments are observed at the central nitrogen position as found at longer wavelengths in other studies.

Taken together with measurements of “single wavelength photolysis” at 193.3 nm and of broadband photolysis by a D$_2$ lamp with a median wavelength for N$_2$O photolysis of 190 nm, these results serve to validate existing VUV spectroscopic measure-
ments of 15N isotopomers in the wavelength range from 173 to 197 nm. However, most of the atmospheric N$_2$O photolysis occurs at wavelengths from 195 to 205 nm, warranting an extension of the high-resolution spectroscopic analyses of isotopically substituted N$_2$O species to longer wavelengths. This should cover the whole range of stratospherically relevant temperatures (200 to 300 K) and should also include 17O and 18O isotopologues. For the moment, the existing experimental data can be used to create a comprehensive view of the wavelength dependence of isotope fractionation in N$_2$O photolysis. A linear fit to the data in the range from 190 to 220 nm describes the existing measurements of $^{15}\varepsilon$, $^{15}\varepsilon_1$, $^{15}\varepsilon_2$ and $^{18}\varepsilon$ quite well (Table 3).

An estimation of the dependence of fractionation constants on changes of actinic flux with altitude has shown that the average fractionation constants are only negligibly affected between 20 and 40 km. The contribution of isotopic fractionation by photolysis in the region of O$_2$ Schumann-Runge bands can be well approximated by an extension of the linear fit derived from the photolysis experiments.

Acknowledgement. Many thanks to Ken Minschwaner for the actinic flux data, to Matt Johnson for the results from the HP theory calculations, to Mathias Richter for the D$_2$ lamp spectrum, to John Crowley for spectroscopic measurements and to Lukas Baumgartner for access to the Prism II mass spectrometer. This paper also benefited from numerous useful discussions with these colleagues as well as valuable contributions from Christoph Brühl, Terry Dillon, Ralf Dreiskemper, Abraham Horowitz, Jeff Johnston, Hannelore Keller-Rudek, Tae Siek Rhee and Verena Trautner.

References

Mérianne, M. F., Coquart, B., and Jenouvrier, A.: Temperature effect on the ultraviolet absorp-

Reader, J., Sansonetti, C. J., and Bridges, J. M.: Irradiances of spectral lines in mercury pencil
Wavelength dependence of isotope fractionation

J. Kaiser et al.

Wavelength dependence of isotope fractionation

J. Kaiser et al.

Table 1. Fractionation constants for N$_2$O photolysis at 185 nm obtained by different ways of calculation as described in the main text. Errors represent one standard deviation. The y-axis offset of zero for the “mean direct” values corresponds to the calculation of ε from $\ln(1 + \delta)/\ln \gamma$.

<table>
<thead>
<tr>
<th></th>
<th>“mean direct”</th>
<th>“Rayleigh plot”</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ε</td>
<td>y-axis offset</td>
<td>ε</td>
<td>y-axis offset</td>
<td>r^2</td>
</tr>
<tr>
<td>$^{15}\varepsilon$</td>
<td>-4.4 ± 0.5</td>
<td>0</td>
<td>-4.5 ± 0.2</td>
<td>0.0 ± 0.2</td>
<td>0.989</td>
</tr>
<tr>
<td>$^{15}\varepsilon_1$</td>
<td>12.2 ± 1.2</td>
<td>0</td>
<td>10.3 ± 0.3</td>
<td>-1.5 ± 0.5</td>
<td>0.992</td>
</tr>
<tr>
<td>$^{15}\varepsilon_2$</td>
<td>-20.7 ± 1.3</td>
<td>0</td>
<td>-18.6 ± 0.5</td>
<td>1.7 ± 0.7</td>
<td>0.994</td>
</tr>
<tr>
<td>$^{18}\varepsilon$</td>
<td>4.2 ± 0.5</td>
<td>0</td>
<td>3.7 ± 0.1</td>
<td>-0.3 ± 0.2</td>
<td>0.990</td>
</tr>
</tbody>
</table>
Table 2. Fractionation constants for N$_2$O photolysis with broadband light sources

<table>
<thead>
<tr>
<th>ε/$%_\text{‰}$</th>
<th>D$_2$ lamp</th>
<th>HgXe lamp</th>
<th>Sb lamp, 200 nm filter</th>
<th>Sb lamp, 214 nm filter</th>
<th>Sb lamp, 220 nm filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{15}\varepsilon$</td>
<td>-20.0 ± 0.1</td>
<td>-48.9 ± 1.5</td>
<td>-39 ± 7</td>
<td>-59 ± 10</td>
<td>-69 ± 5</td>
</tr>
<tr>
<td>$^{15}\varepsilon_1$</td>
<td>-8.4 ± 0.4</td>
<td>-28.1 ± 2.1</td>
<td>n.a.a</td>
<td>-41 ± 7</td>
<td>-43 ± 3</td>
</tr>
<tr>
<td>$^{15}\varepsilon_2$</td>
<td>-31.4 ± 0.3</td>
<td>-69.5 ± 2.8</td>
<td>n.a.a</td>
<td>-74 ± 13</td>
<td>-95 ± 7</td>
</tr>
<tr>
<td>$^{18}\varepsilon_1$</td>
<td>-15.9 ± 0.1</td>
<td>-46.9 ± 1.9</td>
<td>-43 ± 8</td>
<td>-52 ± 9</td>
<td>-61 ± 5</td>
</tr>
<tr>
<td>ln $\hat{\gamma}^b$</td>
<td>-1.2</td>
<td>-0.39</td>
<td>-0.040</td>
<td>-0.034</td>
<td>-0.076</td>
</tr>
</tbody>
</table>

an.a.: not analysed

b\(\hat{\gamma}\): maximum degree of conversion
Table 3. Parameters for a y-error weighted linear fit of the wavelength dependence of ε derived from the results of N_2O photolysis experiments (Fig. 3): $\varepsilon = \varepsilon(200 \text{ nm}) + \frac{\partial \varepsilon}{\partial \lambda}(\lambda - 200 \text{ nm})$

<table>
<thead>
<tr>
<th>ε</th>
<th>$\frac{\partial \varepsilon}{\partial \lambda}$ (%)</th>
<th>2σ</th>
<th>$\varepsilon(200 \text{ nm})$ (%)</th>
<th>2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{15}\varepsilon$</td>
<td>-1.57</td>
<td>0.03</td>
<td>-34.1</td>
<td>0.2</td>
</tr>
<tr>
<td>$^{15}\varepsilon_1$</td>
<td>-1.18</td>
<td>0.04</td>
<td>-19.2</td>
<td>0.2</td>
</tr>
<tr>
<td>$^{15}\varepsilon_2$</td>
<td>-1.94</td>
<td>0.05</td>
<td>-48.1</td>
<td>0.4</td>
</tr>
<tr>
<td>$^{18}\varepsilon$</td>
<td>-1.48</td>
<td>0.03</td>
<td>-28.6</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Table 4. Calculated fractionation constants for N₂O photolysis at 20, 40 and 80 km (US standard atmosphere, solar zenith angle: 30°)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>ε(20 km)</th>
<th>ε(40 km)</th>
<th>ε(80 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹⁵ε₁/‰</td>
<td>1</td>
<td>−21.88</td>
<td>−22.56</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>−21.88</td>
<td>−22.53</td>
</tr>
<tr>
<td>¹⁵ε₂/‰</td>
<td>1</td>
<td>−52.57</td>
<td>−53.52</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>−52.57</td>
<td>−53.63</td>
</tr>
</tbody>
</table>
Fig. 1. Rayleigh fractionation plot (panel a) of ln(1 + δ) vs ln y and directly calculated fractionation constants ε (panel b) for photolysis with low-pressure Hg(Ar) lamps at 185 nm. y is the remaining N$_2$O fraction. Fractionation constants for the terminal and central nitrogen positions in the N$_2$O molecule are designated $^{15}\varepsilon_1$ and $^{15}\varepsilon_2$; the 18O fractionation is represented by $^{18}\varepsilon$ and the average 15N fractionation by $^{15}\varepsilon = (^{15}\varepsilon_1 + ^{15}\varepsilon_2)/2$. The corresponding δ values are $^{1}\delta^{15}$N, $^{2}\delta^{15}$N, δ^{18}O and δ^{15}N. Two different lamps were used at operating currents of 10 and 18 mA, with or without nitrogen flushing. Errors from N$_2$O extraction and isotope analysis are smaller than the symbol size, unless indicated.
Fig. 2. Relative N_2O photolysis rates for filtered and unfiltered light from different broadband lamps. The photolysis rates have been normalised by division through their maximum values so that they can be compared more easily. The closely spaced O_2 Schumann-Runge bands account for the structured appearance of the D_2 lamp spectrum.
Fig. 3. Measured and theoretically predicted fractionation constants for N\textsubscript{2}O photolysis at room temperature (unless indicated: continued
mass spectrometry: + Johnston et al. (1995)
× Rahn et al. (1998)
■ this paper, 301 K
▲ this paper
← Röckmann et al. (2000)
♦ Röckmann et al. (2001)
● Toyoda et al. (2001a)

optical spectroscopy: △ Turatti et al. (2000)
○ Umemoto (1999)
□ Zhang et al. (2000)

weighted linear fit: - - - this paper

VUV spectroscopy: — Selwyn and Johnston (1981), 301 K
ZPE theory: — σ(Yoshino et al. (1984)), 0.0006 nm resolution
—— σ(Yoshino et al. (1984)), 0.5 nm adjacent average
— σ(Mérienne et al. (1990)), polynomial fit
— σ(Selwyn et al. (1977)), polynomial fit

HP theory: —— Johnson et al. (2001), 1 nm resolution

Fig. 3. Continued
Fig. 4. Comparison between fractionation constants derived from theoretical predictions, direct measurements and VUV spectroscopy in the range from 184 to 194 nm. The same symbols as in Fig. 3 have been used, but the high-resolution ZPE calculation has been omitted for clarity.