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Abstract

The mechanism of ice nucleation to form Type 2 PSCs is important for controlling the
ice particle size and hence the possible dehydration in the polar winter stratosphere.
This paper probes heterogeneous ice nucleation on sulfuric acid tetrahydrate (SAT).
Laboratory experiments were performed using a thin-film, high-vacuum apparatus in5

which the condensed phase is monitored via Fourier transform infrared spectroscopy
and water pressure is monitored with the combination of an MKS baratron and an
ionization gauge. Results show that SAT is an efficient ice nucleus with a critical ice
saturation ratio of S∗

ice = 1.3 to 1.02 over the temperature range 169.8–194.5 K. This
corresponds to a necessary supercooling of 0.1–1.3 K below the ice frost point. The10

laboratory data is used as input for a microphysical/photochemical model to probe the
effect that this heterogeneous nucleation mechanism could have on Type 2 PSC for-
mation and stratospheric dehydration. In the model simulations, even a very small
number of SAT particles (e.g. 10−4 cm−3) result in ice nucleation on SAT as the dom-
inant mechanism for Type 2 PSC formation. As a result, Type 2 PSC formation is15

more widespread, leading to larger-scale dehydration. The characteristics of the clouds
are controlled by the assumed number of SAT particles present, demonstrating that a
proper treatment of SAT is critical for correctly modeling Type 2 PSC formation and
stratospheric dehydration.

1. Introduction20

Polar stratospheric clouds (PSCs) have been observed for over a century (Stanford
and Davis, 1974). However, it was not until the latter half of the twentieth century
that their relevance to atmospheric chemistry was realized (Crutzen and Arnold, 1986;
Solomon et al., 1986). For example, PSCs serve as surfaces upon which heteroge-
neous reactions occur that convert nonreactive halogen species to photochemically25

reactive forms that participate in the catalytic destruction of ozone (McElroy et al.,
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1986; Molina, 1991). In addition, PSCs play a pivotal role in the redistribution of chem-
ical species throughout the stratosphere. Specifically, the sedimentation of large PSC
particles can result in the irreversible removal of HNO3. This process of denitrification
can enhance ozone loss by delaying the sequestration of ozone-destroying chlorine
species (Toon et al., 1986). Moreover, the sedimentation of PSCs can result in dehy-5

dration by removing H2O, with possible consequences for subsequent PSC formation,
the hydrogen oxide (HOx) budget, and the stratosphere’s radiation balance (Mancini
et al., 1992; Schiller et al., 1996). Finally, as the PSCs fall, they can release these
chemical species back into the atmosphere at lower altitudes.

Polar stratospheric clouds are commonly divided into two classes based on their for-10

mation temperature and composition (Browell et al., 1990; Turco et al., 1989). Type 1
PSCs contain HNO3 and form at approximately 190 to 195 K. Type 1 clouds are further
separated into at least two subdivisions depending on whether the HNO3 is in crys-
talline form (Type 1a), presumably as nitric acid trihydrate (NAT) or nitric acid dihydrate
(NAD), or in solution as ternary HNO3/H2O/H2SO4 (Type 1b). The second Type of15

PSC (Type 2) is composed of water ice and forms at temperatures near the ice frost
point (∼188–190 K). This paper focuses on a possible formation mechanism for Type 2
PSCs.

There are currently several theories on how Type 2 PSCs are formed: (1) vapor de-
position of ice on top of NAT; (2) homogeneous nucleation of ice out of H2SO4/H2O,20

H2SO4/HNO3/H2O, or HNO3/H2O liquid aerosol; and (3) heterogeneous nucleation of
ice out of liquid aerosol containing insoluble nuclei such as mineral oxides or soot.
Of these theories, the second is perhaps the most commonly invoked. However,
homogeneous nucleation of ice out of solutions such as H2SO4/H2O, HNO3/H2O, or
H2SO4/HNO3/H2O requires supercooling on the order of 2–3 K below the ice frost25

point (Bertram et al., 1996; Chang et al., 1999; Jensen et al., 1991; Koop et al.,
1998; Middlebrook et al., 1993; Tabazadeh et al., 1997a, 1997b). In contrast, theo-
retical work suggests that the third nucleation mechanism, heterogeneous nucleation
in aqueous solutions containing solid cores, may occur at temperatures warmer than
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those required for homogeneous nucleation (DeMott et al., 1997; Jensen and Toon,
1997; Sassen and Benson, 2000). However, there is limited laboratory data available
to support these claims (Chen et al., 2000; Zuberi et al., 2001), all of which has focused
on conditions and heterogeneous nuclei that are relevant to the troposphere. Finally,
Barone et al. (1997) observed that the nucleation of ice on NAT surfaces with a thin5

aqueous nitric acid layer on top requires a supercooling of ∼2 K below the ice frost
point.

In this paper, we report on the possibility of a fourth nucleation mechanism for Type 2
PSCs, vapor deposition of ice on top of sulfuric acid tetrahydrate (SAT). While there is
field (David et al., 1998; Dye et al., 1992), laboratory (Anthony et al., 1995; Carleton10

et al., 1997; Koop et al., 1997), and theoretical (Luo et al., 1994) evidence that back-
ground sulfate aerosols often remain liquid down to very low temperatures, this is not
always the case. Results from both the laboratory (Iraci et al., 1995; Koop et al., 1995;
Middlebrook et al., 1993; Molina et al., 1993) and the field (Beyerle et al., 2001; Gobbi
and Adriani, 1993; Larsen et al., 1995; Nagai et al., 1997; Rivière et al., 2000; Rosen et15

al., 1993; Sassen et al., 1994) suggest that sulfate aerosols can and do, on occasion,
exist in a frozen state. According to the H2SO4/H2O bulk phase diagram (Gable et al.,
1950), SAT is the thermodynamically stable form of such aerosols under stratospheric
conditions.

To address whether or not SAT could act as an effective ice nucleus, we have per-20

formed isothermal ice nucleation experiments on SAT films. In these studies, the satu-
ration ratio with respect to ice is increased incrementally while we probe for ice nucle-
ation using transmission Fourier transform infrared (FTIR) spectroscopy. The results
of these laboratory experiments have been incorporated into a microphysical model to
assess whether ice nucleation on SAT could play an important role in the stratosphere.25

Specifically, simulations with a variety of assumed SAT particle concentrations have
been performed to test the effect of this nucleation mechanism on Type 2 PSC exis-
tence temperatures, characteristics (e.g. ice particle radii and number concentration),
and stratospheric dehydration.
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2. Experimental

2.1. Thin-film apparatus

Experiments were performed using a thin-film, high-vacuum apparatus similar to that
previously described in Fortin et al. (2002) and shown schematically in Fig. 1. Briefly,
a silicon wafer (2.5 cm diameter, 1 mm thick) is supported on a copper mount that is5

in thermal contact with a liquid nitrogen reservoir. A stainless steel vacuum jacket iso-
lates the cold finger from the remainder of the chamber; thereby ensuring the mount
is the only exposed cold surface. Temperature is controlled by heating an annular re-
sistive Kapton heater located between the copper mount and the cold finger via use of
a Eurotherm temperature controller. The temperature is measured using T-type ther-10

mocouples that are attached to the copper mount at two different locations and are
monitored by a PC utilizing LabView data collection software. The thermocouples are
calibrated at the end of each experiment via reference to the ice frost point (Marti and
Mauersberger, 1993). The H2O pressure is adjusted until the integrated area of the
ice infrared libration peak at 779–879 cm−1 is constant, indicating that the ice film is no15

longer growing or evaporating. Once the necessary correction (usually less than 2 K)
is applied, temperatures are accurate to within either ±0.2 K or ±0.4 K, depending on
conditions. For the H2O source, a liquid H2O reservoir (HPLC Grade, Fisher Scien-
tific) is purified at the start of each day by freezing the bulb in a liquid nitrogen bath
and pumping off any gaseous impurities. The reservoir is then thawed and the vapors20

are introduced into the chamber through a leak valve. Condensed-phase species are
monitored with a Nicolet 740 FTIR spectrometer. For each experiment, the spectral
resolution is 8 cm−1 and spectra are collected approximately every five seconds. Fi-
nally, water pressure is measured by a combination of an MKS Baratron gauge and a
calibrated ionization gauge, both of which are monitored with the same PC used for25

the thermocouples. A calibrated UTI 100C quadrupole mass spectrometer is used to
verify that H2O is the only gas-phase species present in the chamber, and can also
be used to measure H2O pressure. The estimated error for pressure measurements
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ranges from ±2% to ±10%, depending on the gauge used and the specific experimen-
tal conditions.

2.2. Sulfuric acid tetrahydrate films

SAT films are made in situ as illustrated in Fig. 2, which shows spectra at various
points during the preparation of a film. First, SO3 vapor is deposited on top of the5

silicon wafer at approximately 110 K (spectrum A). The vapors over a reservoir of solid
SO3 (Aldrich Chemical Co.) are introduced into the chamber via a separate leak valve
for this purpose. Next, approximately 1–1.5µm of ice is deposited on top of the SO3

(spectrum B). The film is then warmed at 5 K min−1 to approximately 215 K to form a
liquid sulfuric acid film (spectrum C). The H2SO4 film is then cooled in presence of H2O10

to 170 K, at which point both ice and SAT are crystallized (spectrum D). The addition
of H2O prevents the formation of sulfuric acid monohydrate (SAM). The film is then
warmed in the absence of H2O to either 180, 185, or 190 K. The ice evaporates, leaving
behind a SAT film (spectrum E). The film shown in spectrum E compares very well
to previously published spectra for SAT (Middlebrook et al., 1993; Nash et al., 2000;15

Zhang et al., 1993), with prominent peaks at 1077 cm−1 (SO2−
4 asymmetric stretch),

1730 cm−1 (H3O+ asymmetric bend), and 3148 cm−1 (OH stretch). At the end of an
experiment, the usual procedure is to warm the film to 215 K to reform a liquid H2SO4
film, which is then recrystallized to SAT following the above procedure. However, on
five different occasions the SAT film was regenerated by merely warming to 190 K to20

drive off the condensed ice. Once the H2O had been pumped away, the SAT film could
be cooled to a desired temperature in preparation for a new experiment. It is important
to note that these two distinct treatments of the SAT film do not appear to affect the
results.
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2.3. Procedure

In each experiment, the temperature is set and allowed to stabilize. Water vapor is
then introduced into the chamber. The water pressure is increased incrementally while
the film is monitored with transmission FTIR spectroscopy for signs of ice. Condensed
ice is indicated by absorption bands at 3220 cm−1, 1690 cm−1 and 820 cm−1, which5

correspond to the OH stretch (νs), the HOH bend (ν2), and the hindered rotation (or
libration) (νL), respectively (Eisenberg and Kauzmann, 1969). The ice film is then
allowed to grow so that an ice frost point calibration can be performed. Finally, the
film is reprocessed in one of the two manners described above to prepare for another
experiment.10

3. Results and discussion

Figure 3a shows select spectra from a typical experiment conducted at 173.3 K. Spec-
trum 1 is that of the SAT film at the start of the experiment prior to introducing additional
H2O into the chamber. The H2O pressure (PH2O) at this point was less than 1 × 10−6

torr. Water vapor was then introduced into the chamber to a pressure of PH2O = 1.215

× 10−5 torr. After approximately nineteen minutes at this pressure, spectrum 2 was
obtained, showing no signs of ice growth. The experiment continued by slowly increas-
ing the H2O pressure, waiting at least two minutes between each pressure increase.
Spectrum 3 was obtained twenty-five minutes into the experiment at PH2O = 1.4 × 10−5

torr. Again, no ice growth is apparent. Spectrum 4 was obtained after increasing the20

pressure to PH2O = 1.5 × 10−5 torr. At this point, the appearance of the OH stretch
region begins to change, becoming sharper than in the previous spectrum, an indica-
tion of crystalline ice. Spectrum 5 was taken just four minutes later, without adjusting
the H2O pressure. The OH stretch region has become more crystalline in appearance
as the ice has continued to grow in. Ice growth is also indicated by PH2O, which has25

dropped to 1.4 × 10−5 torr as the vapor continues to condense on the growing ice film.
873
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While the spectra shown in Fig. 3a do show ice growth, spectral changes are more
readily seen in spectral subtractions, such as those shown in Fig. 3b. Here, spectrum 1
has been subtracted from each subsequent spectrum, and is therefore not shown. The
remaining subtraction results are labeled accordingly. These results verify the above
observations. No signs of ice growth are apparent until spectrum 4. At this point, peaks5

corresponding to the OH stretch (3220 cm−1) and the libration (820 cm−1) for ice are
evident. These peaks become more conspicuous as the ice film continues to grow
(spectrum 5).

Although both the spectra and spectral subtractions are valuable for determining the
presence of ice, we do not use them to determine the onset of nucleation. Rather,10

we use integrated areas of the two ice features previously discussed. Figure 4 shows
the integrated area of the libration at 779–879 cm−1 plotted as a function of time for
the same experiment shown in Fig. 3. The integrated area of the OH stretch at 3181–
3282 cm−1 plotted as a function of time is also used, but is not shown here. Both
integration areas yield similar results. In addition to the integrated peak area, Fig. 415

also shows the saturation ratio with respect to ice (Sice) plotted as a function of time.
Sice is defined as

Sice =
PH2O(T )

Peq(T )
, (1)

where PH2O(T ) is the experimental H2O pressure for some experimental temperature
T and Peq(T ) is the equilibrium vapor pressure of ice at that same temperature, as20

determined using the expression of Marti and Mauersberger (1993). Figure 4 shows
that as Sice is increased, no ice nucleates until some critical saturation ratio (S∗

ice) is
reached. At this point, the integrated area increases dramatically, indicating ice has
nucleated and is growing. It is this increase in the integrated area profile that is used
to determine S∗

ice. For this experiment, S∗
ice = 1.3 ± 0.1, corresponding to a critical25

H2O pressure (P ∗
H2O) of 1.5 × 10−5 torr. The error in S∗

ice is determined by propagating
the estimated errors in both the water pressure measurement (±2% to ±10%) and the
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temperature measurement (± 0.2 to ± 0.4 K).
The results for S∗

ice as a function of temperature are summarized in Fig. 5a. It can be
seen in this figure that SAT appears to be an efficient ice nucleus with S∗

ice = 1.02−1.3
over the temperature range 194.5–169.8 K. This corresponds to a necessary super-
cooling of only 0.1–1.3 K below the ice frost point. When compared to the 2–3 K su-5

percooling required for homogeneous nucleation (Bertram et al., 1996; Chang et al.,
1999; Jensen et al., 1991; Koop et al., 1998; Middlebrook et al., 1993; Tabazadeh et
al., 1997a, 1997b), our data indicates that vapor deposition of ice on SAT could be
a competitive nucleation mechanism. The second observation is that there is a slight
temperature dependence in S∗

ice, with S∗
ice increasing with decreasing temperature. The10

cause of this behavior is not entirely clear, although we offer one possible explanation
below.

For comparison, Fig. 5b contains the same S∗
ice data for ice on SAT in addition to S∗

ice
data for the vapor deposition of ice on silicon. Note the change in scale. These addi-
tional experiments were performed in the same manner as was previously described15

for ice on SAT but without a SAT film present. They were performed to verify that the
previously observed ice nucleation occurred on SAT rather than on any exposed silicon
or on the copper mount surfaces. It can be seen that at each temperature, S∗

ice for ice
on silicon is significantly higher than S∗

ice for ice on SAT. Therefore, vapor deposition of
ice is easier on SAT than on any other exposed surfaces that may exist in the apparatus20

and, as a result, will occur preferentially.
Using our experimentally determined S∗

ice data, it is possible to calculate a contact
parameter, m, between ice and SAT. The contact parameter is a measure of the de-
gree of matching between these two lattices. A perfect match is indicated by m = 1,
while a complete mismatch is indicated by m = −1. To calculate m, we use classical25

heterogeneous nucleation theory for nucleation on a planar substrate. Pruppacher and
Klett (1997) define the nucleation rate, J , as

J = Ae(−∆F
kT ), (2)
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where A is the prefactor, k is the Boltzmann constant, T is the temperature in Kelvin,
and ∆F is the free energy associated with critical-sized germ formation. For ice nucle-
ation, Fletcher (1962) estimated an A on the order of 1024 to 1027 cm−2 s−1. Following
this example, we use the approximations J = 1 cm−2 s−1 and A = 1025 cm−2 s−1 in our
calculations. Such approximations are justified by the fact that m is not very sensitive to5

either of these terms. For example, varying J or A by twenty-five orders of magnitude
changes m by ∼2%. By rearranging Eq. (2) we can calculate ∆F , which is related to
the experimentally determined S∗

ice by the following expression

∆F =
16πM2σ3

iv

3[RTρlnS∗
ice]2

f (m), (3)

where f (m) is a matching function, R is the universal gas constant, and M is the molec-10

ular weight (18.0152 g mol−1). The density of ice, ρ, was calculated as a function of
temperature using the expression of Pruppacher and Klett (1997)

ρ =
2∑

n=0

anT (◦ C)n, (4)

with a0 = 0.9167, a1 = −1.75 × 10−4, and a2 = −5.0 × 107. Finally, σiv is the surface
tension at the ice/vapor interface. The surface tension for both the ice/water and wa-15

ter/vapor interfaces exhibits a temperature dependence, the expressions for which are
available in the literature (Pruppacher and Klett, 1997). Unfortunately, we were unable
to find an explicit expression in the literature for the temperature dependence of σiv .
However, Pruppacher and Klett (1997) cite values of σiv = 104 erg cm−2 at 273 K and
σiv = 106 erg cm−2 at 233 K. To estimate the temperature dependence of σiv , we fit20

these two points with a straight line. Using the resulting expression

σiv = −5 × 10−2 ∗ T (◦ C) + 1.04 × 102, (5)

we were able to calculate σiv at each of our experimental temperatures. Our resul-
tant σiv values range from 109.2 to 107.9 erg cm−2 over the temperature range 169.8–
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194.5 K. By comparison, over the same temperature range, estimates of the temper-
ature dependence for the ice/liquid water interface yields values of 112–116 erg cm−2

(Drdla and Turco, 1991). Therefore, our estimate of the temperature dependence of
σiv does not seem unreasonable. By rearranging Eq. (3) and solving for f (m), m can
be calculated using5

f (m) =
(2 +m)(1 −m)2

4
. (6)

Solving Eq. (6) numerically results in a determination of m. The results of these calcu-
lations are summarized in Fig. 6.

Figure 6 shows that m ranges from 0.94 to 0.995 over the temperature range 169.8–
194.5 K. This temperature dependence in m is surprising. If m truly represents the10

lattice matching between SAT and ice, one would expect a single value for m. One
possible explanation for the observed temperature dependence could be that the crys-
tal structures change over our temperature range. At our warmest temperatures we
are confident that we are vapor depositing hexagonal ice. In contrast, at the colder
temperatures we may be vapor depositing some fraction of the ice as cubic ice. The15

literature lends some credence to this hypothesis. There is a significant body of ex-
perimental evidence that puts the transition temperature between vapor deposition of
hexagonal ice and vapor deposition of cubic ice at anywhere between 193 and 143 K
(Hobbs, 1974).

Since the temperature dependence in m mirrors that observed in S∗
ice (Fig. 5), an20

alternative explanation for the observed temperature dependence is that the behavior
in m is an artifact of the calculation. If we had neglected the temperature dependence
of either σiv or ρ, this might be the case. However, since we have accounted for
these dependencies in our calculations, we believe that the observed behavior is real,
and thus favor the former explanation. Regardless of the cause of the temperature25

dependence, the results reported here indicate that SAT is an efficient ice nucleus.
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4. Atmospheric implications

Since SAT is an effective ice nucleus, the vapor deposition of ice on SAT could com-
pete, and perhaps even dominate, the ice nucleation process in the formation of Type 2
PSCs. This, in turn, could significantly change our understanding of the existence tem-
perature and properties of these clouds. To investigate this further, we have employed5

a microphysical/photochemical model to simulate Type 2 PSC formation when the va-
por deposition of ice on SAT is invoked.

The model employed, the Integrated MicroPhysics and Aerosol Chemistry on Tra-
jectories (IMPACT) model, is discussed in detail elsewhere (Drdla, 1996; Drdla et al.,
2003). Briefly, the IMPACT model is a Lagrangian trajectory model that traces an10

individual air parcel as it moves through the atmosphere. It simulates the PSC micro-
physics (condensation, evaporation, sedimentation, nucleation, freezing, and melting),
heterogeneous chemistry, and gas-phase chemistry.

The default mechanism for water ice formation in the model is homogeneous freez-
ing of sulfate aerosol, using the rates of Tabazadeh et al. (2000). Heterogeneous15

nucleation can also be simulated. To include the heterogeneous nucleation of ice on
SAT in the model, the data in Fig. 6 was fit with the following expression

m(T ) = −0.468262 + (0.0144292 ∗ T ) + (−3.55968 × 10−5 ∗ T 2) (7)

where T is the temperature in Kelvin. Equation (7) is valid over the range 170 < T <
195 K. A prescribed number of SAT particles is assumed to be initially present, ranging20

from 1 cm−3 to 10−5 cm−3 in different simulations. Given the focus on Type 2 PSCs, no
other PSC formation mechanisms were included in these simulations.

The model runs examined Type 2 PSC formation and dehydration during the 1999–
2000 Arctic winter. Given the warmer temperatures in the Arctic than in the Antarctic,
Arctic Type 2 PSC formation is more difficult and therefore more likely to be sensitive25

to the assumed formation mechanisms. The winter of 1999–2000 was particularly cold
in the Arctic and some dehydration was observed (Herman et al., 2003; Schiller et
al., 2002). As in Drdla et al. (2003), a set of 2905 trajectories was used to provide
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complete coverage of the vortex for the entire winter. One limitation of these trajecto-
ries is that the UKMO analysis on which the trajectory temperatures were based was
1–2 K colder than other analyses during the coldest period of the winter (Drdla et al.,
2003). Therefore, the model Type 2 PSCs cannot be readily compared with observa-
tions. However, the sensitivity of the model results to the ice formation process can be5

investigated. Figure 7 demonstrates that adding ice nucleation on SAT to the simula-
tions allows Type 2 PSCs (newly formed, fully developed, evaporating, etc.) to exist at
warmer temperatures and, thus, occur more frequently. Results are plotted in terms of
optical extinction to facilitate comparison with satellite measurements. Optical extinc-
tions are calculated from the model size distributions using a Mie code (Steele et al.,10

1999). As Fig. 7a shows, if Type 2 PSCs can only form by homogeneous freezing, sig-
nificant supercooling with respect to the ice frost point (> 2 K) is required before Type 2
PSCs appear. Relatively few air parcels experience such cold temperatures, thereby
reducing the number of PSC events. Furthermore, these PSCs tend to sublimate at
cold temperatures since rapid dehydration lowers the frost point. (Determination of the15

ice frost point in Fig. 7 assumes a constant value of 5 ppmv H2O to mimic analyses ap-
plied to satellite data). On the other hand, nucleation on SAT permits Type 2 PSCs to
exist at temperatures very near the ice frost point (Fig. 7b). The number of Type 2 PSC
events is increased because more air parcels experience the required temperatures.
Furthermore, homogeneous freezing of ice is suppressed when ice is able to nucleate20

on SAT. Even when temperatures fall several degrees below the ice frost point, the high
supersaturations necessary for homogeneous freezing are prevented by water conden-
sation onto the existing ice. Therefore, ice nucleation on SAT fundamentally changes
the characteristics of the Type 2 PSCs at all temperatures. It is important to note that
the Type 2 PSCs above the ice frost point in Fig. 7b are real. Some are evaporating25

PSCs. Others are in air that has been rehydrated. The additional water vapor allows
Type 2 PSCs to persist at temperatures warmer than the 5 ppmv ice frost point shown
in Fig. 7.

Similar features, namely more widespread Type 2 PSCs with events near the ice frost
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point, were found for a wide range of assumed SAT particle concentrations. However,
the characteristics of the PSCs were strongly influenced by this assumption. Larger
SAT particle concentrations allow larger ice particle concentrations, smaller particle
radii, and larger extinctions. In turn, dehydration is affected, as shown in Fig. 8. De-
hydration is four times more frequent, with more than 40% of the vortex experiencing5

some dehydration for all simulations with SAT concentrations of 10−3 cm−3 or higher
concentrations (Fig. 8a). However, the dehydration associated with ice nucleation on
SAT is less intense than for homogeneous freezing. Whereas homogeneous freezing
causes dehydration that frequently exceeds 30% in individual air parcels, with nucle-
ation on SAT almost all the air parcels experience less than 30% dehydration, and10

many experience less than 10% dehydration. As a result, vortex- averaged dehydra-
tion only increases by a factor of two to three (Fig. 8b). Dehydration is strongest for
SAT concentrations near 10−2 cm−3, where the ice particle number and radius combine
to yield the most efficient dehydration.

It is important to note that none of these simulations produced realistic denitrification15

or Type 1 PSC formation. A mechanism for directly forming NAT particles is neces-
sary to reproduce these features. To confirm whether the results shown in Figs. 7
and 8 are applicable in more complete scenarios, an additional set of simulations was
created. In these simulations, Type 1 PSCs were allowed to form by heterogeneous
freezing of sulfate aerosols and ice nucleation was either turned off (m = 0.75) or20

turned on (m calculated using Eq. (7)). Again, ice nucleation on SAT produced much
more widespread Type 2 PSC formation and dehydration, and homogeneous freezing
of ice was suppressed. Therefore, even in more realistic scenarios, SAT particles are
present in sufficient concentrations for ice nucleation on SAT to control the character-
istics of Type 2 PSCs.25

Few observations exist that can be used to determine whether the model results
are more realistic with or without ice nucleation on SAT, in part because relatively few
studies have focused on Type 2 PSCs. However, POAM II satellite observations pro-
vide some information about the onset temperature of Type 2 PSCs (Fromm et al.,
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1999). Statistics of all Arctic POAM II Type 2 PSCs from 1993 to 1996 show an on-
set temperature near or above the ice frost point. These observations are qualitatively
more consistent with the model results in which ice nucleation on SAT is considered
(Fig. 7). Future work will exploit more detailed model/measurement comparisons to
provide better tests of the Type 2 PSC formation mechanisms.5

5. Conclusions

We have suggested an alternative formation mechanism for Type 2 PSCs, the vapor
deposition of ice on SAT. Our laboratory results show that SAT is an efficient ice nucleus
with S∗

ice = 1.3 − 1.02 over the temperature range 169.8 − 194.5 K. This corresponds
to a necessary supercooling of 0.1 − 1.3 K below the ice frost point. Comparison of10

our results to previous work on the homogenous nucleation of ice out of liquid solu-
tion implies that this nucleation mechanism could be competitive, and perhaps even
dominate, in Type 2 PSC formation.

Using these experimental results in the IMPACT model allows us to probe the effect
this heterogeneous nucleation mechanism could have on Type 2 PSC existence tem-15

perature, characteristics, and dehydration. The model simulations show ice nucleation
on SAT permits Type 2 PSCs to form with little supercooling, thus increasing the extent
of Type 2 PSCs relative to a simulation in which only homogeneous freezing is respon-
sible for ice formation. As a result, the extent of dehydration is increased, although the
severity of the dehydration is dependent upon the number of SAT nuclei assumed to20

be present.
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Fig. 1. Schematic diagram of the experimental apparatus.
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Fig. 2. Making a SAT film. SO3 is vapor deposited at 110 K (spectrum A). Ice is then deposited
on top of the SO3 (spectrum B). Warming the film at 5 K min−1 to 215 K forms a liquid H2SO4
film (spectrum C). Cooling in the presence of water vapor to 170 K crystallizes both ice and SAT
(spectrum D). Finally, warming the film evaporates the ice, leaving behind a SAT film (spectrum
E).
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Fig. 3. Spectral results for an ice deposition experiment at 173.3 K. The top panel (a) shows
selected IR spectra. The bottom panel (b) shows the results after spectrum 1 has been sub-
tracted out of each subsequent spectrum. In both panels, the spectra have been offset for
carity. Spectrum 1 is the initial SAT film with PH2O < 1 × 10−6 torr. As PH2O is increased, no ice

nucleation is apparent until spectrum 4 (PH2O = 1.5 × 10−5 torr). Ice features are more distinct
a few minutes later (spectrum 5) once the ice film has had a chance to grow.
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Fig. 4. Determination of the critical saturation ratio. The saturation ratio with respect to ice is
plotted vs. time for the experiment shown in Fig. 3 (dashed line). Also shown is the integrated
area 779 to 879 cm−1 plotted vs. time (solid line). Ice nucleation is indicated by a sharp increase
in the integrated area. The corresponding saturation ratio is referred to as the critical saturation
ratio, S∗

ice. For this experiment, S∗
ice = 1.3 ± 0.1.
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Fig. 5. Summary of experimental results. The top panel (a) shows critical saturation ratios
plotted as a function of temperature for all ice on SAT experiments. The bottom panel (b) com-
pares the results from ice on SAT experiments with the results from ice on silicon experiments.
In all cases, ice nucleation on silicon requires a higher S∗

ice. Error bars are determined by prop-
agation of measurement errors. Temperature error bars are on the order of the symbol size
(±0.2 − 0.4 K) and therefore are not shown.
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Fig. 6. Contact parameter results. The calculated contact parameter between ice and SAT is
plotted as a function of temperature for all experiments in this study. Error bars are determined
by propagation of errors. Temperature error bars are on the order of the symbol size (±0.2 −
0.4 K) and therefore are not shown.
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Fig. 7. Effect of the vapor deposition mechanism on PSC existence temperature. Results are
plotted as PSC extinction at one micron vs. temperature. Temperature is relative to the ice
frost point (dotted line) calculated assuming a constant 5 ppmv of water. Extinction is shown
for all model points at which T-Tice < 3 K. Type 2 PSCs (defined as PSCs in which > 1% of the
H2O is condensed as ice) are indicated by black points, while Type 1 PSCs are indicated by
gray points. The top panel (a) shows results for a simulation with homogeneous ice nucleation
alone. The bottom panel (b) shows results for a simulation in which ice nucleates on SAT, with
10−2 cm−3 SAT particles.
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Fig. 8. Sensitivity of dehydration to assumed SAT particle concentration. Results are for 437.5–
512.5 K potential temperature surfaces on 1 February 2000. At the lowest concentration shown
(10−5 cm−3), the results are indistinguishable from a simulation in which no SAT particles are
present. The top panel (a) shows the fraction of air parcels in the vortex experiencing any
dehydration (> 1%), moderate dehydration (> 10%), and severe dehydration (> 30%). The
bottom panel (b) shows the effect on the vortex-averaged dehydration.
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