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Abstract

This paper concerns an evaluation of ozone (O3) and planetary boundary layer (PBL)
dynamics over the complex topography of the Grenoble region through a combina-
tion of measurements and mesoscale model (METPHOMOD) predictions for three
days, during July 1999. The measurements of O3 and PBL structure were obtained5

with a Differential Absorption Lidar (DIAL) system, situated 20 km south of Grenoble
at Vif (310 m a.s.l.). The combined lidar observations and model calculations are in
good agreement with atmospheric measurements obtained with an instrumented air-
craft (METAIR). Ozone fluxes were calculated using lidar measurements of ozone ver-
tical profiles concentrations and the horizontal wind speeds measured with a Radar10

Doppler wind profiler (DEGREANE). The ozone flux patterns indicate that the diurnal
cycle of ozone production is controlled by local thermal winds. The convective PBL
maximum height was some 2700 m above the land surface while the nighttime residual
ozone layer was generally found between 1200 and 2200 m. Finally we evaluate the
magnitude of the ozone processes at different altitudes in order to estimate the pho-15

tochemical ozone production due to the primary pollutants emissions of Grenoble city
and the regional network of automobile traffic.

1. Introduction

The photochemical ozone production in and around large cities, a well documented
phenomena (Haagen-Smit et al., 1953), often leads to ozone concentrations that ex-20

ceed the limits set by the European legislation. Despite the high frequency of summer
smog episodes and the ozone effects on the human health and vegetation, the details
of this problem are still not well understood due to the complexity of the non-linear
ozone formation process as well as to the local and regional sources and atmospheric
flow patterns. Typically then the assessment and the prediction of summer ozone smog25

often needs to be based on a combination of measurements and mesoscale models,
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which in turn need to be validated during intensive field campaigns. In spite of the need
of such models to assess abatement scenarios, remarkably few models are operational
and further more are not often validated based on field measurements (Russel and De-
nis, 2000).

In this context, here we present temporal ozone formation obtained from the MET-5

PHOMOD model (Perego, 1999) in conjunction with an intensive field campaign applied
in the Grenoble region during July 2002.

It is well known that ozone is produced from Volatile Organic Compounds (VOC) and
Nitrogen Oxides (NOx) emissions under strong solar radiation. Recent studies (Ba and
Traimany, 2001) show that the traffic in Grenoble is increasing (e.g. 7% between 199710

and 1998) and it accounts for 57% of NOx and 37% of VOC in the total emissions
budget. The Grenoble region is often subject to high ozone concentrations (>90 ppb)
in the summertime. A pre-campaign experiment was conducted during the summer
(Grenoble-1998) in the southern region of the Grenoble valley where ozone concen-
trations of up to 110 ppb were observed. In addition there was a clear influence of15

the valley topography on ozone formation which highlighted the need to investigate the
flow dynamics (Couach et al., 1999). The Grenoble region is a deep Y shaped valley
with regionally complex topography (Fig. 1). In order to understand the influence of this
topography on the photochemical processes both modeling and 3D measurement ap-
proaches were simultaneously considered during the 1999 GRENOPHOT campaign20

(Couach et al., 2000). Ozone, NO, NO2 and HCHO (Jiménez et al., 2000) as well
as meteorological variables (wind, temperature, solar radiation and relative humidity)
were measured at fixed ground level stations. Different ozone vertical profiles and PBL
heights measurements were taken with the EPFL ozone LIDAR-DIAL system (Sime-
onov et al., 1999b), an instrumented aircraft (METAIR, see Neininger et al., 2001), and25

a wind profiler (i.e. DEGREANE, see S. A. D., 1999).
In this paper, we present results obtained during the first Intensive Observation Pe-

riod (IOP) of the summer of 1999 (25–27 July). During this observation period the
synoptic weather in the French Alps was dominated by northwesterly winds on 25 July,
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changing to southwesterly flows on 27 July at noon (Fig. 2). The wind speed at 5 km
altitude was approximately 16 m/s during the 26 July decreasing to around 9 m/s at
noon on 27 July. At the end of 27 July, an atmospheric front passed through bringing
thunderstorms, rain, and lower temperatures. In this paper the aircraft ozone mea-
surements and the various meteorological measurements in the Grenoble region are5

first used to assess the model predictions (meteorology and chemistry) and then the
validated model is used to understand the dynamics and the photochemical processes
of the ozone spatial and temporal patterns in Grenoble region (Couach et al., 2002a).

2. Field measurements

The following field measurements obtained during GRENOPHOT 99 are used in this10

paper.

2.1. Ground level measurements

Ozone was measured at two stations at 30 km and respectively 20 km South of Greno-
ble city: St-Barthélémy at 620 m a.s.l. and Vif at 310 m a.s.l. (see Fig. 1). At St-
Bartélémy the ozone was measured using a Dasibi ozone point monitor (+/- 1 ppb15

precision), which is based on ozone UV absorption at 254 nm. Ozone measurements
at Vif were performed with the Differential Optical Absorption Spectroscopy (DOAS
2000 Thermo Environmental Instr.) system. The DOAS system uses the ozone UV
differential absorption (267–299 nm) along a 1000 m integrated optical path with +/-
1 ppb precision (Jiménez et al., 2001).20

2.2. LIDAR measurements

The LIDAR (LIght Detection And Ranging) system was collocated with the DOAS sys-
tem at Vif in order to measure the vertical ozone profiles. The near ground level ozone
(the first point of the vertical profile) is the ozone concentration as measured with the
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DOAS system. The EPFL ground based LIDAR is a mobile unit that has already been
used in various European field campaigns (Calpini et al., 1997). This LIDAR system
(schematic layout in Fig. 3) is an ozone DIAL (DIfferential Absorption LIDAR) system
based on the ozone differential absorption at two wavelengths λon = 289 nm (more
absorbed by ozone: σO3

= 1.5 E-18 cm2) and λoff = 299 nm (less absorbed by ozone:5

σO3
= 4.1E-19 cm2). Based on a Nd:YAG laser (1064 nm), two quadrupled crystals (for

obtaining 266 nm) and two Raman high pressure D2 and H2 cells, the 289 and 299 nm
beams are emitted sequentially in the atmosphere as “on” and “off” wavelengths, with
a repetition rate of 10 Hz. The average of 4000 shots (corresponding to 6 min 40 s)
was used to obtain each O3 profile. The reception part consists of a 20 cm Newtonian10

telescope for short-range (0.15–1 km) detection and a 60 cm Cassegrain telescope
for long-range measurements (0.8–3 km). Ultra compact photomultiplier tubes (Hama-
matsu model 5783-06) in analogue detection mode (Simeonov et al., 1999b) are used
with a 12 bit 20 MHz ADC, (LICEL transient recorder) unit (i.e. 7.5 m vertical resolu-
tion). Daytime operation is possible by using two solar blind filters and one holographic15

band pass filter for each telescope (Simeonov et al., 1999a). Due to the differential cal-
culation the retrieval of the ozone vertical profile does not require external calibration.
At the same time as the ozone measurements are obtained the total backscattered
light at λoff = 299 nm by the aerosols (Mie aerosols scattering) and by the nitrogen
and oxygen molecules (Rayleigh molecular scattering) is collected. The total (Mie +20

Rayleigh) over molecular (Rayleigh) ratio allows the estimation of the evolution of PBL
height, the structure of the residual layer and the mixed layer and the relative aerosol
concentrations. The PBL height was estimated as the altitude corresponding to the
largest decreasing step on the backscatter profile using 299 nm. The exact PBL height
was taken to be the inflexion point of the 2nd derivative of the ratio of total/molecular.25
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2.3. Wind profiler measurements

At Vif, next to the LIDAR system, a RADAR Doppler wind profiler system (from DE-
GREANE: Model PCL1300, Frequency emission: 1238 MHz) was used to obtain three
dimensional wind speed measurements up to about 3000 m with a vertical resolution of
∼100 m and with a precision of 1 m/s for the wind speed and 10◦ for the wind direction5

(Ruffieux, 1999). Using the wind measurements above Vif we estimated the horizon-
tal ozone “fluxes” (z) (ppb km/h) by multiplying the 30 min LIDAR ozone profiles O3 (z)
(ppb) with the horizontal wind velocity (u) (z) (km/h) at different altitudes (Quaglia et
al., 1999).

2.4. Aircraft measurements10

The instrumented Swiss aircraft METAIR took part in the GRENOPHOT campaign on
26 and 27 July 1999. There was 1 flight in the morning and 1 flight in the afternoon. The
aircraft typical path (see Fig. 1) was done at various altitudes in the Y valleys. The air
pollutants concentrations (O3, NO2, NOx, aerosols > 0.3µm and water vapor mixing
ratio) and meteorological point measurements (wind, pressure, temperature, relative15

humidity) were obtained using standard equipment installed in the aircraft (Neininger
et al., 2001).

2.5. Modeling approach

The air quality model METeorological PHOtochemistry MODel (METPHOMOD) is
used here to investigate the spatial and temporal patterns of air pollution during20

GRENOPHOT 1999. This model has both a meteorological module, which calculates
wind, potential temperature and humidity fields, as well as an atmospheric chemistry
module to compute transport and chemical reactions (Perego, 1999). The chemi-
cal module is based on the Regional Atmospheric Chemical Mechanism (RACM), a
lumped species mechanism (Stockwell et al., 1997).25
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Two different modeling domains were used. The model was applied first on a large
domain (240 km horizontal side) composed of 40 × 40 cells of 6 × 6 km. This field
covers the Rhône-Alpes region and its main cities. The results on the large domain
are used to specify the boundary conditions for a higher resolution domain through
one-way nesting. This smaller horizontal domain covers a rectangle of 68 × 78 km,5

centered on Grenoble and aligned north-south, with 34 × 39 cells of 2 × 2 km. In the
vertical direction a system of Cartesian coordinates, identical for both the large and
the small domain, is used with 26 levels with increasing heights from 50 m (ground)
to 1000 m at 8000 m at the top of the simulated domain. The meteorological bound-
ary conditions (wind direction and speed, temperature, air humidity and the upper layer10

pressure) were obtained from Swiss Meteorological Institute synoptic-scale model (Ma-
jewski, 1991).

The emission inventory distinguishes between surface (9 sectors), linear (motorways
and highways) and point emissions. These emissions are also space and time-resolved
(distinction is made between weekdays and Sunday). The inventory includes emis-15

sions of NOx, CO, CH4, and 23 non-methane hydrocarbon species (NMHC). These
emissions are lumped into 32 VOC classes as required by RACM mechanism. The bio-
genic emissions are estimated based on the surface emission inventory of the forest
landscape. Three-dimensional photochemical model simulations were performed for
the 3-day IOP of 25 to 27 July 1999. The meteorological and chemical model outputs20

were compared with ground and three-dimensional measurements performed during
the IOP (25–27 July) when the ozone concentrations reached up to 95 ppb (Couach et
al., 2002a). The Figs. 4 and 5 show the temperature and ozone model and the aircraft
measurements comparison for 4 flights (∼3 h per flight) in morning and afternoon over
the Grenoble area at various altitudes (typical flight path in Fig. 1). In Fig. 6 the vertical25

ozone measured by LIDAR and aircraft as well as the output of model are compared
above Vif at 14:00 LT on 26 July. There is generally good agreement between the
model calculations and the lidar measurements as well as with the standard instru-
mented aircraft measurements. Based on these results, we believe it is appropriate to
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combine the LIDAR measurements with the model outputs for the following analysis
and interpretation.

3. Results and discussions

Based on the initial satisfactory comparisons of model output with LIDAR and aircraft
we now consider the three days of continuous measurements of LIDAR and wind pro-5

filer above Vif, the aircraft flights as well as the METPHOMOD model results for the
July IOP. The estimation of the ozone plume dynamics and the evolution of the PBL
height and its sub-layers structure are now discussed in detail.

3.1. Time evolution of the PBL structure and of the vertical ozone distribution

In Fig. 8, we present the three days of continuous measurements as follows: (a) wind10

direction, (b) wind speed, (c) LIDAR backscatter ratio (total/molecular) and (d) ozone
concentration as measured by the ozone DIAL LIDAR up to 2900 m above Vif. The
wind patterns are clearly dominated by the diurnal thermal regime. The daytime winds
in the valley were typically from 7 to 10 m/s northerly wind regime which developed up
to 1800 m between 08:00–09:00 LT (local time) and 19:00–20:00 LT, while the night-15

time winds are rather weak, 1–2 m/s, blowing from the south. Between 1800 m up
to 2900 m we observe a low wind speed (1–2 m/s) regime from the southwest which
increased on 27 July up to 10 m/s (see Figs. 7a and b). Above these various layers, the
synoptic wind is northerly on 25 and 26 July, changing to the southwest on July 27 (see
Fig. 2). Also on July 27, in spite of the strong southwesterly wind, the usual northerly20

thermal wind developed near the land surface at sunrise and increased slowly reaching
1800–2000 m at 18:00 LT.

The LIDAR backscatter ratio (total/molecular) at 299 nm is proportional to the aerosol
load which we consider a good tracer for estimating the time evolution and the struc-
ture of the PBL (Couach et al., 2002b; Menuet et al., 1999; Parlange et al., 1995). In25
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Fig. 7c, we show the backscatter ratio (total/molecular) at 299 nm. In the same figure
the two white stars correspond to the PBL height as obtain considering both water va-
por and PM10 aircraft measurements. The black line is the iso-contour at 1.2 backscat-
ter ratio (i.e. 20% of Rayleigh sky backscatter) delimitating the maximum PBL height.
The green iso-contour line at 1.3-backscatter ratio value (i.e. 30% of Rayleigh sky5

backscatter) is determined based on the aircraft PBL estimation. The average rate of
PBL growth (dh/dt) is 150 to 200 m/h. The aerosol backscatter allows the identification
of different layers in the structure of the PBL: the surface layer (SL), the mixed layer
(ML) and the aerosol accumulation layer (AL). The AL is located between 1600 and
2900 m on average for 26 and 27 July with regular convection-advection exchanges10

with the SL. Strong advection occurs on 27 July between 03:00 and 08:00 LT in the
morning which is followed later by thermal convection.

The PBL height over the Grenoble region is high with maximum values reaching
2700 m above the land surface in daytime (Prévôt et al., 2000; Wotawa and Kromp-
Kroft, 1999). The daily evolution of the PBL and its sub-layers structure over Vif (310 m15

a.s.l.), as derived from the LIDAR data set and validated by aircraft, is also supported
by the time evolution of the potential temperature profiles of the model at Vif (Fig. 8).
In the Figs. 8a and 8b the model derived potential temperatures profiles are shown
at night while the Figs. 8c and d present the afternoon profiles on 26 and 27 July.
One can observe that the low surface inversion (night PBL collapse) while the top of20

convective layer is located around 2500 m a.s.l. On 26 July at 14:00 LT note that the
capping inversion is at ∼1500 m a.s.l. and it is less pronounced on 27 July. Later in the
afternoon, the air is well mixed and there is no observable inversion up to 2500 m a.s.l.

The vertical ozone distribution derived from the ozone DIAL measurements above
Vif is strongly correlated and influenced by the diurnally-varying regime and the PBL25

structure (Mckendry et al., 1997; Beyrich et al., 1996). The diurnal cycle of the ozone
formation, the high mixed ozone layer (2500–2700 m a.s.l.) during the day, the strong
ozone titration by NO after midnight, particularly in the morning, and the formation of a
nighttime residual layer between 1400 and 2500 m a.s.l. are all clearly observable (see
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Fig. 7d). The maximum observed ozone concentration at ground level is 85 ppb while
in the residual layer it reached up to 70 ppb. In fact the maximum ozone concentration
is reached above the surface layer (i.e. St. Barthelemy at 620 m a.s.l.) and is around
100 ppb in the late afternoon of 27 July (Couach et al., 2002b). Thus, based on the
LIDAR data together with ground level and wind profiler measurements, we are able5

to reconstruct the typical ozone vertical distribution and its time evolution in the semi-
urban area at south of Grenoble.

3.2. Ozone fluxes and ozone plume development

The vertical ozone profile from LIDAR together with the wind profiler measurements
provides the vertical distribution of the horizontal ozone fluxes. Four different times10

were chosen for presenting this vertical distribution of the horizontal ozone fluxes (see
Figs. 9a, b, c and d). In Figs. 9a and b the morning (07:15 LT) and evening (18:15 LT)
ozone fluxes are presented under a typical anticyclone regime (26 July) while in the
Figs. 9c and d the morning (07:15 LT) and evening (18:45 LT) ozone fluxes for 27 July
are presented for a day with a transient regime. For both days the LIDAR ozone profiles15

converge, above 3000 m a.s.l., to a common value (free troposphere ozone value)
∼60 ppb while below the profiles are different. At ground level the difference between
the morning profile (reference ozone) and the late afternoon (photochemical ozone
plume) is about 50 ppb for both days. With altitude, the differences in ozone are strongly
influenced by the presence of the residual layer between 1400 and 2500 m a.s.l. The20

shape of the vertical profiles just above the ground is determined mainly by the dry
deposition (afternoon) and NO titration (morning). The amount of the ozone removed
by dry deposition, estimated from the afternoon profile as the difference between the
DOAS ground ozone concentration and the first LIDAR measurement point at ∼500 m
a.s.l. (200 m above the ground) is about 10 ppb both for 26 and 27 July. The NO25

titration and the dry deposition can be evaluated from the morning profile by taking the
difference between the LIDAR ozone at 1250 m a.s.l. for 26 July (1500 m a.s.l. for 27
July) and the DOAS ground measurement. These values are around 30 ppb for 26 July
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and 40 ppb for 27 July.
The ozone fluxes have a vertical stratification: (i) in the morning we observe a slow

south flux decreasing with the altitude up to 2500 m a.s.l. and above a north synoptic
flux for 26 July while on 27 July there was observable only a strong south flux which
increased with the altitude, (ii) in the afternoon we saw clearly the typical thermal north5

flux in both cases up to 2000 m a.s.l. with a horizontal flux of 1000–2000 (ppb km/h)
above Vif.

In order to visualize the development of the ozone plume over semi-urban region
at south of Grenoble (e.g. Vif) we present the simulated time evolution of ozone in a
south to north vertical cross-section (St-Barthélémy-Vif-Grenoble city) from the ground10

up to 3500 m a.s.l. (see Fig. 10). On 26 July (see Fig. 10a) we note the morning ozone
titration by NO in the urban (i.e. Grenoble) and suburban (e.g. Vif) areas and the
background ozone concentration level of ∼60 ppb. In the late afternoon (see Fig. 11b)
the ozone plume has moved to the south reaching concentrations of 95 ppb (mea-
sured at St-Barthélémy) at 620 m a.s.l. Interestingly, the maximum concentrations are15

not produced in Grenoble city or at ground level (Vif) but at higher altitudes, up to
1500–2000 m a.s.l., over the south rural area. After midnight, as a consequence of
the absence of the photochemical processes we can observe not only the beginning of
the NO titration and the dry deposition processes but also the formation of the ozone
residual layer. The southern extent of the ozone residual layer contained up to 70 ppb20

ozone between 1300 and 2300 m above the ground (Neu et al., 1994) while below the
residual layer near the ground there is a strong NO titration (see Fig. 11d). The model-
ing calculations over the whole domain of Grenoble are not only reproducing the ozone
plume dynamics but are in agreement with the measured residual layer behavior and
the ozone concentrations above Vif.25

3.3. Estimation of the relative intensity of the related ozone processes

In order to evaluate the magnitude of the photochemical processes (i.e. regional ozone
photochemical potential) on the Grenoble southern semi-urban and rural areas, we
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treat the lidar measurements of the free troposphere ozone as the ozone background
level O3 (bkg). Then we subtract this independent of the regional local photochemistry
ozone reference value from the ozone concentrations at different altitudes: delta ozone
∆O3 (z, t)= O3 (z, t) – O3 (bkg, t) and we analyzed ∆O3 during the three days time
evolution. To estimate the ozone background, we consider the simulated and LIDAR5

measured ozone at different altitudes (A) 400 m a.s.l., (B) 800 m a.s.l., (C) 1900 m a.s.l.
and (D) 3200 m a.s.l. at Vif (see Fig. 11). At low altitudes (400, 800 and 1900 m
a.s.l.) one can see huge variations due to the ozone chemical processes in the mixing
layer while at higher altitudes (3200 m a.s.l.) these variations disappear completely.
Furthermore at the higher elevation we notice again the good agreement between the10

LIDAR and the model. Thus we considered the ozone concentration measured by DIAL
at 3200 m a.s.l. to be the ozone background reference value O3 (bkg).

The change in ozone ∆O3, calculated by subtracting this ozone background value,
is shown in the Fig. 12a at four different altitudes situated below the maximum PBL
height (3200 m a.s.l.). The negative values correspond to “ozone sinks” (i.e. titration15

and dry deposition) while the positive values are “ozone sources” (e.g. photochemical
and transport). The sinks are prevailing at the ground (reaching up to 40 ppb) at night
and morning time while starting at 800 m a.s.l. these sinks are almost negligible. The
positive values of ∆O3, presented in Fig. 12b, allows for the observation of different pol-
luted layers in the PBL. The ground layer at ∼400 m a.s.l. (black curve) is reflecting the20

ozone budget at Vif characterized by three peaks corresponding to the daily pollution
maxima +10 ppb on 25 and 26 July occurring in the late afternoon (15:00 to 18:00 LT).
The second layer at 1000 m a.s.l. (red curve) is more polluted (+30 ppb) and is repre-
sentative of the mixing layer (ML) concentration and for the higher elevation rural sites
(e.g. St. Barthelemy). It represents the source of the residual layer at midnight with25

+15/20 ppb relative to the background. These higher concentrations are the result of
the lack of either NO titration and/or deposition processes.

The third layer at 2000 m a.s.l. (blue curve) reflects the behavior of the top of the
residual layer indicating the increase in height and thus the progressive accumulation
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of ozone during the three days analyzed here. Due to the change of the metrological
regime on 27 July there is an increase of 30 ppb for the ozone maximum, which is the
result of rapid transport and vertical mixing in the these three layers above Vif.

4. Conclusions

This work demonstrates the usefulness of coupling a regional photochemical numer-5

ical model with LIDAR measurements for studying the ozone plume dynamics over a
complex topography region as Grenoble. The LIDAR measurements at 20 km south of
Grenoble and the model results are in a good agreement with the aircraft data for ozone
concentration and PBL height estimation. The time evolution of the 3D ozone distribu-
tion, the ozone fluxes and the PBL height and its sub-layers structure were identified for10

a typical summer photochemistry episode. The diurnal cycle of the thermal winds is the
driving force for the ozone fluxes into the valley, in particular, bringing the ozone plume
in the late afternoon at south of Grenoble up to 95 ppb. Both model predictions and
LIDAR measurements show high values of the PBL height up to 2700 m above ground
surface in daytime. An important and persistent residual ozone layer with concentra-15

tions of 60–70 ppb is identified between 1300 and 2300 m above the ground. Finally
treating the free troposphere ozone as a reference (background), which is independent
of the regional photochemistry, we deduced the potential of the ozone production by
Grenoble city at about 30 ppb of ozone as well as the magnitude of NO titration and
deposition processes at about 30–40 ppb.20
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Fig. 1. Topography and locations of fixed instruments and flight path in the Grenoble modeling
domain: the Belledone Mountains to the East, the Charteuse massif to the North and the
Vercors to the West. Horizontal extent is 68 × 78 km and the horizontal grid cell size for this
domain was 2 km.
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Fig. 2. Geopotential heights (gpdam) of the 500 hPa layer, 12:00 UTC surface air pressure
1999, 12:00 UTC on 26 (a) and 27 (b) July 1999.

814

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/3/797/acpd-3-797_p.pdf
http://www.atmos-chem-phys.org/acpd/3/797/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
3, 797–825, 2003

An investigation of
ozone and planetary

boundary layer
dynamics

O. Couach et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2003

D2 cell

H2 cell

N d: Y A G laser

N d: Y A G laser

289 nm
(O N )

299 nm
(O FF)

266 nm
pum p

"Short range"
receiving telescope

"Long range"
receiving
telescope

Photodetector and
filter unit

Photodetector
and filter unit

 

Fig. 3. Ozone DIAL LIDAR layout (1998 LPAS-EPFL system configuration). The LIDAR ozone
measurements are averaged over 30 min with 250 m vertical resolution. The precision of the
ozone lidar measurements is decreasing from 5% at 500m to 20% at 3500 m above the LIDAR
site.
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Fig. 4. Temperatures comparison of aircraft measurements (see typical flight in Fig. 1) with
model calculations during 26 and 27 July aircraft flights: morning (a), (b) and afternoon (c), (d).
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Fig. 5. Ozone comparison of aircraft measurements (see typical flight in Fig. 1 with model
calculations during aircraft flights on 26 and 26 July 1999: morning (a), (b) and afternoon (c),
(d).
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Fig. 6. LIDAR, DOAS, aircraft and model ozone measurements: Vif, 14:00 LT, on 26 July. The
accuracy of ozone LIDAR retrieval is always less than 10% when compared with the standard
ozone measurements of the instrumented aircraft. The simulated ozone by model is in good
agreement both with the aircraft and LIDAR measurements.
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Fig. 7. Three days of wind direction (a) and wind speed (b), backscatter ratio at 299 nm (c)
and ozone concentration (d) above Vif. The thermal wind regimes are clearly seen in (a) and
(b). The two stars in (c) are corresponding to the evaluation of the PBL height from the aircraft
aerosols and water vapor measurements. The residual layer as well as the daily variation of
the ozone concentration above Vif is presented in (d).
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Fig. 8. Model calculations of virtual potential temperature profiles at Vif: (a) morning 03:00,
05:00, 07:00, 08:00 LT and (b) afternoon 14:00, 15:00, 17:00, 18:00 LT on 26 and 27 July,
respectively.
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Fig. 9. Ozone profiles morning (a) and afternoon (b), on 26 and 27 July 1999. The two flux
roses are the corresponding horizontal ozone fluxes.
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Fig. 10. Simulated ozone dynamics in a south to north (Vif – Grenoble) 50 km transect from the
ground to 3500 m a.s.l. on the vertical dimension. The ozone NO titration in the morning (a),
the ozone photochemical production (b), the night ozone processes (c) and the ozone residual
layer formation (d) are represented here.
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(a)

(b)

Fig. 11. Ozone vertical time evolution measured by LIDAR and simulated at different altitudes
(a.s.l.). For the ground level, the DOAS measurement was taken into account. On notice a good
agreement between the model ozone calculation and the ozone concentrations measured with
the LIDAR during the three days at different altitudes.
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(c)

(d)

Fig. 11. Continued.
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Fig. 12. Differential ozone (∆O3) relative to the ozone background (free troposphere ozone)
at different altitudes (i.e. ground, 800, 1500, 2500 m a.s.l.). The ozone “sinks” as well as the
ozone “sources” are illustrated in (a). The positive budget (i.e. sources) is zoomed in (b) to
better identify different layers contributions at the ozone production.
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