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Abstract

The partitioning of nitrogen oxides between ice and air is of importance to the ozone
budget in the upper troposphere. In the present study, adsorption of nitrogen oxides on
ice was investigated at atmospheric pressure using a chromatographic technique with
radioactively labelled nitrogen oxides at low concentrations. The measured retentions5

solely depended on molecular adsorption and were not influenced by dimerisation, for-
mation of encapsulated hydrates on the ice surface, dissociation of the acids, nor by
migration into a quasi-liquid layer or grain boundaries. Based on the chromatographic
retention and the model of thermo-chromatography, the standard adsorption enthalpy
of −20 kJ mol−1 for NO, −22 kJ mol−1 for NO2, −30 kJ mol−1 for peroxyacetyl nitrate,10

−32 kJ mol−1 for HONO and −44 kJ mol−1 for HNO3 was calculated. To perform those
calculations within the model of thermo-chromatography, the standard adsorption en-
tropy was calculated based on statistical thermodynamics. In this work, two differ-
ent choices of standard states were applied, and consequently different values of the
standard adsorption entropy, of either between −39 J (K mol)−1 and −45 J (K mol)−1,15

or −164 J (K mol)−1 and −169 J (K mol)−1 for each nitrogen oxide were derived. The
standard adsorption enthalpy was identical for both standard adsorption entropies and
thus shown to be independent of the choice of standard state. A brief outlook on en-
vironmental implications of our findings indicates that adsorption on ice might be an
important removal process of HNO3. In addition, it might be of some importance for20

HONO and peroxyacetyl nitrate and irrelevant for NO and NO2.

1. Introduction

Already in the early 70’s Crutzen (1970) stressed that nitrogen oxides play a critical
role in the atmospheric ozone budget, e.g. in the upper troposphere where an increase
in the NOx concentration leads to higher ozone levels (Jaeglé et al., 1998). Therefore,25

detailed knowledge of the sources and sinks of nitrogen oxides in the atmosphere is of
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paramount importance to understand the observed increase of ozone in the free tro-
posphere (Wang et al., 1993) and to model the future composition of the atmosphere.
Heterogeneous processes are known to enormously influence the concentration of
background gas species. This has became striking clear, ever since the occurrence
of the Antarctic ozone hole has been explained (Molina, 1996). Lately, heterogeneous5

chemistry on ice surfaces, which are one of the main condensed substrates in the
upper troposphere and lower stratosphere (Winkler and Trepte, 1998; Heymsfield and
Sabin, 1998), has been proposed to explain unusually low nitrogen oxide concentra-
tions observed in cirrus clouds (Reichardt et al., 1996).

In principle, heterogeneous processes can deplete the concentration of gas phase10

species through uptake on surfaces and subsequent removal processes or increase
their concentration through transformation of reservoir species. Yet, for whatever pro-
cess, the first step is adsorption on the surface. This study aims to evaluate the ther-
modynamics of adsorption for the reactive nitrogen species NO and NO2 and the reser-
voir species HONO, HNO3 and peroxyacetyl nitrate (PAN) on ice surfaces. Many of the15

previous studies have focused on the uptake kinetics, whereas the thermodynamics of
adsorption are rarely discussed. To our knowledge, only few studies on NO, HONO
and HNO3 adsorption or uptake enthalpies on ice have been published (Sommerfeld
et al., 1992; Rieley et al., 1996; Thibert and Dominé, 1998; Tabazadeh et al., 1999;
Chu et al., 2000).20

We introduce here a method to simultaneously evaluate the adsorption properties
of several NOy species in synthetic air on ice surfaces. The method combines the
advantage of high sensitivity of a radioactive tracer technique with a chromatographic
approach, thus enabled us to measure at atmospheric pressure and in a fraction of a
monolayer. In brief, radioactively labelled nitrogen oxides in a stream of air or N2 are25

fed to a chromatographic column packed with ice spheres. A negative temperature
gradient along the column leads to an increasing retention of each species as they
are transported in the column. After the experiment, their migration distance in the
column is determined by measuring the distribution of radioactivity along the column.
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If the model of mobile adsorption is applied, the adsorption enthalpy can be calculated.
Eichler et al. (2000, 1995) have shown the feasibility of this approach to derive the
standard adsorption enthalpy of NOy on different surfaces and of radon on ice surfaces
in previous studies. We will show here that the migration of the nitrogen oxides through
the column is neither influenced by dimerisation, migration into a quasi-liquid layer or5

the grain boundaries, formation of encapsulated hydrates, nor by dissociation of the
acids.

2. Experimental

2.1. Gas phase synthesis

Figure 1 shows the setup of our experiments, which consists of the production of the10

radioactive nitrogen isotope 13N (t1/2 = 10 min), the synthesis of various NOy species in
designated reaction chambers, and the evaluation of their adsorption properties in the
chromatographic apparatus. Details of the 13N-production at Paul Scherrer Institute’s
Philips Cyclotron and the gas phase synthesis of 13NO2, HO13NO and H13NO3 are de-
scribed in detail elsewhere (Ammann, 2001). Briefly, a proton beam (1µA, 11.1 MeV)15

irradiated a 5 cm3 s−1 flow of 20% O2 (99,9995%, Carbagas AG) in He (99,9999%,
Carbagas AG). This 16O(p, α)13N reaction formed various oxidised 13N-species inside
the gas target, which were reduced to 13NO by passing them over a molybdenum foil
at 300–500 ◦C. A transport line of a 80 m polyethylene tube 2 mm in diameter delivered
the gas stream to the laboratory. This complete system was placed in a protective20

argon atmosphere (99,9999%, Carbagas AG) to prevent diffusion of impurities into the
gas stream. In the laboratory, the gas flow passed a γ-counter to constantly eval-
uate the input of 13N. Afterwards a fraction of the gas stream was diluted with N2
(99,9995%, Carbagas AG) or synthetic air and fed to the experiments and a chemilu-
minescence NO analyzer (CLD, Germany). A molybdenum converter for reduction of25

NOy to NO was attached to the chemiluminescence analyzer to measure impurities of
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14NOy, which come from traces of 14N2 in the He- and O2-gas. All tubing in the labora-
tory was kept at room temperature and consisted of perfluoro-alkoxy copolymer (PFA)
4 mm i.d. without any protective gas surrounding them. The diffusion of impurities into
the gas stream through PFA, as well as losses and memory effects of the various nitro-
gen oxides through the column walls are minimal compared to Teflon or polyethylene5

tubing (Neuman et al., 1999). The work was done under atmospheric pressure and gas
flows were controlled by mass flow controllers (Brooks Instruments, The Netherlands)
with 1% full scale accuracy.

13NO2 was synthesised by passing the 13NO over CrO3 on firebrick support at 30%
relative humidity. HO13NO was synthesised by passing the 13NO2 through a filter im-10

pregnated with 100µl of 1% N-(1-naphthyl)ethylenediamine dihydrochloride (NDA) in
methanol-water (10/90) at 30% relative humidity. H13NO3 was produced by photolysis
of a 13NO2/H2O/O2 mixture in N2 at 172 nm. 13N − PAN was produced through pho-
tolysis of acetone at 253 nm in the presence of 13NO and O2 (Warneck and Zerbach,
1992). The acetone was dosed to the gas phase by passing a gentle stream of air15

over solid acetone at 140 K. This saturated gas stream was further diluted prior to en-
tering the photolysis cell. It is very important to work with low acetone concentrations,
as in experiments with higher acetone concentrations, the acetone condensed on the
ice and column walls, trapped the 13N − PAN, and consequently hindered its migra-
tion. This condensation, which is visible with the naked eyes, was not observed in the20

experiments described here with the low acetone concentration.
Most synthesises yielded a mixture of several 13NOy as product which, when fed to

a column, yielded the adsorption properties of several 13NOy simultaneously. To carry

out experiments with only one 13NOy species in the gas phase, a series of selective
gas traps were used to scrub all but one species from the gas phase, where possible.25

The traps, which were designed as cylindrical denuders, were coated with Na2CO3 for
absorbing HONO or PAN, a mixture of NDA and KOH (1/1) for NO2, NaCl for HNO3
and Co2O3 for NO (see Kalberer et al. (1996, 1999) for details). Those denuders, in
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combination with γ-detectors and the chemiluminescence NOy analyser, were also

used to identify and quantify the various 13NOy species (Ammann, 2001). In addition,
PAN was identified in the gas stream with a GC-ECD (Schrimpf et al., 1995).

2.2. Ice preparation and characterisation

Deionized water was purified with a Millipore Milli-Q water system to a resistivity5

≤0.054µS cm−1 and degassed in an ultra-sonic bath. Small droplets, 0.3 - 0.7 mm
in diameter, were rapidly frozen in liquid nitrogen. The surface area of the ice spheres
was evaluated based on the weight of 100 droplets and an ice density of 0.85 g cm−3.
The spheres were annealed in air for at least 12 hours at 258 K in a cold room to allow
them to crystallize. The ice spheres were sieved with calibrated sieves (Retsch, Ger-10

many) and filled in quartz, Teflon or PFA tubes, which were sealed at each end and
stored at 258 K. From the mass of the ice filling and the surface area per gram the
surface area per centimeter of the column was calculated, which varied between four
and 10 cm2 cm−1 for the different experiments. During the transport to the laboratory,
the ice columns were cooled to 190 K with solid CO2.15

Additionally, BET krypton adsorption measurements were performed to evaluate the
surface area of the ice spheres. The measurements were done with a commercially
available instrument (Micromeritics, ASAP 2010; U.S.A.), which was equipped with an
optional high-vacuum pump. When calculating the adsorbed volume, the instruments
algorithm neglects the temperature profile within the sample holder. This simplification20

leads in case of measurements of small total surface areas, such as ice surfaces, to
an error in the resulting BET surface area. Thus, each measurement was corrected by
a reference sample as proposed by Hoff et al. (1998) to eliminate any influence of this
simplification and of the sample holder material on the result.

In brief, approximately 5 g of the ice spheres were put in a sample holder in the cold25

room at 258 K, which was transported to the laboratory in a dewar of dry ice, installed
at the instrument and immediately immersed in a dewar of liquid nitrogen. In the fol-
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lowing automated measurement, the sample holder was evacuated and subsequently
dosed with krypton at relative pressures between 0.02 and 0.6. The relative pressure
is equal to pi/psat where pi [Pa] is the absolute pressure and psat [Pa] is the saturation
pressure. The equilibration interval was set to 10 s, after which the resulting pressure
was measured and the adsorbed amount of krypton calculated. Two measurements5

were performed, one was repeated three times, the second was a single measure-
ment. The free volume of the empty sample holder and the filled sample holder was
measured with He prior to each measurement. After the measurement, the ice sam-
ple was melted in the sealed sample holder and slowly refrozen with a cooling rate of
0.5 K h−1. This procedure generated a smooth ice chunk of identical volume as the ice10

spheres, but with a negligible surface area. The BET measurements were repeated
with this reference sample and the adsorption isotherm of the ice chunck was sub-
tracted from the ice sphere’s adsorption isotherm. The resulting adsorption isotherm
was used to calculate the BET surface area of the ice spheres.

2.3. Thermo-chromatography15

A packed ice column was placed in a copper tube along which a negative temperature
gradient was established. One end of the copper tube was always immersed into a
liquid nitrogen bath, whereas the temperature of the other end, where the gas stream
was fed into the column, was varied between 218 K and 250 K with an external cryo-
stat. Prior to each experiment the temperature gradient was measured with a Pt-10020

thermo element (MTS, Switzerland) in an empty column. Depending on the tempera-
ture at the column entrance and the column length, a temperature gradient between
−4 K cm−1 and −8 K cm−1 was established. Before the experiment the packed columns
were placed in the temperature gradient without any gas flow to allow the tempera-
ture equilibrium to be reached at any place in the ice column. After that a gas stream25

containing between 3 ppb and 47 ppb of 13N-nitrogen oxides was fed to the column for
a variable time of 14, 30 or 31 minutes. The flow through the column was controlled
with a mass flow controller at the column’s exit and varied between 75 cm3 min−1 and
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360 cm3 min−1. After the experiment the column was sealed and immersed in an open
bath of liquid nitrogen to stop any migration of nitrogen oxides in the column and the
distribution of the 13N-nitrogen oxides in the column was measured, usually exhibit-
ing distinct, symmetric peaks for each NOy species. The migration distance, or more
precisely, the temperature at this position (denoted as deposition temperature) is the5

primary observable of the experiment.

2.4. Detection

To deduce the distribution of nitrogen oxides along the column, a coincident γ-counter
scanned each column three times. The coincident γ-counter consisted of two Bismuth-
Germanate-detectors 3 cm in diameter mounted face to face with a gap of 35 mm. Co-10

incident γ-counting leads to optimum counting efficiency and low background counting
rates (less than 1 cts s−1), because each decay of 13N results in two γ-rays in oppo-
site directions to each other. The activity in the column was calculated based on the
measured coincident counts and the radioactive decay after the experiment.

To determine the optimum step size of the detectors, the resolution and absolute15

efficiency of the system, a column was spiked with with point- and broader sources of
a 18F− solution of known activity and scanned. The optimum step size turned out to
be 0.5 cm, which yielded an accuracy in detection of the peak maximum position of
≤ 0.5 cm. The resolution of 3 cm of this arrangement was determined by the detector
size, which in addition led to a broadening of the peak base width to 4-6 cm of a point20

source of ≤ 0.5 cm in diameter. With an absolute detector efficiency of 0.0134 observed
coincident counts per decay within 1 cm, the detection limit for our experimental setup
was 1×105 molecules 13N, or 4×10−10 mol of total NOy (13N + 14N) per centimeter
column length.
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2.5. Derivation of the adsorption enthalpy

The standard adsorption enthalpy was calculated based on the experimentally deter-
mined migration distance and the theory of thermo-chromatography (Eichler and Zvára,
1982) using the Maple 6.0 (waterloo maple) software. The detailed formulas are given
in the Appendix C, whereas here a brief outline of the calculations is given.5

The model of linear chromatography (Eq. 1) describes the position of each species in
the column, z [cm], as function of the time, t [min], the linear gas velocity, u0 [cm min−1]
and the partition function, ki [−].

dz
dt

=
u0

1 + ki
(1)

If we substitute ki with its thermodynamic definition, and with some further simpli-10

fications (see Appendix B) we get Eq. (2), which gives a relation between known ex-
perimental factors: te (experimental time), g (temperature gradient), u0 (linear gas ve-
locity), TD (deposition temperature), TS (starting temperature of gradient), v (open vol-
ume in the column), a (ice surface area in column) and the thermodynamic functions
∆H0

ads (adsorption enthalpy), ∆S0
ads (adsorption entropy), T0 (standard temperature),15

V/A (standard volume to standard surface area), R (gas constant.(
te +

T0

g · u0
· ln

TD

TS

)
·

v · g · u0

a · T0 · VA · exp
(

∆S0
ads
R

) =
∫ TD

TS

1
T
· exp

(
−∆H0

ads

R T

)
(2)

For each set of experimental parameters, ∆H0
ads was calculated by means of an iter-

ation process with a given ∆S0
ads. ∆S0

ads was calculated based on statistical thermo-
dynamics and the model of mobile adsorption using Eq. (3) with h (Planck constant),20

kB (Boltzmann constant), NA (Loschmidt’s number), m (molar mass) and ν (vibrating
frequency) of the adsorbed species on the surface, which was assumed to be identical
with the phonon frequency of ice (see Appendix D). To our knowledge no experimental
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data about the vibrating frequency ν of the solid state of water at temperatures of our
experiment exist, a rounded value of 3×1013 s−1 based on the relations of Madelung
and Einstein, Lindemann and Debye and data in Hobbs (1974, p. 388) was used (Eich-
ler et al., 2000).

∆S0
ads = R

 ln

 A
V

√
NA h2

2πmkB TD

 − 0.5 +
h ν

kB TD

(
e

h ν
kB TD − 1

)
 (3)

5

3. Results and discussion

Figure 2 shows the chromatograms of various nitrogen oxides at low ppb concentra-
tions in ice columns at different experimental settings. Chromatogram A results from
exposure of the ice column to NO2 (peak at 24 cm) and NO (29 cm), B from expo-
sure NO2 (24 cm) with some traces of HONO (13 cm), C from HONO (18 cm) and NO10

(35 cm), D from PAN (20 cm) and NO2 (25 cm), and E from HNO3 (0 cm and 8 cm),
HONO (18 cm) and NO2 (26 cm). It can be clearly seen that each nitrogen oxide
species is uniquely retarded in the ice column leading to well defined chromatographic
peaks, even if several species are fed to the column simultaneously. The surface con-
centration of NOy was always at least two orders of magnitude below a monolayer even15

after accumulation for 30 min, thus condensation was very unlikely in the column. In
addition, we did not see a concentration dependence of the migration distance between
3 ppb and 50 ppb NOy in the gas phase, as would be expected for condensational pro-
cesses. And, the deposition temperatures of the species were much further beyond
their boiling point, as we would expect if condensation would have occurred. For ex-20

ample the position of NO2 in Fig. 2 B corresponds to a deposition temperature of 144 K,
whereas the boiling point is 294 K.
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3.1. Mechanistic considerations of the uptake at experimental conditions

The mechanistical aspects of adsorption on ice are still under some debate
(see Girardet and Toubin, 2001, for a detailed overview). Several possible mecha-
nisms that can be advanced to describe the processes in the chromatographic column
are summarized in Fig. 3.5

The first question that has to be answered to describe the processes in the column
is, whether NO2 dimerised, as it tends to at low temperatures, or reacted with NO to
form N2O3 either in the gas phase or on the surface. For the following consideration,
we assumed that the adsorption equilibrium constant describes the partitioning of NO2
in the column, and chose a typical gas phase concentration of 3 ppb NO2 and flow rate10

of 5 cm3 s−1. The concentration of NO2 first increases due to the temperature decrease
at constant pressure up to its maximum value of about 1.3×1011 molecules cm−3 at
140 K, before it decreases rapidly due to the increasing residence time on the surface.
Under these conditions (Atkinson et al., 1999), the extrapolated forward rate constant
for formation of N2O4 in the gas phase (Eq. 4) constantly increases from 5×10−2 s−1

15

at 250 K to 1.4×10−1 s−1 at 140 K and decreases again to 10−2 s−1 at 120 K.

2 NO2 (gas) 
 N2O4 (gas) (4)

Obviously, the formation of N2O4 is much slower than the transport of NO2 in the car-
rier gas flow, which is almost constant at 0.02 s per cm column length from the column
entrance to a position in the column at 140 K. Thus, under the non-steady-state condi-20

tions of this chromatographic system the dimerisation is very implausible to occur.
In the colder part of the column, the desorption rate decreases rapidly. It equals

108 s−1 at 250 K, 105 s−1 at 140 K, and 102 s−1 at 120 K. For this estimation, a vibrating
frequency, ν, of 1013 s−1 and an activation energy for desorption, which was assumed
to be equal to the adsorption enthalpy, of -22 kJ mol−1 were chosen (Eq. 5). Once25

the desorption rate is of the same order of magnitude as the adsorption rate (Eq. 6)
the molecules accumulate on the surface and the migration velocity decreases, which
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leads to peak formation. The adsorption rate is given by the collision rate on the order
of 104 s−1 assuming a sticking coefficient of unity.

kdes = ν · e
−∆H
RT (5)

NO2 (gas) 
 NO2 (ads) (6)

The accumulation could favour dimerisation on the surface, but due to the stronger5

expected adsorption energies of N2O4 compared to NO2 on the ice surface, a fronting
of the peaks should be visible. From the absence of such fronting (see Fig. 2), we
conclude that the nitrogen oxides did not dimerise on the surface, nor react to N2O3.
And from the calculations above, we conclude that NO2 did not dimerise in the gas
phase and thus the adsorption properties of NO2-monomers were investigated.10

The second question concerns the processes which determine the retention of the
nitrogen oxides in the column. First, we consider HNO3, HONO and PAN, the retention
of which is increased at temperatures above 160 K. In the analysis described here
we assume a metastable, molecular adsorbed state of these adsorbates on the ice
surface (NOy(ads)), as has been proposed for HCl by Svanberg et al. (2000) based15

on molecular dynamics simulations. In a subsequent step, the adsorbates may form
encapsulated hydrates (NOy (aq)) within the outermost water bilayer (Delzeit et al.,
1997), which in case of the acids facilitates dissociation (Packer and Clary, 1995). Re-
cent molecular dynamic simulations by Bolton and Pettersson (2000) confirmed the
fact that the ice surface is highly dynamic at temperatures above 180 K. They further20

indicated that water molecules rapidly (in the order of ns, compared to the species’ res-
idence time of ms on the surface) exchange between the upper surface layers. There-
fore, we presume that in our experiments not the hydrate formation and dissociation,
but the adsorption equilibrium of the molecular species is rate limiting the transport of
HNO3, HONO and PAN through the column. The dissociation of acids on ice surfaces,25

the products of which have been experimentally observed for HNO3 by Zondlo et al.
(1997), may also rapidly occur directly on the surface (Svanberg et al., 2000; Clary and
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Wang, 1997), and thus again not contribute to the retention of HNO3 and HONO in the
column.

In contrast, we assume that NO and NO2 are exposed to a rather rigid ice surface, as
their retention is only enhanced at temperatures below 140 K, and consequently both
are not encapsulated by water molecules. Indeed, Uras et al. found molecular HCl at5

low coverage at 125 K (1998) and showed in a monte carlo simulation that at 110 K
NH3 stays on the ice surface at low coverage and only builds a hydrate capsule within
a surface bilayer at high coverage (Uras et al., 2000).

A quasi-liquid layer has been observed at ice surfaces above −24 ◦C (Bluhm and
Salmeron, 1999; Döppenschmidt et al., 1998), and has been used to explain an in-10

creased uptake at temperatures approaching the melting point of chemically different
species such as NO (Sommerfeld et al., 1992), HNO3 (Diehl et al., 1998) and SO2
(Lamb and Clapsaddle, 1989) . Although in some of our experiments the nitrogen
oxides were exposed to ice at temperatures above −24 ◦C at the column entrance,
the retention is not influenced by diffusion in the quasi-liquid layer. This is nicely il-15

lustrated in Fig. 4, which shows two chromatograms of different experimental settings.
Similar migration distances of NO2 were recorded, even when the column entrance
was kept at a temperature too low for a quasi-liquid layer to evolve (Fig. 4 A). Obvi-
ously, the equilibrium NOy (ads) 
 NOy (qll) shifts so rapidly that the rate limiting fac-
tor for transport of the species along the column remains the adsorption equilibrium20

NOy (gas) 
 NOy (ads). The very small fraction taken up into the quasi-liquid layer,
which has not been detected within the relatively short duration of the experiments,
did not affect the retention of the molecules. Nevertheless, uptake into the quasi-liquid
layer might influence the long-term fate of these species.

For polycrystalline ice, as used in our experiments, an increased uptake at warmer25

temperatures has been explained by diffusion into the grain boundaries (Huthwelker
et al., 2001). In addition, strong acids are known to accumulate in the grain boundaries,
as Mulvaney et al. (1988) has shown for H2SO4. This diffusive process is driven by a
strong concentration gradient, and as equilibrium is only reached after hours (Mader,
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1992), any nitrogen oxide that diffuses into the grain boundaries under our experimental
conditions is trapped in the vein system, at least as long as the experiment lasts and
thus does not contribute to the peak formation. Furthermore, we note that the surface
of the polycrystalline spheres not only consisted of crystalline facies but also of grain
boundaries, so that the adsorption enthalpy derived represents an average over all5

facies, defect sites and grain boundaries exposed at the surface.
Concluding, we suggest that the retention of each individual nitrogen oxide solely de-

pends on molecular adsorption processes and thus the theory of thermo-chromatogra-
phy can very well be applied to our results. We want to state that our current adsorption
model does not include changes of the ice surface that are induced by the adsorbate10

such as restructuring of the ice lattice or vibrational changes (Delzeit et al., 1996).

3.2. Standard states

Table 1 shows the standard adsorption enthalpy of the nitrogen oxides examined. To
determine the standard adsorption enthalpy based on our experimental findings, the
standard adsorption entropy was calculated. The entropy calculations were done with15

two different standard states, which both yield, as expected, the same standard ad-
sorption enthalpy.

There have been two standard states applied for this work, because for adsorption
processes there is no general agreement on the choice of a standard state as for pure
gas phase processes. In the literature, two different approaches are usually consid-20

ered. Eichler and Zvára (1982) arbitrarily set the ratio of A/V to the value 1 cm−1. The
advantage of this standard state is its independence of temperature, particle size, and
absolute values of V or A. Goss (1997) used a standard state introduced by de Boer
(1968) and treated the adsorbed species as a two dimensional gas and defined the
standard state of that “gas” as state where the average distance of two molecules is25

identical to the average distance of two molecules in a three dimensional gas phase
at standard pressure and temperature. For their calculations, they used the ideal two
dimensional gas law which contains the two dimensional pressure f [N m−1]. The two
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dimensional gas law allows to calculate a standard surface area of 6.7×1010 cm2 (A)
in analogy to the standard volume of the gas phase of 2.2×104 cm3 (V).

The two equilibrium constants Kp can be easily transferred into each other, as Eq. (7)
illustrates. Besides the standard surface and volume, the equilibrium constant Kp de-
pends on the actual surface to volume ratio (a/v) in the experimental setup; see Ap-5

pendix B for further information.

a
v
· 2.2 × 104

6.7 × 1010
· K 01

p =
a
v
· 1 · K 02

p (7)

3.3. Error calculation

Typically, the resulting ∆H0
ads of several experiments showed a standard deviation of

about 1% to 3% distributed about the mean. From the experimental setup presented10

above, it is evident that systematic errors are the main source of uncertainty. To assess
this error, calculations based on one particular experiment have been repeated with all
factors changed one by one to their possibly largest extent of uncertainty (Table 2). The
resulting total difference in ∆H0

ads to the mean value, which varies between 23% and
33%, is given in Table 1 as total error. These total errors agree well with published15

uncertainties of experiments on adsorption in flow tubes (Fenter et al., 1996).
It can be clearly seen in Table 2 that the most critical input values are those relaying

on the determination of the deposition temperature and the ice surface (open volume
and surface area). The error in the determination of the deposition temperature results
mainly from installing the column manually onto the scanner and the resulting inaccu-20

racy of the zero point alignment. The surface areas calculated based on the weight
of 100 droplets agreed well with the determination of the radius by sieving. BET mea-
surements of the ice were done to evaluate whether the surface area that is available
to adsorption, is of the same size as the geometric surface area. The geometric sur-
face area is the area of a sphere with the same volume as the ice spheres used in our25

work. In the literature, discrepancy of up to 8 times larger BET surface area per gram
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sample compared to the external surface area assessed via ESEM pictures, has been
observed for ice condensed from the vapour phase (Keyser and Leu, 1993). The BET
surface area for two of our ice sphere samples was 0.006 m2 g−1 and 0.003 m2 g−1,
respectively, which was of the same order of magnitude as, or even smaller than, the
surface area calculated based on the radius of the spheres, being about 0.007 m2 g−1

5

and 0.012 m2 g−1, respectively. Thus we conclude, that the ice spheres’ surface area
is not enlarged due to pores or additional microstructures on the surface, and the geo-
metric surface area was used for calculations. Any defects that might have evolved due
to the fast freezing of our ice, have probably vanished during the crystallization process
at 258 K, or do not influence the adsorption properties of the ice surface. Nevertheless,10

a high error of 300% was introduced to account for the numerous unknowns such as
bulk density of the produced ice, packing density of the column and the accuracy of the
method to determine the weight of 100 droplets.

4. Discussion of the standard adsorption enthalpy

Both NO and NO2 migrate to a temperature of below 140 K in the column and conse-15

quently small adsorption enthalpies of −20 kJ mol−1 and −22 kJ mol−1 are derived. In
agreement with our data, Saastad et al. (1993) did not detect any loss of NO in the
gas phase above ice frozen from the liquid at temperatures down to 193 K. In contrast,
Sommerfeld et al. (1992) found an adsorption enthalpy of −11 kJ mol−1 by measur-
ing adsorption isotherms in packed columns down to 200 K using a chromatographic20

fronting technique. This discrepancy however might be due to the different experimen-
tal method and, as Sommerfeld et al. mentioned, a large uncertainty in their measured
loss of NO to the ice, as the loss was small compared to the huge background loss
of NO on the apparatus’ walls. The results of NO2 adsorption on ice again agree well
with findings of Saastad et al. (1993), as in both cases NO2 did not measurably adsorb25

on ice at temperatures down to 193 K. Rieley et al. (1996) measured a desorption en-
thalpy for N2O4 on ice of 39 kJ mol−1, which is higher than our findings for NO2 due to
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expected stronger binding interactions.
In our experiments, the adsorption of HONO in the column starts to slow down the

migration process at temperatures below 170 K, which qualitatively agrees well with a
reversible adsorption of HONO at temperatures of 180–200 K published by Fenter and
Rossi (1996). In addition, the HONO standard adsorption enthalpy of −32 kJ mol−1 is5

in excellent agreement with an adsorption enthalpy of −33.8 kJ mol−1 reported by Chu
et al. (2000).

In all HNO3 experiments in this work, two peaks evolved (see Fig. 2 E). The first peak
is assigned to an irreversible inclosure of HNO3 in the water rime. The riming was
only observed in the experiments with HNO3 because we had to work at higher relative10

humidity to generate HNO3 from the reaction of NO2 with OH on-line. The second peak,
at temperatures below 245 K was taken to evaluate the HNO3 standard adsorption
enthalpy of −44 kJ mol−1. Tabazadeh et al. (1999) published a free enthalpy (∆G) of
−59.4 kJ mol−1 for HNO3 adsorption and dissociation on ice based on experiments by
Abbatt (1997). If we expect the entropy to be negative due to the reduced degrees of15

freedom of the adsorbed state compared to the gas phase molecule, an upper limit of
the enthalpy should be −60 kJ mol−1 to fulfill the requirement. This value agrees well
with the sublimation enthalpy of HNO3 on ice measured by Thibert and Dominé (1998)
of 68 kJ mol−1. Both values are as expected more negative than our findings, as both
describe the enthalpy of adsorption and solvation.20

To our knowledge for the first time, the adsorption enthalpy of PAN on ice was found
to be −30 kJ mol−1.

The magnitude of the nitrogen oxides’ adsorption enthalpies found point to the for-
mation of one to two hydrogen bonds. The strength of a hydrogen bond depends on
the capability of an ice surface to act as hydrogen bond donor and the dipole moment25

of the nitrogen oxide. We expect the capability of the crystalline ice used in this study
to form hydrogen bonds, which is determined by the number of free OH groups on the
surface, to be sufficient for the submonolayer coverage of nitrogen oxides in this work.
First of all, FTIRAS measurements indicated a free OH coverage on crystalline ice to
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be approximately one-sixth of that on amorphous ice (Schaff and Roberts, 1996). And
secondly, even after annealing at 258 K the polycrystalline character of the ice spheres
used in our work, whose grain boundaries might posses free OH groups, is preserved.
Finally, it might even be that despite of the annealing surface defects facilitating free
OH groups are present on the surface. Assuming that hydrogen bonding is relevant5

for adsorption of nitrogen oxides on ice, the overall bond strength of the molecules to
the surface should scale with the dipole moment. Figure 5 shows a correlation of some
nitrogen oxides’ dipole moments and the found standard adsorption enthalpy.

5. Atmospheric implications

Table 3 shows the partitioning of nitrogen oxides between ice and air at temperature10

and surface to volume ratios present in the environment. To calculate the partition-
ing coefficient (see Eq. 8) at environmental conditions, the standard gibbs adsorption
energy (∆G0

ads) was calculated at the temperature of interest based on the standard
adsorption enthalpy and entropy from this study (see Eq. 11). The standard gibbs ad-
sorption enthalpy was in the following transferred to the partitioning coefficient using15

the actual surface to volume ratio in the environment and the chosen standard state of
the enthalpy and entropy calculation (see Eq. 10).

To illustrate the possible influence of adsorption of nitrogen oxides on the gas phase
concentrations of NOx (see Fig.3), this back-of-the-envelope calculations were per-
formed with a wide range of environmental conditions. Namely, a high concentration20

of ice particles of up to 200 cm−3 typically found in contrails (Schröder et al., 2000),
a huge surface area of freshly fallen snow in the arctic and temperate zone (Dominé
et al., 2001) or the cold temperatures in the upper troposphere and the typical surface
to volume ratio in the clouds (Schröder et al., 2000) were taken. For a detailed de-
scription additional factors, such as gas phase and ice diffusion, or additional equilibria25

following the adsorption have to be included in a more precise model calculation, which
is beyond the scope of this work. Nevertheless this rough estimation shows that HNO3
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significantly partitions to the ice phase where ice is abundant, whereas NO and NO2
do not at all. HONO and PAN might not partition to the ice phase in clouds, but are
expected to do so in the snow pack. As the partition coefficient strongly changes with
temperature (e. g. for HONO ki ≈ 1 at 230 K and ki ≈ 3 × 10−1 at 250 K in an arc-
tic environment) emission from or deposition to the snow pack may be expected after5

strong temperature changes. In addition, uptake on ice might still be a potent removal
process, if additional processes follow the adsorption process and thus continuously
shift the adsorption equilibrium.

6. Conclusions

The retention of nitrogen oxides fed to a chromatographic column filled with ice spheres10

in synthetic air or nitrogen was investigated at atmospheric pressure and submonolayer
coverage. It was argued that the retention was exclusively determined by the equilib-
rium between a gas phase and a molecularly adsorbed species and not influenced by
dimerisation, formation of an encapsulated hydrate on the ice surface, dissociation of
the acids, nor by migration into a quasi-liquid layer or grain boundaries.15

Based on the migration distance of each nitrogen oxide in the column, the stan-
dard enthalpy for molecular adsorption of −20 kJ mol−1 for NO, −22 kJ mol−1 for NO2,
−30 kJ mol−1 for peroxyacetyl nitrate, −32 kJ mol−1 for HONO and −44 kJ mol−1 for
HNO3 was calculated. To perform these calculations, a standard state had to be cho-
sen. The standard adsorption enthalpy proved to be independent of that choice, and20

is thus an ideal value for comparison of adsorption energies with other groups. An
error analysis revealed the actual surface area of the ice as major source of system-
atic uncertainty of the standard adsorption calculations. Nevertheless, the total error
associated with the reported standard adsorption enthalpy is less than 33%.

A brief outlook on environmental implications of our findings for exemplary conditions25

in contrails, cirrus clouds, as well as arctic and temperate zone snow packs indicated
that adsorption on ice might be an important removal process of HNO3, of some im-
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portance for HONO and peroxyacetyl nitrate and irrelevant for NO and NO2.
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Appendix A: Notation

Symbol Explanation Unit
S entropy J (K mol)−1

H enthalpy J (K mol)−1

U inner energy J (K mol)−1

U(0) zero inner energy J (K mol)−1

q molecular partition function −
Q molar partition function −
T temperature K
TD deposition temperature K
u linear gas velocity cm min−1

u0 linear gas velocity at standard temp. cm min−1

a surface area cm2

v volume cm3

p pressure N m−2

f two dimensional pressure N m−1

A standard surface area cm2

V standard volume cm3

p0 standard pressure 1 ×105 N m−2

f 0 standard two dimensional pressure 3.38 ×10−2 N m−1

M molecular mass kg
m molar mass kg mol−1

n number of molecules −
ν vibrating frequency s−1

NA Loschmidt’s number 6.02285×1023 mol−1

kB Boltzmann constant 1.38066×10−23 J K−1

h Planck constant 6.62618×10−34 J s
R gas constant 8.31441 J (K mol)−1
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Appendix B: Partitioning coefficient, adsorption equilibrium constant and stan-
dard states

At low concentrations the partitioning of each species in the chromatographic column,
or in any two phase system, can be described by the partition coefficient (Eq. 8), which
gives a relation of the total number of adsorbed and gaseous species.5

ki =
nads

ngas [−] (8)

This partition can be described by the adsorption equilibrium constant, which accounts
for the influence of the actual surface to volume ratio on the column (Eq. 9).

Kc =
nads/a

ngas/v
[cm]

= ki ·
v
a

[cm] (9)10

To perform thermodynamical calculations, the adsorption equilibrium constant (Kc) has
to be transferred into the dimensionless standard equilibrium constant (Kp), as can be
seen in Eq. (10).

Kp =
f /f 0

p/p0
[−]

=
nads/a · RT · p0

ngas/v · RT · f 0
[−]

15

= ki ·
v
a
· A
V

[−] (10)

The advantage of the standard adsorption equilibrium constant (Kp) is, that it can be
expressed in terms of the standard adsorption entropy and enthalpy (Eq. 11), which
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can be regarded as independent of temperature.

− RT lnKp = ∆H0
ads − T ∆S0

ads (11)

Appendix C: The transport model and enthalpy calculations

The calculation of the standard adsorption enthalpy within the model of thermo-chro-
matography has been described by Eichler and Zvára (1982) in great detail. The trans-5

port of a species along the chromatographic column at low concentrations is given by
Eq. (12).
dz
dt

=
u0

1 + ki
(12)

If a linear temperature gradient along the column (Eq. 13) is given,

T = Ts − g · z, (13)10

Eq. (12) yields

t = −1
g

∫ TD

TS

1 + a
v · VA Kp(T )

u(T )
dT. (14)

Neglecting the change in gas pressure along the column, we have

u(T ) =
u0 · T
T0

[cms−1]. (15)

Assuming that ∆H0
ads and ∆S0

ads are independent of temperature, and substituting15

Eqs. (10), (11) and (15) in Eq. (14), we obtain Eq. (16), which can be solved by an
iteration process, if ∆S0

ads is known.(
t +

T0

g · u0
· ln

TD

TS

)
·

v · g · u0

a · T0 · VA · exp
(

∆S0
ads
R

) =
∫ TD

TS

1
T
· exp

(
−∆H0

ads

R T

)
(16)
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Appendix D: Entropy calculations

Statistical thermodynamics allow to very precisely calculate the absolute entropy based
on the partition functions. In the following we will calculate the change in entropy during
adsorption as the difference of the absolute entropy of a molecule in the gas phase and
of the molecule in the adsorbed state (Eq. 17).5

∆Sads = Sads − Sgas (17)

Each entropy term can be calculated based on the molar partition function, Eq. (18).
Using Stirling’s approximation and R = kB · NA the partition function can be written as
the molecular partition function (Eq. 19) for the canonical ensemble (Eq. 20).

S =
{U − U(0)}

T
+ kB · ln Q (18)10

S =
{U − U(0)}

T
+ nR · ln {lnq − lnNA + 1} (19)

Q = qn/n! (20)

The inner energy, U-U(0), can itself be calculated based on the partition functions
(Eq. 21).

U − U(0) = −n δ ln q
δ kT15

= −nkB T 2 δ ln q
δT

(21)

The partition function is simply calculated based on the molecule’s translational (trans),
rotational (rot), vibrational (vib) and electronical (el) degrees of freedom (Eq. 22).

qtot = qtrans · qrot · qvib · qel (22)

The adsorbed state is defined by a large mobility of the adsorbed molecules on the20

surface and a vibrating mode perpendicular to the surface. The molecule only loses
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one translational degree of freedom and gains one vibrational degree of freedom during
adsorption. As internal vibrations, rotations and the electronic configuration do not
change and thus do not contribute to the adsorption entropy, we can calculate the
partition function solely based on the translational and vibrational partition function.
The translational partition function is calculated based on a particle-in-the-box as5

qtrans = V ·
(

2πmkBT

h2

) 3
2

(23)

for the three dimensional state and as

qtrans = A ·
(

2πmkBT

h2

)
(24)

for the two dimensional (adsorbed) state. The vibrational partition function for one
mode is given by10

qvib =
e

−h ν
2kt

1 − e
h ν
kBT

. (25)

The vibrating frequency (ν) of the molecule in the adsorbed state is considered to be
similar to the phonon frequency of ice. Since to our knowledge no experimental data
about the vibrating frequency of the solid state of water exist at these temperatures, a
rounded value of 3×1013 s−1 based on the relations of Madelung and Einstein, Linde-15

mann and Debye and data in Hobbs (1974, p. 388) was used.
Using Eqs.( 21) and (23) to calculate the contribution of the inner energy to the en-

tropy yields

U − U(0)

T
=

3
2
kB NA (26)

for the molecules in the gas phase. Similarly, for the adsorbed state based on Eqs. (21),20
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(24) and (25), we get

U − U(0)

T
= kB NA + kB NA · h ν

2kB T
+

NA kB · h ν

kB T ·
(
e

h ν
kB T − 1

) . (27)

Using Eqs. (17), (19), and (23-27), we finally get the standard adsorption entropy

∆S0
ads = kB NA − 3

2
kB NA + kB NA · h ν

2kB T
+

NA kB · h ν

kB T ·
(
e

h ν
kB T − 1

)
+NA kB

ln

A
V

√
h2

2πmkB T

 + ln e− hν
2kBT − ln

(
1 − e− hν

kBT
) (28)

5

and with ln
(

1 − e− hν
kBT
)

being approximately 0, Eq. (28) finally yields Eq. (29), which

was used for calculations in this work.

∆S0
ads = R

ln

 A
V

√
NA h2

2πmkB TD

 − 0.5 +
h ν

kB TD

(
e

h ν
kB TD − 1

)
 (29)
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D. T., Türler, A., Gäggeler, H. W., and Baltensperger, U.: Heterogeneous chemical processing
of 13NO2 by monodisperse carbon aerosols at very low concentrations, Journal of Physical25

Chemistry, 100, 15 487–15 493, 1996. 435
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Table 1. Standard adsorption enthalpy and entropies of various NOy species, random error σ,

number of measurements (in brackets) and the systematic error δsys of ∆H0
ads. For calculation

of ∆S01
ads a value of 1 cm−1 for A/V was used and for ∆S02

ads, A was set to 6.7×1010 cm2 and V
to 2.2× 104 cm3

∆H0
ads σ δsys ∆S01

ads ∆S02
ads σ

[kJ mol−1] [kJ mol−1] [kJ mol−1] [J/(K mol)] [J/(K mol)] [J/(K mol)]

HNO3 −44 2.3 (4) 13 −168 −44 0.1
HONO −32 1.7 (9) 10 −166 −42 0.1
PAN −30 1.2 (7) 7 −169 −45 0.5
NO2 −22 1.0 (21) 6 −165 −39 0.1
NO −20 2.6 (7) 5 −164 −40 0.2
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Table 2. Assessment of the systematic error

input value error influence of this error on the adsorption enthalpy
NO NO2 HONO HNO3 PAN

experimental time ± 1 min 0.1 0.0 0.1 0.1 0.1 kJ mol−1

gas flow ± 20 cm3 s−1 0.1 0.3 0.3 0.1 0.3 kJ mol−1

temperature gradient ± 0.5 K 0.1 0.1 0.1 0.2 0.1 kJ mol−1

open volume ± 300 % 1.4 1.8 1.9 2.8 1.9 kJ mol−1

surface area ± 300 % 1.1 1.6 5.2 2.2 5.2 kJ mol−1

starting temperature + 30 K 0.0 0.0 0.1 3.0 0.0 kJ mol−1

deposition temperature ± 10 K 1.8 2.7 2.5 4.2 2.8 kJ mol−1

molar mass + 1 g mol−1 0.0 0.0 0.0 0.0 0.0 kJ mol−1
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Table 3. Partitioning coefficient of nitrogen oxides between ice and air under different at-
mospheric conditions. See text for explanation and references

temperature [K] ice area [cm2 cm−3] partition coefficient [−]

contrails NO 213 1×10−2 2×10−6

NO2 213 1×10−2 6×10−6

HONO 213 1×10−2 2×10−3

PAN 213 1×10−2 3×10−4

HNO3 213 1×10−2 1

cirrus clouds NO 213 3×10−3 7×10−7

NO2 213 3×10−3 2×10−6

HONO 213 3×10−3 5×10−4

PAN 213 3×10−3 1×10−4

HNO3 213 3×10−3 3×10−1

snow pack NO 246 20 1×10−3

(polar zone) NO2 246 20 3×10−3

HONO 246 20 3×10−1

PAN 246 20 8×10−2

HNO3 246 20 9×10+1

snow pack NO 268 70 2×10−3

(temperate zone) NO2 268 70 3×10−3

HONO 268 70 3×10−1

PAN 268 70 7×10−2

HNO3 268 70 4×10+1
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Fig. 1. Experimental setup: gas target to produce 13N, photolysis cells to oxidise the nitrogen
oxides, and chromatographic column.
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Fig. 2. Distribution of different nitrogen oxide species in columns packed with ice spheres at
different experimental settings. Zero column length denotes the beginning of the ice spheres
in the column. The activity is a measure for concentration of NOy species along the column.
The spontaneous signals visible at the column entrance in chromatogram D are due to detec-
tor noise, and their decreasing relative contribution derives from the calculation of the activity
based on the observed counts.
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Fig. 3. Overview of equilibria of nitrogen oxides in the gas and ice phase, such as dimerisation
(dim), e.g. NO2 
 N2O4; adsorption (ads); reaction (react), e.g. NO2 + NO 
 N2O3; solva-
tion into the quasi-liquid layer (qll), bulk or grain boundaries (gb); formation of encapsulated
hydrates (aq); and dissociation (diss), e.g. of HNO2 and HNO3.
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Fig. 4. Comparison of two chromatograms at different experimental settings. The activity
is given on the left axis (solid line) and the temperature along the column at the right axis
(crosses). In experiment A the temperature at column entrance was too low for a quasi-liquid
layer to form, whereas in chromatogram B a quasi-liquid layer might have evolved. Note that the
two NO2 peaks should be compared; the NO in experiment A was added on purpose, without
any relation to this comparison.

467

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/2/431/acpd-2-431_p.pdf
http://www.atmos-chem-phys.org/acpd/2/431/comments.php
http://www.copernicus.org/EGS/EGS.html


ACPD
2, 431–468, 2002

Adsorption of NOy
on ice

T. Bartels et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGS 2002

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70
 Linear Fit
 Confidence Limit (95 %)

transcis

HNO
3

HONO

NO
2NO

-�
H

ad
s [

kJ
/m

ol
]  

dipole moment � [1013  C m]

Fig. 5. Correlation of dipole moment (Lide, 2001-2002) and the experimentally found adsorption
enthalpy for NO, NO2 and HNO3.
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