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Abstract

Due to the exponential positive feedback between sea surface temperature and sat-
urated water vapour concentration, dependence of the planetary greenhouse effect
on atmospheric water content is critical for stability of a climate with extensive liquid
hydrosphere.5

In this paper on the basis of the law of energy conservation we develop a simple
physically transparent approach to description of radiative transfer in an atmosphere
containing greenhouse substances. It is shown that the analytical solution of the equa-
tion thus derived coincides with the exact solution of the well-known radiative transfer
equation to the accuracy of 20% for all values of atmospheric optical depth. The de-10

rived equation makes it possible to easily take into account the non-radiative thermal
fluxes (convection and latent heat) and obtain an analytical dependence of the green-
house effect on atmospheric concentrations of a set of greenhouse substances with
arbitrary absorption intervals.

The established dependence is used to analyse stability of the modern climate of15

Earth. It is shown that the modern value of global mean surface temperature, which
corresponds to the liquid state of the terrestrial hydrosphere, is physically unstable.
The observed stability of modern climate over geological timescales is therefore likely
to be due to dynamic singularities in the physical temperature-dependent behaviour
of the greenhouse effect. We hypothesise that such singularities may appear due20

to controlling functioning of the natural global biota and discuss major arguments in
support of this conclusion.

1. Introduction

Climate stability is determined by the values and temperature-dependent behaviour of
the planetary albedo and atmospheric greenhouse effect. At zero albedo and in the25

absence of the greenhouse effect, temperature of the planet’s surface is dictated by
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the incoming flux of solar energy, i.e. by the orbital position the planet occupies in
the solar system. Below this temperature is called orbital. Values of albedo common
to planets of the solar system correspond to decrease of the surface temperature by
no more than several tens of degrees Kelvin. By contrast, the greenhouse effect may
increase surface temperature by several hundred degrees Kelvin, as it takes place on5

Venus (Mitchell, 1989).
The Earth’s orbital temperature is equal to +5◦C. The Earth’s albedo, which is likely

to approach its minimum possible value for ordinary planetary surfaces, would, in the
absence of a greenhouse effect, lower the surface temperature down to −18◦C. The
modern greenhouse effect increases the global mean surface temperature of the planet10

by 33◦C, up to +15◦C.
The overwhelming part of the greenhouse effect on Earth is determined by atmo-

spheric water vapour, cloudiness and CO2. Due to the presence of large amounts of
liquid water on the planet’s surface, the atmospheric water content grows exponen-
tially with increasing surface temperature. This positive feedback can in principle lead15

to an unlimited increase of the greenhouse effect and surface temperature, until the
oceans evaporate completely. The possibility of such a “runaway” greenhouse effect
has been repeatedly discussed in the literature (Ingersoll, 1976; Rasool and de Berg,
1979; Nakajima et al., 1992; Weaver and Ramanathan, 1995).

Changing the values of albedo and greenhouse effect, it is possible to equate the20

incoming flux of short-wave solar radiation absorbed by the planet and the outgoing
flux of long-wave radiation emitted by the planet into space. This equality determines
a stationary equilibrium temperature of the Earth’s surface. However, due to the pos-
itive feedback outlined above, such an equilibrium may appear to be unstable. Any
small fluctuations will be then able to drive the surface temperature either in the direc-25

tion of cooling, towards the planet’s glaciation, or in the direction of warming, towards
complete evaporation of the hydrosphere.

In the studies of the runaway greenhouse effect (Ingersoll, 1976; Rasool and de
Berg, 1979; Nakajima et al., 1992; Weaver and Ramanathan, 1995) one addresses
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the problem of whether the existence of an equilibrium surface temperature at different
values of solar constant is possible or not. Stability of the equilibrium temperature,
should such an equilibrium exist, is rarely discussed. The possibility of an equilibrium
global mean surface temperature being unstable was mentioned by Ingersoll (1967).

Modern climate of Earth is stable, as testified for by the observations that oscillations5

of the global mean surface temperature did not exceed 10◦C during the last several
hundred million years (Berggren and Van Couvering, 1986), several degrees Celsius
– during the last ten thousand years, and several fractions of degree Celsius – during
the last century (Savin, 1977; Watts, 1982). It follows that in the vicinity of the modern
value of the global mean surface temperature there are certain negative feedbacks in10

action, that overcome the positive greenhouse feedback discussed above.
These negative feedbacks are manifested as empirically established regularities in

the temperature-dependent behaviour of various climate-forming factors. Climate mod-
els that incorporate these regularities yield, as expected, a stable equilibrium surface
temperature (Manabe and Wetherald, 1967; North and Coakley, 1979; North et al.,15

1981; Dickinson, 1985). In the meantime, there are no theoretical studies that would
predict or explain the observed stability of the modern Earth’s climate a priori, on the
basis of the known physical laws.

This paper aims at establishing a theoretical dependence of the greenhouse effect
on atmospheric concentrations of greenhouse substances, which is then used in the20

analysis of the nature of stability of the modern Earth’s climate. In Sects. 2 and 3 we
show that the equation of transfer of thermal radiation in a given spectral interval can
be reasonably approximated by an equation of the diffusion (heat conductivity) type for
all values of atmospheric optical depth τ. In the case of radiative equilibrium, solution
of the corresponding diffusion equation represents a linear dependence of the upward25

flux of long-wave radiation at the surface on the atmospheric optical thickness τs, which
differs from the exact solution of the radiative transfer equation by no more than 20%
for all values of τs.

In Sect. 4 we employ standard methods for accounting in the diffusion equation for
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non-radiative thermal fluxes of convection and latent heat. It is shown that such an
account retains the linear dependence of the upward flux of thermal radiation at the
surface on the atmospheric optical thickness τs in a definite spectral interval. It is only
the slope of the corresponding line that is changed. In Sect. 5 we derive an analytical
formula for the dependence of the greenhouse effect (defined here as the difference5

between thermal fluxes at the surface and outside the atmosphere) on atmospheric
concentrations of greenhouse substances and use it in the theoretical analysis of sta-
bility of possible Earth’s climates. It is shown that a climate with a liquid hydrosphere
is physically unstable. In Sect. 6 the available empirical data are employed to quan-
tify deviations of the real greenhouse effect from the theoretical physical behaviour,10

that are necessary to explain the observed stability of modern climate of Earth. In
Sect. 7 (Conclusions) we analyse possible reasons for the observed climate stability
and hypothesize that it is due to the controlling functioning of the global natural biota,
discussing major arguments in support of this hypothesis.

2. Propagation of thermal photons in a stratified atmosphere15

After averaging over latitude and longitude, as well as over diurnal and seasonal oscil-
lations, all measurable characteristics of the atmosphere may only depend on height
z. Such averaging corresponds to the planar (stratified) atmosphere (Chandrasekhar,
1950; Michalas and Michalas, 1984), which differs from the one-dimensional atmo-
sphere, where all radiation propagates along z-axis only, by allowing the beams to20

form an arbitrary angle with the vertical axis.
Photons emitted from the Earth’s surface travel on average a distance equal to the

mean free path l , before they are absorbed by molecules of greenhouse substances
and further re-emitted with an equal probability (in the case of isotropy) in either up-
ward or downward direction. A photon emitted downwards is absorbed by the Earth’s25

surface and re-emitted upwards. A photon emitted upwards travels on average another
free path l , after which it is absorbed by the next molecule, and so forth. Averaging
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over a large number of thermal photons, we obtain pattern shown in Fig. 1. In Fig. 1
the atmosphere is divided into m layers, the distance between any two neighbouring
layers being equal to the mean free path of thermal photons. Each layer absorbs ther-
mal photons coming from the two neighbouring layers (the lower and the upper) only.
The absorbed photons are emitted up and down with an equal probability. Variable m5

corresponds to optical thickness of the atmosphere.
The proposed consideration, Fig. 1, would be exact, if the standard deviation of the

free path length l – distance covered by photons without interaction with greenhouse
molecules – were negligibly small compared to the mean free path length. In the real
case of space uniformity, the probability of absorption is the same along all the path10

traveled by the photon. Thus, the probability of covering a path z without collisions
becomes exp(−z/l ). Accordingly, the standard deviation of free path length coincides
with the mean free path length l . In terms of Fig. 1, it means that each of the m layers,
that are infinitely thin in Fig. 1, spreads approximately to the point where it meets with
the neighbouring one. Yet such expanded layers do not overlap significantly. Thus, the15

possible inaccuracy of our consideration, caused by neglecting the absorption events
that take place at a distance further than one standard deviation, is unlikely to change
the order of magnitude of the results to be obtained.

The inaccuracy of the representation in Fig. 1 would decrease, if one “pushed” the
layers apart at a distance exceeding the mean free path length l . Then a larger fraction20

of absorption events can be formally taken into account as taking place between any
two neighbouring layers. However, in such a case a considerable portion of photons
emitted by a given layer would not reach the neighbouring layers. As a result, the
condition of energy conservation for radiative interaction between the neighbouring
layers in Fig. 1, will not be applicable. Thus, l remains as the only scale factor of25

the considered problem. It can be expected therefore that a satisfactory solution with
a minimum inaccuracy can be obtained by multiplication of l by a geometric factor
between 1 and 2. By analysing the exact radiation transfer equation in Section 2 we will
show that this factor is about 1.2 for the three-dimensional planar atmosphere. Once
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this factor is taken into account, the inaccuracy of the simple consideration offered in
this section does not exceed 15% for any value of m.

Let Fk be the upward flux of thermal radiation from the k-th layer, dimension
[W m−2], equal to the downward flux from the same layer. Then Fs ≡ Fm+1 is the upward
flux of thermal radiation from the Earth’s surface, F1 = Fe is the upward flux of thermal5

radiation outside the atmosphere. In the case of radiative equilibrium, we obtain the
following system of recurrent equations (see Fig. 1):

F1 = Fe, 2F1 = F2, . . . 2Fk = Fk+1 + Fk−1 . . .
Fs ≡ Fm+1 = Fm + Fe, 2 ≤ k ≤ m,

(2.1)

where k increases in the downward direction. The first equation in (2.1) expresses the
boundary condition at the top of the atmosphere, while the remaining equations are10

based on the law of energy conservation at each layer, including the Earth’s surface.
Solution of Eq. (2.1) for any 1 ≤ k ≤ m + 1 is:

Fk = kFe, Fs ≡ Fm+1 = (1 +m)Fe . (2.2)

Equations (2.1) and their solution (2.2) are valid for one greenhouse substance ab-
sorbing radiation in a finite spectral interval, as well as for a “grey” medium with absorp-15

tion interval expanding over the whole thermal spectrum. When there are N different
types of greenhouse substances with absorption intervals in different parts of the ther-
mal spectrum, solution (2.2) remains valid for every particular absorption interval in the
realistic case of resonance scattering (absorption and emision of thermal radiation).
Taking into account that the thermal radiative flux of the Earth’s surface is close to20

blackbody radiative flux described by Planck’s formula, IP (λ, T ), one can represent the
surface radiation in a given spectral interval ∆λi = λ2 − λ1 as Fsδi , where

δi =

λ2∫
λ1

IP (λ, T )dλ

σRT 4
, Fs = σRT

4,
N∑
i=1

δi = 1 . (2.3)
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Here σR is the Stephen-Boltzmann constant. In this paper we do not use either local air
temperature or the assumption of local thermodynamic equilibrium in the atmosphere.
Using Eq. (2.3), one may write Eq. (2.2) as

Fsδi = (1 +mi +m0) Fei , mi =
hi

li
= hi σi ni

N∑
i=1

Fei = Fe, b ≡
Fe
Fs

=
N∑
i=1

δi

1 +mi +m0
(2.4)

5

Here m0 = h0/l0 = h0σ0n0 is the optical thickness of cloudiness, which absorbs ra-
diation rather evenly over the whole thermal spectrum; mi is the optical thickness of
greenhouse substances absorbing thermal radiation within i -th spectral interval ∆λi ;
hi , σi and ni are the height of the upper radiating layer, absorption cross-section and
concentration of these greenhouse substances, respectively; Fei is the radiative flux in10

i -th spectral interval outside the atmosphere. Note that generally Fei/Fe 6= δi . Variable
b has the meaning of atmospheric transmissivity with respect to thermal radiation of
the Earth’s surface. The absolute value of greenhouse effect can be defined as the
difference Fs − Fe.

In the atmosphere thermal radiation interacts with greenhouse substances that have15

concentrations not exceeding several fractions of per cent with respect to major air con-
stituents. The cross-section of scattering of thermal radiation on absorption bands of
triatomic molecules of greenhouse substances (H2O, CO2) is of resonance character,
exceeding the cross-section of thermal radiation scattering on diatomic air molecules
(N2, O2) (non-resonance Rayleigh scattering) by five-six orders of magnitude (Allen,20

1955; Goody and Yung, 1989). In the process of resonance scattering the number of
photons of a given wavelength remains constant, it is only the direction of their move-
ment that changes. This leads to the condition of radiative equilibrium and energy
balance for each absorption band of the greenhouse substances, which was used in
derivation of Eq. (2.4).25
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If optical thickness mi is of the same order of magnitude for all greenhouse sub-
stances, the upward flux of thermal radiation from the Earth’s surface, Fs, increases
infinitely with growing mi , while transmissivity b tends to zero. If there are no absorbers
in a certain n-th spectral interval, mn = 0, there appears a so-called spectral window
(Rodgers and Walshaw, 1966; Mitchell, 1989; Weaver and Ramanathan, 1995). In fact,5

a given spectral interval can be considered as a window when mn � mi for all i 6= n.
In the presence of a spectral window, increase in concentrations of the greenhouse
substances with i 6= n cannot lead to an infinite increase of the greenhouse effect. As
follows from Eq. (2.4), the greenhouse effect is saturated at the following values of b
and Fs (for mn = 0): b = δn, Fs = Fe/δn. These limiting values have a clear physical10

explanation. The outgoing thermal flux Fe is fixed by the absorbed flux of solar radia-
tion. As far as at mi � δ−1

n the atmosphere practically ceases to emit radiation into
space in i -th spectral interval, i.e. Fei → 0, all the outgoing radiative flux passes into
space through the spectral window directly from the surface, Fe = δnFs.

The third equation of (2.1) together with the boundary condition F1 = Fe can be15

re-written in the following form:

−
[
(Fk−1 − Fk) − (Fk − Fk+1)

]
= 0

Fk − Fk−1 = Fe
F1 = Fe (2.5)

A continuous analogue of the discrete number of a given layer, k, is the so-called20

optical depth τ:

τ ≡
∞∫
z

dz
l (z)

, m ≡ τs =

∞∫
0

dz
l (z)

, (2.6)

where l (z) is the mean free path length of thermal photons at height z, τs is the optical
thickness of the atmosphere.

297

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/2/289/acpd-2-289_p.pdf
http://www.atmos-chem-phys.org/acpd/2/289/comments.php
http://www.copernicus.org/EGS/EGS.html


ACPD
2, 289–337, 2002

Greenhouse effect
and climate stability

V. G. Gorshkov and A. M.
Makarieva

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGS 2002

For the upwelling flux of thermal radiation scaled by Fe, f (τ) ≡ F +(τ)/Fe ≡ Fk/Fe,
one can re-write Eq. (2.5) in the continuous representation as

−
d2f (τ)

d2τ
= 0

df (τ)

dτ
= 1

f (0) = 1 . (2.7)5

Solution of Eq. (2.7) at the surface, τ = τs, is

f (τs) = 1 + τs . (2.8)

As follows from Eq. (2.8), the absolute greenhouse effect, Fs−Fe, grows directly propor-
tionally to the atmospheric thickness τs. We will now compare this result with solutions
of the exact radiative transfer equation for different values of τ.10

3. Analysis of the radiative transfer equation

In the planar three-dimensional case the stationary equation for transfer of radiation of
a given wave length at height z has the form (Michalas and Michalas, 1984; Goody and
Yung, 1989):

µ
∂I(µ, z)

∂z
= − 1

l (z)
I(µ, z) +

S(z)

l (z)
, (3.1)

15

where I(µ, z) is the radiation intensity, defined as the mathematical limit of energy trans-
ported per unit time in a given direction n through unit perpendicular area at height z
by a bundle of rays propagating within a fixed unit solid angle, when the solid angle
where measurements are taken tends to zero (Milne, 1930, p. 72); µ is the cosine
between the given direction n and the vertical axis z, S(z), the source function, is the20

radiative energy emitted per unit time in a cylinder of unit cross-section and length
298
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equal to the mean free path length l (z). Function S(z) is assumed to be isotropic, i.e.
µ-independent. The first term in the right-hand part of Eq. (3.1) describes absorption of
radiation in the corresponding volume, the second one describes emission of radiation
within the same volume. Thus, similar to Eqs. (2.1), Eq. (3.1) is based on the law of
energy conservation: change in the energy of the ray, ∂I(µ,z), as the ray travels path5

∂s = ∂z/µ, is equal to the difference between the amounts of radiation absorbed and
emitted by the matter along that path.

For the purposes of this paper we need to consider the radiation flux F and the
energy density E , i.e. variables that are obtained from Eq. (3.1) by integrating it over
solid angle, which, in the planar case considered, corresponds to integrating over µ. In10

the case of radiative equilibrium (absence of energy exchange between the matter and
radiation) F and E are related to intensity (Eq. 3.1) as follows:

Ec/4π ≡ J, F/4π ≡ H

S(z) = J(z) ≡ 1
2

∫ 1

−1
I(z, µ)dµ

H(z) ≡ 1
2

∫ 1

−1
µ I(z, µ)dµ . (3.2)

15

In this section we will refer to the mathematically convenient variables J and H (so-
called Eddington variables) as to the normalised energy density and normalised flux,
respectively.

Straightforward integration of Eq. (3.1) over µ does not yield an equation constrain-
ing H and J . To obtain such an equation, it is needed to go over from the differ-20

ential (Eq. 3.1) to integral equations (Chandrasekhar, 1950; Michalas and Michalas,
1984; Goody and Yung, 1989). We first replace in Eq. (3.1) height z by optical depth

τ, dz / l (z) ≡ −dτ (see Eq. 2.6). Multiplying then both parts of Eq. (3.1) by e−τ/µ (this
factor represents the solution of the homogenous Eq. (3.1) at S(z) = 0) and grouping
together the two intensity-dependent terms of Eq. (3.1) at the left-hand part of the equa-25

tion, one obtains that the τ-derivative of the product I(µ,τ)e−τ/µ is equal to J(τ)e−τ/µ.
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Then, one integrates both parts of the new equation over τ within the limits τ ≤ τ′ < ∞
for µ > 0 and within the limits 0 ≤ τ′ < τ for µ < 0, and takes into consideration the
boundary conditions – absence of exponential growth of H and J at τ → ∞ for µ > 0
and zero value of the intensity at τ = 0 for µ < 0. In the two relations for µI(τ, µ) thus
obtained, for µ > 0 and for µ < 0, one may further introduce new integration variables,5

τ′ − τ = µx for µ > 0 and µ′ = −µ and τ′ − τ = µ′x for µ = −µ′ < 0, and integrate them
taking into account (Eq. 3.2). Then, dropping the prime of the new integration variable
µ′, the following relations for J(τ) and H(τ) are obtained:

J(τ) = J+(τ) + J−(τ)

H(τ) = H+(τ) − H−(τ) (3.3a)10

J+(τ) ≡ 1
2

1∫
0

dµ

∞∫
0

e−x J(τ + µx)dx

J−(τ) ≡ 1
2

1∫
0

dµ

τ/µ∫
0

e−x J(τ − µx)dx (3.3b)

H+(τ) ≡ 1
2

1∫
0

µdµ

∞∫
0

e−x J(τ + µx)dx
15

H−(τ) ≡ 1
2

1∫
0

µdµ

τ/µ∫
0

e−x J(τ − µx)dx (3.3c)

dH+(τ)

dτ
=

dH−(τ)

dτ
=

1
2

[
J+(τ) − J−(τ)

]
(3.3d)
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J−(τ = 0) = H−(τ = 0) = 0. (3.3e)

where + and − refer to the normalised flux and energy density of upwelling and down-
welling radiation, respectively. Equation (3.3d) can be obtained differentiating the in-
tegral part of Eq. (3.3c) over τ, using integration by parts and Eqs. (3.3a,b). Equa-
tions (3.3) are exact, with no approximations made. Integral Eqs. (3.3b), (3.3c) differ5

from the Schwarzchild-Milne equations (Michalas and Michalas, 1984) by replacement
of variables inside the integrals. Due to the presence of the exponential term e−x in
integrals (3.3b), (3.3c), the major contribution into these integrals comes from the in-
terval µx ∼ 1 for all values of τ, including τ � 1. This allows one to use Eqs. (3.3b),
(3.3c) in determination of the assymptotic behaviour of J and H at τ � 1.10

The greenhouse effect is fully determined by the changes that the upwelling radiation
flux H+(τ) undergoes propagating from the Earth’s surface (τ = τs) to the top of the
atmosphere (τ = 0). Thus, we are primarily interested in finding the dependence of
H+(τ) on τ from Eq. (3.3c).

It follows from Eq. (3.3d) that dH(τ)/dτ = 0 and, consequently, H(τ) = H = const.15

Using Eqs. (3.3a,b,c) it can be shown that this condition can be only fulfilled if at large
values of τ � 1 the normalised energy density J(τ) grows proportionally to the first
power of τ, i.e. if at τ � 1 we have that J(τ) = cJHτ + o(τn−1), where cJ = const.
Indeed, let us express J(τ) as J(τ) = cJHτn, where n is an arbitrary power, and put
this expression into the integrals (3.3c). The difference between two integrals (3.3c)20

makes H(τ). Expanding the integral terms (τ ±µx)n into the series of powers of τ,
taking into account that µx ∼ 1, summing the terms with equal power and performing
the integration, one obtains the following leading term of the assymptotic expression
for H(τ) at large τ: H(τ) = (cJ/3)Hτn−1 + o(τn−3). From this we both derive the value
of cJ = 3 and conclude that a constant non-zero value of H(τ) is only possible when25

n = 1. Thus, the assymptote of J(τ) at large τ is a straight line, J(τ) = 3H(τ + CH ),
where CH is a constant. Hopf (1934) found the exact value of CH = 0.710.

We are now able to evaluate H+(τ) at τ � 1. Putting the assymptotic expression
for J(τ) = 3H(τ + CH ) at τ � 1 into the first equation of Eq. (3.3c) and performing the
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elementary integration over µ and x, we obtain:

f (τ) ≡
H+(τ)

H
=

3
4
τ + 1.033, f ′(τ) =

3
4
, τ � 1. (3.4)

Note that the constant term in Eq. (3.4) is greater than unity. It also follows from
Eq. (3.3c) that H+(τ) = J+(τ)/2 for τ � 1.

Let us now explore the behaviour of f (τ) at small τ, τ � 1. From Eqs. (3.3a), (3.3d)5

and (3.3e) we have [H+(0)]′ = 1
2J(0). In the planar three-dimensional case, at τ = 0

photons propagate isotropically into the upper hemisphere only. The squared velocity
of photons at τ = 0 is determined by the relation c2 = c2

x + c2
y + c2

z = 3c2
z, as far as all

directions of movement of isotropically propagating photons are equally probable. We
have therefore cz = c/

√
3, which means that the flux F is related to energy density10

E as F = Ecz = Ec/
√

3. Finally, we obtain from Eq. (3.2) that J(0) =
√

3H . Thus,
f ′(0) =

√
3/2. So in the region of small τ we have:

f (τ) = 1 +

√
3

2
τ, f ′(τ) =

√
3

2
, τ � 1. (3.5)

Using Eqs. (3.3d) and (3.3b), we can obtain the next term of expansion of f (τ) over τ at
τ � 1. Taking the first derivative of integrals (3.3b) over τ and integrating the resulting15

integrals by parts, we obtain f (τ) = 1 +
√

3
2 τ +

√
3

4 τ2 ln τ
τ0

, where τ0 is a constant of the
order of unity. It is easy to see from this expression that at τ � 1 the second derivative
of f (τ) is negative due to the presence of the logarithmic term.

In the intermediate region of τ ∼ 1 function f (τ) ≡ H+(τ)/H does not allow for a sim-
ple analytical representation. Nevertheless, it is clear that within this region f (τ) does20

not differ significantly from its assymptotic values given by Eqs. (3.4) and (3.5). For all
τ the first derivative of f (τ) remains positive, as far as J+(τ) > J−(τ), (see Eq. 3.3d).
Consequently, f (τ) increases monotonously approaching its assymptote (3.4), Fig. 2.
It can be also concluded that f (τ)′ is decreasing monotonously at all τ. Indeed, it is ev-
ident from the condition of monotonous growth of f (τ) at all τ and the above discussed25
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fact that f ′′(τ) < 0 for τ � 1, that f ′′(τ) remains negative for τ � 1 as well, so that f (τ)
approaches the assymptote (3.4) from below. In any intermediate region, τ ∼ 1, f (τ)′′

cannot become positive either. This follows from the consideration of space uniformity:
there are no selected points in space where the curve f (τ) could twice change the
sign of its bending, Fig. 2. Consequently, f ′(τ) decreases monotonously from its value5

Eqs. (3.5) to (3.4), thus changing by 15%. The region τ ∼ τc, where the switch from
assymptotic behaviour (Eq. 3.5 to 3.4) approximately occurs, corresponds to the point
of intersections of the corresponding assymptotic lines, from which we have τc = 0.28,
Fig. 2. We note that the monotonous decrease of f ′(τ) is only possible due to the fact
that the constant term in Eq. (3.4), 1.033, is greater than the constant term in Eq. (3.5),10

which is equal to unity. It is easy to see from Fig. 2 that if it were not the case, function
f (τ) would have to bend at least once, approaching the assymptote at τ � 1 from
above.

Equations (3.4), (3.5) for the upwelling flux of thermal radiation at the surface, τ = τs,
can be written as15

f (τs) = 1 + τ̃s, τ̃s ≡ k1τs, (3.6)

where 3/4 ≤ k1 ≤
√

3/4 for any τs, 0 ≤ τs < ∞. Note that in all cases, (cf. Eq. 3.4),
Eq. (3.5), the coefficient at the first power of τs is less than unity, as discussed in Sect. 2.
The 15% change that coefficient k1 undergoes in the region τs ∼ 0.28, from k1 ≈ 3/4 at

τs � 1 to k1 ≈
√

3/4 at τs � 1, (see Fig. 2), is dictated by the change in the character20

of radiation propagation. At large values of optical depth τ the radiation propagates
approximately equally into the upper and lower hemispheres (H+ ≈ H−, J+ ≈ J− ≈
2H±), while at small τ the predominant direction is into the upper hemisphere only
(H+ � H−, J+ � J−, J+ ≈

√
3H+ ≈

√
3H). Thus, the change in k1 monitors the

change in the relation between the upwelling flux H+ and the energy density J .25

In the planar three-dimensional case, formula (3.6) coincides with Eq. (2.8) if one
allows for the effective increase of the mean free path length l (or the equal decrease
of the optical depth τ) by about 20%, (see Eqs. 3.4 and 3.5). When this minor correc-
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tion factor is specified, the results of Sect. 2 are in full agreement with those obtained
from the radiative transfer equation. Due to its physical transparency and mathemati-
cal simplicity, the consideration presented in Sect. 2 allows one to easily evaluate the
contribution into heat transfer of non-radiative heat fluxes, which is done in the next
section.5

4. An account of non-radiative heat fluxes

Non-radiative dynamic flux of heat in the atmosphere derives mainly from convective
transport of latent heat of water vapor and internal energy of air molecules. The only
way for this heat flux to be released into space is by means of excitation at its expense
of an additional number of energy levels of molecules of greenhouse substances and10

subsequent emission of thermal photons by the excited molecules. Additional energy
levels are excited when molecules of greenhouse substances collide with molecules of
other air constituents.

Collisional excitation of greenhouse molecules may occur at all atmospheric layers.
To take this process into account, one has to add to the first equation of (2.5) a positive15

term. For every k-th layer, this term is equal to the flux of thermal radiation that is added
to this layer due to non-radiative excitation of molecules of greenhouse substances.

It is convenient to write this term as akFe with dimensionless coefficients ak > 0
normalised by the condition

∑m+1
k=1 ak = 1. Here am+1 ≡ γs represents the flux of

radiative thermal energy coming into the atmosphere from the Earth’s surface, γs ≡20

(Fm+1 − Fm)/Fe. At each layer the incoming flux of radiation consists now of three
parts: radiation Fk−1 and Fk+1 coming from the lower and upper neigbouring layers
and radiation akFe, which emerges at this layer due to the non-radiative excitation of
greenhouse molecules.

The normalising condition
∑m+1

k=1 αk= 1 can be obtained by summing the modified first25

equation of (2.5), −[(Fk−1−Fk)− (Fk −Fk+1)] = αkFe, for all layers including the surface,
for which it assumes the form Fm+1−Fm = γsFe. The physical content of the normalising
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condition
∑m+1

k=1 ak = 1 is that the initial flux of energy of thermal radiation at the Earth’s
surface, γs, is at every layer fed with additional energy fluxes originating from non-
radiative sources. At the top of the atmosphere all non-radiative fluxes disappear, while
the thermal radiative flux reaches the maximum value of thermal radiative flux outgoing
into space, Fe, which in the stationary case is equal to the incoming flux of absorbed5

solar radiation.
The important condition ak > 0 means that all the dynamic energy fluxes must be

converted into the energy of thermal photons and not vice versa, which is a manifesta-
tion of the second law of thermodynamics. If the collisional excitation of the absorption
bands of greenhouse substances were absent or negligibly small, the air temperature10

would be the same throughout the entire atmospheric column, coinciding with that of
the Earth’s surface. The brightness temperature in each spectral interval containing
absorption bands of greenhouse substances coincides with the surface temperature
at the surface and then decreases with height. This means that the population den-
sity of the excited states of greenhouse molecules decreases with height. If one now15

switches on collisional interaction, this will lead to excitation of additional molecules at
the expense of thermal energy of the hotter air. As a result, the air temperature will
drop, while the brightness temperature in the corresponding absorption intervals will
increase. According to the second law of thermodynamics, thermal energy is trans-
ported from the hotter medium to the cooler, i.e. from air molecules to the absorption20

bands of the greenhouse substances, and not vice versa, which corresponds to ak > 0.
In a stationary state, loss of energy by air molecules due to collisional excitation of the
absorption bands is compensated by the non-radiative energy fluxes of convection and
latent heat.

To take non-radiative heat fluxes into account, Eqs. (2.7) and their solution (2.8) in25

the continuous form can be re-written as follows:

− d2

dτ2
f (τ) = α(τ) (4.1a)
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df
dτ

∣∣∣∣
τ=0

= γs +

τs∫
0

α(τ)dτ = 1, γs ≡
df
dτ

∣∣∣∣
τ=τs

(4.1b)

f (0) = 1 (4.1c)

f (τs) = 1 + γsτs +

τs∫
0

dτ

τs∫
τ

dτ′α(τ′). (4.1d)

Function α(τ) > 0 (the continuous analogue of dimensionless coefficients ak) is the
flux of the non-radiative excitation of molecules of greenhouse substances per one5

mean free path length of thermal photons. The normalising condition for dimensionless
coefficients ak takes the form (4.1b) of one of the two boundary conditions for (4.1a).
Equations (4.1a) and (4.1d) are written for the case of one greenhouse substance and
may be extended to the general case of several greenhouse substances, (see Eqs. 2.3
and 2.4).10

It follows from Eqs. (4.1b) and (4.1d) that the non-radiative heat fluxes work to dimin-
ish the value of f (τs) and the greenhouse effect. However, even in the limiting case of
γs = 0 (i.e. when the thermal flux from the Earth’s surface is completely non-radiative),
the greenhouse effect retains a non-zero value. This quite expected result is a manifes-
tation of the fact that the convection itself arises only due to the presence of a non-zero15

greenhouse effect.
Using sum rule (4.1b), we can write the dependence of f (τs) on τs in the following

form for any τs:

f (τs) = 1 + τ̃s, τ̃s ≡ k2τs (4.2)
20

k2 = γs +
1
τs

τs∫
0

dτ

τs∫
τ

dτ′α(τ′)

0 ≤ γs ≤ k2 ≤ 1 . (4.3)
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Coefficient k2 has the meaning of the mean rate of change of the upwelling flux of ther-
mal radiation in the atmosphere, (see Eqs. 4.1b). It is easy to check that the sum rule
(4.1b) gives k2 = 1 + o(τs) for τs � 1. At τs � 1, the mean rate of thermal radiative
flux change, k2, remains to be bounded from below by a finite value, irrespectively of
the value of γs. In other words, k2 does not decrease proportionally to 1/τs. Such a5

decrease of k2 could in principle take place if the upwelling radiative flux f (τ), while
propagating through the atmosphere, underwent changes predominantly in a fixed in-
terval (τ2 − τ1), which would be independent of τs and did not increase with growth
of the latter. Such a situation is, however, impossible. Convection in the atmosphere
is represented by vertical transport of macroscopic air volumes. In the course of their10

movement, these air volumes expand and become cooler and, consequently, continu-
ously perform thermodynamic work. This work is continuously converted into thermal
radiation, which means that the upwelling radiative flux f (τ) undergoes changes by
receiving feeding from non-radiative heat fluxes throughout the entire area of atmo-
spheric column, where convective fluxes are present. Thus, k2 remains of the order of15

unity for any values of τs, including τs � 1. This means that Eqs. (2.1), (2.7) and their
solutions (2.2), (2.8) are valid for the case of a non-zero convective energy transport,
if one replaces m = τs by m̃ = τ̃s. Such a replacement is equivalent to multiplying
the mean free path length l by a constant factor greater than unity. This factor can
be retrieved from experimental data. The account of convection retains therefore the20

linear dependence of f (τs) ≡ Fs/Fe on the optical thickness τs. It is only the slope of
the corresponding line that is changed (diminished). This result is in agreement with
the results of previous studies (see, e.g. work of Stephens and Greenwald, 1991a, and
their Fig. 7).

We give here values of f (τs) for several model functions α(τ) that conform to the sum25

rule (4.1b). For the case of uniform dissipation of the non-radiative fluxes at all layers,
α(τ) = β = (1 − γs)/τs, we have f (τs) = 1 + τs(1 + γs)/2. For the case when the
dissipation of non-radiative fluxes is governed by a power law, α(τ) = β(τs − τ)n−1, we
have β = (1−γs)n/τs and f (τs) = 1+τs(1+nγs)/(1+n). As far as α(τ) cannot increase
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with height, it is reasonable to assume that n ≤ 1. For the case of the non-radiative
dissipation exponentially decreasing with decreasing τ, α(τ) = β exp[−(τs − τ)/τα],
we have β = (1 − γs)/τα(1 − exp[−τs/τα]) and f (τs) = 1 + τs(1 + γs)/2 for τs/τα �
1 and f (τs) = 1 + τs for τs/τα � 1. In the latter case the account of convection
does not have any impact on the result obtained in the absence of convection. This5

result is expected, because in the case of exponential decrease of convective fluxes
with decreasing optical depth τ, the major part of dissipation takes place in the lower
atmospheric layers, so that the major contribution into the integral (Eq. 4.3) comes from
the interval (τs−τ)/τα ∼ 1, i.e. τs−τ � τs. In all other cases considered, the coefficient
k2 (Eq. 4.2) at the first power of τs changes by no more than twofold as compared to10

unity corresponding to the absence of convection.
The major result of Sects. 2, 3 and 4 is the linear proportionality, (cf. Eqs. 2.2, 2.8,

3.6, and 4.2), between the upwelling flux of thermal radiation at the Earth’s surface, Fs,
and the optical atmospheric thickness τs, i.e. ultimately between Fs and atmospheric
concentrations of the greenhouse substances. The coefficient of this linear proportion-15

ality does not significantly differ from unity and can be derived from the experimental
data. In the sections to follow we examine implications of this dependence for climate
stability.

5. Stability of possible Earth’s climates

Averaged over a sufficiently large area, the energy balance at the Earth’s surface (in-20

cluding the atmosphere) has the form (North et al., 1981; Dickinson, 1985):

C
dT
dt

= Fin − Fout ≡ −dU
dT

Fin ≡ Ioa(T ), Fout ≡ σRT
4b(T ) . (5.1)

Here T is the absolute temperature of the Earth’s surface; C is the average heat ca-
pacity per unit surface area; Fin is the flux of short-wave solar radiation absorbed by25
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the Earth’s surface, Io is the total incoming flux of solar radiation outside the atmo-
sphere, the global mean value of Io is equal to Io = I/4, where I = 1367 Wm−2 is
the solar constant (Willson, 1984; Mitchell, 1989); a(T ) ≡ 1 − A(T ) is the share of the
incoming flux of solar radiation absorbed by the Earth’s surface (coalbedo); A(T ) is the
planetary albedo; Fout is the flux of long-wave thermal radiation leaving the planet into5

space; σR = 5.67 · 10−8 Wm−2K−4, (see Eq. 2.3); b(T ) has been defined in Eq. (2.4);
U(T ) is the potential (Liapunov) function. The only independent variable in Eq. (5.1) is
temperature T .

In a stationary state, when the energy content does not change, CdT/dt = 0, the
derivative of the potential function U(T ) turns to zero, and U(T ) has an extreme—10

maximum or minimum. The central part of Eq. (5.1) also turns to zero, thus determining
a stationary temperature T = Ts:

Ioa(Ts) − σRT
4
s b(Ts) = −dU

dT

∣∣∣∣
T=Ts

= 0

Ts = To

(
a(Ts)

b(Ts)

) 1
4

, To ≡
(
Io
σR

) 1
4

, To =
(

I
4σR

) 1
4

. (5.2)

Here To = 278 K is the orbital temperature. The second derivative of the potential15

function U(T ), W , determines the character of the extreme. It is a stable minimum
when W > 0, and an unstable maximum when W < 0.

W ≡
(

d2U
dT 2

)
T=Ts

=
I
4

(
a(T )

T
(4 + β − α)

)
T=Ts

α ≡ da
dT

T
a
, β ≡ db

dT
T
b
. (5.3)

The stationary state is stable at α − β < 4 and unstable at α − β > 4. In particular,20

stationary states in the regions of slowly changing, practically constant a and b, for
which α � 4 and β � 4, are stable.
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On Earth the major greenhouse substances are the water vapour and carbon diox-
ide. The existing spectral windows remain transparent at clear sky and are “closed”
with appearance of clouds. For the terrestrial atmosphere the transmissivity b (Eq. 2.4)
can be written as

b =
δH2O

m̃0 + m̃H2O + 1
+

δCO2

m̃0 + m̃CO2
+ 1

+
δ0

m̃0 + 1
, (5.4)

5

where δH2O and δCO2
are the relative spectral intervals, (see Eq. 2.3), that contain the

major absorption bands of water vapour (H2O) and CO2; δ0 is the relative spectral in-
terval which corresponds to spectral windows that are closed by the cloudiness. Using
Eq. (2.3) we estimate the relative spectral intervals δCO2

, δ0 and δH2O as follows:

δCO2
= 0.19, δ0 = 0.25, δH2O = 0.56,

∑
i

δi = 1. (5.5)
10

The value of δCO2
is calculated for the major absorption band of CO2 centered at 15µm

and extending from 13µm to 17µm (Rodgers and Walshaw, 1966). The atmospheric
spectral window spreads from 8µm to 12µm. Its value (Eq. 5.5) approximately co-
incides with the estimate given by Weaver and Ramanathan (1995). The absorption
area of H2O, located at different parts of the thermal spectrum, is calculated from the15

condition
∑

i δi = 1.
The effective optical thickness m̃i in Eq. (5.4) is estimated as the relative difference

between the upward fluxes of thermal radiation in the corresponding spectral interval at
the Earth’s surface, F +

si , and outside the atmosphere, F +
ei , (see Eqs. 2.2, 3.6, and 4.2):

m̃i = kmi = (F +
si − F +

ei )/F
+
ei , mi = hiniσi ,20

F +
si =

λ2∫
λ1

Ip(λ, Ts)dλ, F +
ei =

λ2∫
λ1

Ip(λ, Tei )dλ (5.6)
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where λ2 − λ1 = ∆λi is the spectral interval of wavelengths, which defines the value
of δi as described in Eq. (2.3); IP (λ, T ) is the Planck function, Tei is the brightness
temperature in the spectral interval ∆λi outside the atmosphere; ni and σi are the ab-
sorption cross-section and concentration of i -th greenhouse substance, respectively;
hi is the height of a homogeneous atmosphere where the corresponding greenhouse5

substance would be evenly distributed. In calculation of F +
ei the use of Planck function

is not indispendable. It is employed here for convenient determination of the brightness
temperature only. One could obtain F +

ei by direct integration of the spectral distribution
of the outgoing thermal flux outside the atmosphere.

The relative absorption intervals δCO2
, δ0 and δH2O include contributions from other10

greenhouse gases. For instance, the relative absorption interval δCO2
contains weak

absorption bands of H2O, while δ0 contains absorption bands of O3 and the so-called
continuum absorption spectrum of H2O (Rodgers and Walshaw, 1966; Goody and
Yung, 1989). However, the optical thickness mk corresponding to these weak absorp-
tion bands is small compared to the corresponding value mi of the major greenhouse15

substances in the interval considered, mk � mi . Thus, such mk were neglected in
Eq. (5.4).

As shown in Sects. 2–4, the effective optical thickness m̃i (Eq. 5.6) differs from the
optical thickness mi , defined with use of the mean free path length, (see Eq. 2.4), by a
multiplier k ∼ 1 (0.5 < k < 1). This multiplier accounts both for the non-radiative heat20

fluxes and the divergence of rays in the three-dimensional atmosphere. The most im-
portant feature of Eq. (5.6) is the direct proportionality between mi (and, consequently,
m̃i ) and the total mass hini of i -th greenhouse substance in the atmospheric column.

To construct the dependence of the global transmissivity function b on surface tem-
perature T we will assume that, in accordance with observations, the modern global25

mean surface temperature Ts = 288 K (15◦C) is stationary, thus conforming to Eq. (5.2).
Using Eq. (5.6), we determine the modern value of m̃CO2

from the directly measured
values of F +

sCO2
and F +

eCO2
(Conrath et al., 1970; Goody and Yung, 1989, p. 219). It

gives (the brightness temperature of the 15µm CO2 band outside the atmosphere is
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about 220 K):

m̃CO2
= 1.9 (5.7)

Value of b(Ts) in the stationary point Ts = 288 K is determined from Eq. (5.2) using
the observed value of coalbedo a(Ts) = 0.70 (Mitchell, 1989) and the observed value
of orbital Earth’s temperature To (Eq. 5.2). These values give b(Ts) = 0.61.5

The relative contribution of clouds, d , into the global absolute greenhouse effect Fs−
Fe is about 18%, d = 0.18 (Raval and Ramanathan, 1989; Stephens and Greenwald,
1991b). Accordingly, the global value of b for the clear sky is equal to bcs = Fecs/Fs =
(Fe + (Fs − Fe)d )/Fs = 0.68, where Fecs > Fe is the outgoing flux of thermal radiation
outside the atmosphere in the absence of clouds. Absence of clouds corresponds to10

m̃0 = 0 in Eq. (5.4). Setting in Eq. (5.4) m̃0 = 0, b = bcs = 0.68 and m̃CO2
= 1.9

(Eq. 5.7) and taking into account Eq. (5.5), we obtain

m̃H2O(Ts) = 0.53. (5.8)

Finally, using estimates (5.7) and (5.8) in Eq. (5.4) for the global value of b(Ts) = 0.61,
we obtain from Eq. (5.4) the following value of m̃0:15

m̃0(Ts) = 0.15, r ≡ m̃0/m̃H2O = 0.29. (5.9)

The values of m̃i (Eq. 5.7 to 5.9) are derived from observations and take therefore
into account the contributions into heat transfer of the non-radiative thermal fluxes, see
Sect. 4.

Near-surface concentration of the water vapour changes proportionally to the satu-20

rated concentration, which grows exponentially with increasing temperature in accor-
dance with the Clausius-Clapeyron formula (see, e.g. Raval and Ramanathan, 1989;
Nakajima et al., 1992):
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m̃H2O(T ) = exp

(
ε −

TH2O

T

)

TH2O ≡
QH2O

R
= 5.3 · 103K, ε = 17.76 , (5.10)

where ε is determined from Eq. (5.8).
Due to the finite mass of the Earth’s hydrosphere, the greenhouse effect on Earth5

cannot grow – while b cannot diminish – infinitely with growing surface temperature.
This can be taken into account by stopping the growth of m̃H2O(T ), when b(T ) reaches
a certain minimum value bmin = 0.01. The value of bmin is chosen equal to the corre-
sponding value of b on Venus, where the atmospheric pressure is of the same order of
magnitude as it would be on Earth were its hydrosphere evaporate (Pollack et al., 1980;10

Mitchell, 1989). We assume also that the ratio between atmospheric concentrations of
liquid water and water vapour remains constant over a sufficiently broad temperature
interval, so that r in Eq. (5.9) can be held temperature-independent. Thus, we arrive at
the following expression for b(T ) (Fig. 3):

b(T ) =
0.56

1.29ϕ(T ) + 1
+

0.19
0.29ϕ(T ) + 2.9

+
0.25

0.29ϕ(T ) + 1
, T ≤ 422 K ;

15

b(T ) = 0.01, T ≥ 422 K ;

ϕ(T ) ≡ exp

(
17.76 − 5.3 · 103

T

)
. (5.11)

At the modern value of the global mean surface temperature Ts = 15◦C the coalbedo
function approaches its maximum value (North et al., 1981). At colder temperatures,
with increasing degree of the planet’s glaciation, the coalbedo diminishes, while the20

albedo A(T ) starts to grow. This growth is limited from above by the value Amax ∼ 0.7
(amin ∼ 0.3), which characterises the reflectivity of snow cover (Hibler, 1985). With ris-
ing surface temperature, T > 15◦C, accompanied by evaporation of water, the albedo
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should increase as well due to the growing cloudiness and increasing atmospheric
density. This is in agreement with the known high value of albedo on Venus, where
A ∼ 0.75 (Mitchell, 1989), which approximately coincides with Amax ∼ 0.7 for an
ice-covered Earth. Modern climate sensitivity with respect to temperature-dependent
changes in albedo, λA ≡ −Fsa

′(288 K), is of the order of −(0.3÷0.8) Wm−2K−1 (Dickin-5

son, 1985). This allows one to conclude that the modern value of coalbedo is located
to the left – along the T axis – from its maximum possible value (were the modern
coalbedo coincide with the maximum, the climate sensitivity λA, which is proportional
to the temperature derivative of coalbedo, would be equal to zero). To take into ac-
count these physically transparent properties of coalbedo, we choose function a(T ) in10

the form of a Gaussian curve (Fig. 4). The location of the maximum is specified by
the assumption that the global ice shield completely disappears when the global mean
surface temperature rises up to 295 K (22◦C). The modern albedo of Earth is equal to
0.30, where 0.25 falls on reflectivity of short-wave radiation by the atmosphere and 0.05
(one sixth part) is attributed to reflectivity by the Earth’s surface, including the oceans15

(Schneider, 1989; Mitchell, 1989). Assuming that the global snow cover occupies about
5% of the total Earth’s surface and taking the global mean albedo of the Earth’s sur-
face in the absence of clouds equal to ∼0.1 (Ramanathan and Coakley, 1978) and the
albedo of snow about ∼0.7 (Hibler, 1985), we find that melting of the global snow cover
will decrease the planetary albedo by (0.7−0.1)×0.05× (1/6) ∼ 5 ·10−3. Thus, we put20

amax = a(295 K) = 0.705 and a(288 K) = 0.70. The characteristic width of the Gaus-
sian curve is specified by the average value of modern climate sensitivity to albedo,
λA ∼ −0.6 Wm−2K−1 (Dickinson, 1985) at Ts = 288 K. Finally, we take amin = 0.3 for
the assymptotic values of the Gaussian curve at large and low temperatures. We thus
arrive at the following expression for a(T ) (Fig. 4):25

a(T ) = 0.30 + 0.405 exp
[
−
(
T − 295 K

60 K

)]
(5.12)

Formulas (5.11) and (5.12) allow for a unambiguous derivation of the potential function
U(T ) (Eq. 5.1), Fig. 5. Integration constant in Fig. 5 is chosen such that the value of
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U(T ) in the point of the right extreme, T = 652 K, is equal to zero.
As is clear from Fig. 5, there are only two physically stable states of the Earth’s cli-

mate. These are the state of complete glaciation of the Earth’s surface 1 and complete
evaporation of the hydrosphere 3. The intermediate stationary state 2 which corre-
sponds to the maximum of the potential function U(T ) is physically unstable.5

In accordance with Boltzmann distribution, height of the homogeneous atmosphere,
hi (Eq. 5.6), grows proportionally to the temperature of the Earth’s surface. The atmo-
spheric concentration of water vapour near the surface is determined by the equilibrium
between the water vapour and liquid water of the global oceans and terrestrial vegeta-
tion. Thus, the total amount of water vapour in the atmospheric column, hH2OnH2O, and10

its optical thickness increase due to temperature dependences of both hH2O and nH2O.
Surface temperature is related to the upward flux of thermal radiation of the surface
by the Stephen-Boltzmann formula, F +

s = σRT
4. Thus, at large m̃i � 1 we have from

Eq. (5.6) that hi ∝ (F +
si )

1/4 ∝ (hiniσi )
1/4, so that hi ∝ (niσi )

1/3 and m̃i ∝ (niσi )
4/3. In

Eq. (5.11) we have neglected the additional acceleration in growth of m̃H2O due to the15

dependence of hH2O on nH2O. Accounting for this dependence leads to substitution of

TH2O = 5.3 · 103 K in Eq. (5.10) by TH2O = 7.1 · 103 K. This will only increase the rate of
b(T ) change with changing temperature, thus enhancing the physical instability of the
modern climate, (see Eq. 5.3).

The right ordinate axis in Fig. 5 shows U(T ) scaled by the value of the global mean20

flux of the incoming solar radiation Io = I/4 = 342 Wm−2. In terms of Io, the depth of the
potential pit 3 corresponding to the stable state of complete evaporation of the hydro-
sphere, is equal to 58 K, while the depth of the potential pit 1 corresponding to complete
glaciation is equal to 1.3 K. The latter value coincide by the order of magnitude with
the depth of the glaciation potential pit obtained by North et al. (1981), where it con-25

stituted ∼4 K. Besides the differences in the transmissivity functions b(T ) employed,
the difference in the depth of pits is explained by a larger value of climate sensitivity
λA = −0.8 Wm−2K−1 used by North et al. (1981) as compared to the average value of
λA = −0.6 Wm−2K−1 (Dickinson, 1985) accepted by us. The locations of glaciation pits
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approximately coincide, −37◦C and −43◦C in the work of North et al. (1981) and the
present paper, respectively.

The stable state 1 of complete glaciation of the Earth’s surface was previously inves-
tigated under the assumption of a linear dependence of Fout (Eq. 5.1) on temperature
in the whole interval of temperatures considered (Ghil, 1976; North and Coakley, 1979;5

North et al., 1981). The stability of this state was discussed in the context of pos-
sible changes in the solar constant I . The stable state 3 of complete evaporation of
the hydrosphere arises due to the fact that the hydrosphere has a finite mass and the
transmissivity function b(T ) is therefore limited from below by b = bmin > 0. In the
absence of this limitation the greenhouse effect and the surface temperature might10

increase infinitely. This phenomenon is called “runaway” greenhouse effect and was
also extensively discussed in the literature (Ingersoll, 1969; Rasool and de Berg, 1970;
Nakajima et al., 1992; Weaver and Ramanathan, 1995).

In the state of complete evaporation of the hydrosphere, the surface temperature
(∼700 K) and atmospheric pressure (∼300 bars) are such that the atmospheric water15

finds itself above the critical point, where the difference between gas and liquid dis-
appears. The major constituent of the atmosphere of Venus, CO2, is also above the
critical point there. Another feature of dense atmospheres is that the incoming solar
radiation is absorbed predominantly in the upper atmospheric layers, with little reach-
ing the planet’s surface (Rossow, 1985). Both these features are approximately taken20

into account by setting the limiting value of the transmissivity function bmin equal to the
corresponding value on Venus. We do not aim at exact determination of the stationary
value of global mean surface temperature in state 3. We only assert that this stable
state exists, similar to what is found on Venus.

Stable states 1 and 3 arise due to the practical constancy of the transmissivity func-25

tion b and the coalbedo a in the considered intervals of high and low temperatures,
(see Eq. 5.3 and Figs. 3, 4). This, in its turn, is caused by the constancy in the aggre-
gate phase of the major greenhouse constituent – the hydrosphere is solid in state 1
and gaseous in state 3. The two minima of the potential function, Fig. 5a, can be joined
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by a continuous curve only via an unstable maximum in the temperature interval corre-
sponding to the liquid hydrosphere. There are no physical reasons for appearance of
a third minimum, which would be inevitably accompanied by two additional maxima in
Fig. 5. Formation of such structures would have pointed to the existences of singular-
ities in the temperature-dependent behaviour of a and b in the vicinity of the modern5

global mean surface temperature. These singularities should have had a clear physical
interpretation, just as do the stable minima 1 and 3.

Transition from the state 1 to state 3 is accompanied by nearly a hundredfold mono-
tonouse decrease of b(T ), as compared to no more than a threefold change of coalbedo
a(T ). Thus, despite that the exact temperature-dependent behaviour of coalbedo re-10

mains to a large extent unknown, it seems unlikely that any plausible assumptions
about a(T ) may significantly change the behaviour of U(T ), Fig. 5, leading to appear-
ance of singularities of U(T ) in the vicinity of T = 15◦C.

We determined our single parameter, constant ε in Eq. (5.10), demanding that the
modern global mean surface temperature is stationary. In a stationary unstable state,15

where the curves Fin(T ) and Fout(T ) intersect, (see Eq. 5.1), the temperature derivative
of Fin(T ) is larger than that of Fout(T ) (see Fig. 6). A characteristic feature of such
a state is that if Fin(T ) were to decrease, the unstable stationary temperature would
become larger, and vice versa. A colder stationary unstable climate arises at larger
global mean values of the absorbed solar radiation Fin = Ia/4. If function a(T ) is held20

unchanged, it corresponds to an upward shift of the curve Fin(T ), Fig. 6, without altering
its form. At large values of a or I , the curve Fout(T ) may remain below the curve Fin(T )
at all Texcluding very large ones. The stationary intersection points 1 and 2 will then
disappear, and the only stationary stable state will be the gaseous hydrosphere, 3,
which corresponds to the runaway greenhouse effect.25

Generally, functions a(T ), b(T ) and Fout(T ) ≡ σRT
4b(T ), constructed on the basis

of well-established physical laws for a given type of planetary surface, e.g. oceanic,
should be valid for description of all local areas of the same surface type. These areas
differ from each other by the annual values of the incoming solar flux Io (Eq. 5.1). At
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the modern global mean surface temperature, Ts = 288 K, Fout(T ) approaches maxi-
mum, Fig. 6. It follows that in the equatorial oceanic regions, where the incoming solar
flux is considerably larger than the global average, the regional value of Fin(T ) would
be larger than the maximum possible value of Fout(T ). The unstable stationary state
will disappear, driving the equatorial regions to a state of runaway greenhouse effect.5

Thus, even if a given value of the global mean surface temperature corresponds to a
stationary unstable state, as determined by a(T ) and b(T ), (see Eq. 5.3), this does not
by itself guarantee unstable stationarity for all local areas of the the planetary surface.

6. Stability of the modern climate

The existence of life during the last several billion years, together with other paleodata10

(Savin, 1977; Watts, 1982; Berggren and Van Couvering, 1986), indicates that the
modern Earth’s climate is stable. It means that in the vicinity of the modern mean
global surface temperature, the behaviour of a(T ) and b(T ) differs from Eqs. (5.11) and
(5.12).

A stable state arises when in the point where Fout(T ) and Fin(T ) intersect, the tem-15

perature derivative of Fout(T ) is larger than that of Fin(T ). In particular, the nearest to
absolute zero extreme of U(T ) is always stable (see Figs. 5 and 6). Indeed, Fout(0) =
0, while Fin(0) > 0. Therefore, Fout(T ) will cross Fin(T ) from below, if only its slope is
steeper than that of Fin(T ).

If the greenhouse effect is completely absent or temperature-independent (b(T ) =20

const), there is only one point of intersection between Fout(T ) and Fin(T ), and it is sta-
ble. The second, unstable, point of intersection will arise, if the decrease in b(T ) with
temperature compensates the growth proportional to T 4, Fout(T ) ≡ b(T )σRT

4, so that
the derivative of Fout(T ) becomes less than that of Fin(T ). Due to the existing physically
transparent limitations 0.3 ≤ a(T ) ≤ 0.7, (see Eq. 5.12), at b(T ) = const no changes in25

coalbedo a(T ) are able compensate the growth of Fout(T ) ∝ σRT
4 and create a second

point of intersection between Fout(T ) and Fin(T ).
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For a stable intersection point to appear in the vicinity of T ∼ 15◦C, it is necessary
that the curve Fout(T ) makes here a zigzag, with three points of intersections with Fin(T ),
of which two are unstable and one is stable (see Fig. 7b). In the central part of this
zigzag function b(T ) is approximately constant, so that the curve Fout(T ) crosses Fin(T )
from below, just as in the absence of the greenhouse effect (b = 1), but at higher5

values of temperature. Thus, generating the zigzag of Fout(T ) and choosing the value
of b < 1, it is possible to form a stationary stable state in the region of life-compatible
temperatures. Within the central part of this zigzag, the derivative of Fout(T ) is large
than that of Fin(T ). The stable intersection point can therefore move to the right and
to the left in response to regional changes in the incoming solar flux Io. Thus, stable10

stationary states can form in the regions with lower (polar) and higher (equatorial)
temperatures as compared to the global average.

The temperature-dependent behaviour of b(T ) in the vicinity of the modern value of
global mean surface temperature can be derived from observations. As shown in nu-
merous studies (Budyko, 1969; North and Coakley, 1979; North et al., 1981; Raval and15

Ramanathan, 1989; Stephens and Greenwald, 1991a,b), the regional function b(T ) re-
mains an approximately linear function of temperature within a broad temperature inter-
val. The gentle slope of this almost constant function ensures a stable stationary state
of the modern climate for all physically plausible functions a(T ). As the mean value of
a linear function coincides with its value of the mean argument, one can assume that20

measurements of b(T ) in different regions and at different temperatures describe the
temperature-dependent behaviour of the global mean function b(T ).

The observed greenhouse effect dependence on temperature within the temperature
interval from ∼0◦C (273 K) to ∼30◦C (303 K) was described by Raval and Ramanathan
(1989) and Stephens and Greenwald (1991b) for clear and cloudy sky, respectively.25

Quantitatively, the obtained results can be summarised as follows, Fig. 7a: For 273 K ≤
T ≤ 299 K:

bRR(T ) = 0.67 − 2.6 · 10−3 × (T − 288) (6.1a)
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bSG(T ) = 0.59 (6.1b)

For 299 K ≤ T ≤ 303 K:

bRR(T ) = 0.64 − 9.6 · 10−3 × (T − 299) (6.2a)

bSG(T ) = 0.59 − 85.5 · 10−3 × (T − 299). (6.2b)

Function bRR(T ) is obtained by us by linear approximation of the point measurements5

of BRR(T ) ≡ 1 − bRR(T ) presented in Fig. 2 of the work of Raval and Ramanathan
(1989). The approximation was performed separately for temperature intervals 273 K
≤ T ≤ 299 K and 299 K ≤ T ≤ 303 K. The correlation coefficient equals 0.784 (∼1500
d.f.) and 0.653 (∼500 d.f.) for the curves (6.1a) and (6.2a), respectively. According
to Stephens and Greenwald (1991b), the value 1/bSG(T ) remains approximately equal10

to 1.7 in the temperature interval from 275 K to 301 K and starts to rise rapidly at T
= 299 K reaching 2.4 at T = 301 K. Function bSG(T ) (Eq. 6.1b to 6.2b) reflects this
behaviour.

As follows from comparison of Eqs. (6.1) and (6.2), the observed temperature-
dependent behaviour of transmissivity functions bRR(T ) and bSG(T ) differ significantly15

from the physical behaviour (Eq. 5.11) in the interval from 0◦C to 26◦C (see Eq. 6.1). At
T > 26◦C both functions undergo drastic changes (which was noted by both Raval and
Ramanathan, 1989, and Stephens and Greenwald, 1991b) and approach the physical
behaviour (Eq. 5.11) in the interval from 26◦C to 30◦C. The slope of bRR(T ) in this in-
terval exactly coincides with that of Eq. (5.11). The slope of bSG(T ) is about ten times20

steeper (Fig. 7a).
As far as bRR(T ) describes clear sky and bSG(T ) – cloudy sky only, the correspond-

ing curves, Fig. 7a, lie above and below the global mean value b(288 K) = 0.61, re-
spectively. The true empirical curve bemp(T ), corresponding to mean cloudiness, goes
between the curves bRR(T ) and bSG(T ). Taking mean global cloudiness of about 50%25

(Rennó et al., 1994), we have
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bemp(T ) =
bRR(T ) + bSG(T )

2
=

=

{
0.63 − 1.3 · 10−3 × (T − 288), 273 K ≤ T ≤ 299 K
0.62 − 47.6 · 10−3 × (T − 299), 299 K ≤ T ≤ 303 K

(6.3)

We note that bemp(288 K) = 0.63, which only slightly differs from the global value of
b(288 K) = 0.61, thus justifying the applied procedure for derivation of bemp(T ).5

At T = 273 K function bemp(T ) (6.3) coincides with function bNC(T ), used in the
work of North and Coakley (1979) and North et al. (1981), which was constructed on
the basis of a linear dependence of Fout on temperature, Fout(T ) ≡ bNC(T )σRT

4 =
[203.3 + 2.09 × (T − 273)] Wm−2. At T = 234 K (−39◦C) function bNC(T ) thus de-
fined starts to diminish with further decrease of temperature and becomes negative10

at T ≤ 276 K (−97◦C). Such a behaviour is physically unjustified, as far as with de-
creasing temperature the transmissivity function b(T ) should increase monotonously,
Fig. 3, governed by the diminishing amount of the major greenhouse substances (wa-
ter and clouds) in the atmosphere. At T → 0 K the linear dependence bRR(T ) yields
a physically meaningless value greater than unity. Constancy of bSG(T ) at T → 0 K is15

physically implausible as well: as far as with decreasing temperature the atmospheric
water content, including liquid water, is diminishing, the greenhouse effect of cloudy
sky should also change.

It follows that the real behaviour of bemp(T ) at certain T < 273 K differs considerably
from Eq. (6.3) and approaches the physically sensible assymptotic values described by20

Eq. (5.11), Fig. 3, similar to its behaviour at higher temperatures, (see Eqs. 6.2a and
6.2b). The unknown behaviour of bemp(T ) at T < 273 K is represented in Fig. 7a by
dashed line. Intersections of bemp(T ) with the physical function b(T ) (Eq. 5.11) occur at
T = 266 K and T = 302 K. The slope of the model dashed line bemp(T ) at 266K ≤ T ≤
273 K is taken arbitrarily to equal one half of the slope of bemp(T ) at 299 K ≤ T ≤ 30325

K.
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It is important to note that when the behaviour of the regional functions b(T ) deviates
from the linearity observed in the vicinity of the mean global temperature, (cf. Eqs. 6.1
and 6.2), the global function b(T ) will be better described by those regional functions
that correspond to the largest areas of the Earth’s surface. For example, the modern re-
gional function b(T ) corresponding to low latitudes, i.e. extensive equatorial territories5

with high temperatures (T > 20◦C), should describe the behaviour of global function
b(T ) at high temperatures better than the modern high-latitude regional function b(T ),
which correspond to limited polar regions with low temperatures (T < −20◦C), may
describe the behaviour of the global function b(T ) at low global mean surface tempera-
tures. Thus, it may well be the case that the behaviour of the global function bemp(T ) at10

low temperatures (dashed line in Fig. 7) cannot be predicted on the basis of the mod-
ern regional functions b(T ) for low latitudes, making the palaeoclimatic data the only
source of information for the corresponding temperature interval. In Fig. 8 we show
the potential function Uemp(T ), obtained from Eq. (5.1) using the transmissivity function

b̃(T ), which is constructed by merging bemp(T ) (Eq. 6.3) and b(T ) (Eq. 5.11):15

−
dUemp(T )

dT
≡ b̃(T )σRT

4 − a(T )

b̃(T ) =


b(T ), T ≤ 266 K
bemp(T ), 266 K ≤ T ≤ 302 K
b(T ), T ≥ 302 K

(6.4)

The coalbedo a(T ) is given by Eq. (5.12). The integration constant in Eq. (6.4) is cho-
sen so that the position of the left extreme of Uemp(T ) (complete glaciation) coincides
with that of the physical potential function U(T ) (Fig. 5).20

As is clear from Fig. 8, the stationary state of the modern climate corresponds to a
potential pit surrounded by potential barriers. The minimum of the potential pit cor-
responds to the stationary stable state 2. The maxima of the surrounding potential
barriers corresponds to unstable stationary states, where the probabilities of transition
to states 1 and 2 from the left barrier and to states 2 or 3 from the right barrier are25
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equal.

7. Conclusions: Possible nature of modern climate stability

Solar energy supports all ordered photochemical and dynamic processes on the Earth’s
surface, including life. The planet absorbs the maximum possible amount of solar en-
ergy when the coalbedo is at its maximum (minimal albedo). The stationary state of the5

modern climate corresponds to coalbedo close to its maximum value possible under
terrestrial conditions, a ≈ 0.7. In the absence of the greenhouse effect, i.e. at b = 1,
the global mean surface temperature would be equal to the effective temperature of
the outgoing long-wave radiation, i.e. T = Te = 255 K (−18◦C), making questionable
the possibility of life existence. The observed increase of the global mean surface tem-10

perature up to the modern optimal for life values (Ts = +15◦C) is only possible due the
non-zero greenhouse effect, which corresponds to b = 0.6 (see Eq. 5.2). The green-
house effect is generated by the necessary atmospheric concentrations of greenhouse
substances that constitute fractions of per cent of the total atmospheric mass.

The decrease of b from unity to the optimal for life value of 0.6 might retain the15

physical stability of the stationary surface temperature if only the greenhouse effect is
ensured by greenhouse substances with concentrations independent of or only slowly
dependent on temperature, like, e.g. CO2. This will make b practically constant in
the vicinity of the stationary temperature. However, the major absorption band of CO2
traps only 19% of the Earth’s thermal radiation at T = 288 K (see Eq. 5.5). Even if20

CO2 concentration is infinitely increased, which corresponds to disappearance of the
second item in sum (Eq. 5.4), the value of b can only be diminished to 0.81. Thus,
to reach the needed b = 0.6 it is necessary to involve atmospheric water vapour and
cloudiness.

However, in the presence of liquid water on the planet’s surface, there appears a25

physical positive feedback between the amount of water vapour and clouds in the at-
mospheric column (and, consequently, their optical thicknesses mH2O and m0) and
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the surface temperature (see Eqs. 5.9 and 5.10). With an account made for the non-
radiative fluxes of thermal energy (convection and latent heat), this positive feedback
makes the stationary surface temperature Ts = 288 K physically unstable.

To ensure stability at the same value of surface temperature some controlling pro-
cesses should be active in the vicinity of this temperature, which will change the basic5

physical temperature dependence of optical thickness of water vapour and cloudiness.
Differences in the incoming solar fluxes at different latitudes lead to the fact that

the equatorial and polar regions are characterised by higher and lower temperatures
as compared to the global average, respectively. Processes of global circulation, that
arise due to these temperature differences, work to diminish them. An account of10

global circulation processes is made in the three-dimensional global circulation climate
models. If the Earth’s surface were entirely flat and perpendicular to the plane of its
orbit, all regions would receive equal amounts of solar radiation and the processes
of global circulation ceased to exist. It is unlikely that the modern climate stability is
due to global circulation processes, i.e. exclusively due to the planetary geometry and15

peculiarities of the Earth’s landscape.
Global circulation processes are unlikely to be able to change significantly the de-

pendence of the greenhouse effect and transmissivity function b(T ) on local values of
temperature. As discussed above, these local dependencies may cause exponential
runaway greenhouse effect in high latitudes, which will contribute to global instability.20

Moreover, it is unlikely that the global circulation processes are responsible for the dras-
tic increase of the outgoing radiation with decreasing temperature, which takes place
at the left and right parts of the zigzag Fout(T ) (Fig. 7b) and ensures the possibility of
modern stationary surface temperature being stable. Within the observed right part of
the zigzag, Fout changes by more than 60 W m−2 within the temperature interval from25

299 K to 302 K. This corresponds to 15% of the global mean flux of thermal radiation
at the Earth’s surface, Fs. In comparison, the average power of global circulation con-
stitues no more than 2.5% of that value (Kellog and Schneider, 1974; Peixoto and Oort,
1984; Chahine, 1992).
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One plausible explanation of the observed climate stability that we envisage is the
existence of a biotic control of the greenhouse effect (Gorshkov et al., 2000). Without
aiming to prove this statement here and considering it as a hypothesis, we list major
arguments in its support.

Modern concentrations of all the major greenhouse substances – water vapour,5

clouds and CO2 – are under control of the global biota of Earth, being involved into
global biogeochemical cycles. Terrestrial vegetation determines the rate of water evap-
oration from land through regulation of transpiration – release of water vapour from
plant leaves (Shukla and Mintz, 1982). In the ocean, the processes of gas exchange
are highly dependent upon the abundance of surface-active substances produced by10

the marine biota (Zutic et al., 1981; Goldman et al., 1988; Frew et al., 1990). Micro-
films formed at the sea surface by such substances significantly dampen gas exchange
(see, e.g. Asher, 1996), which may impact the values of relative humidity over oceanic
surfaces, thus leading to a biotic control of coefficient ε (Eq. 5.10). Regulating con-
centrations of biotically produced aerosol particles, that constitute a noticeable part of15

atmospheric aerosols both on land and above the ocean (Pruppacher and Klett, 1978),
the biota is able to control ratio r (Eq. 5.9) between optical thicknesses of water vapour
and liquid water.

In the ocean, the dominant parameter controlling absorption of the incident solar ra-
diation is the concentration of photosynthetic pigment contained in phytoplankton cells20

(Sathyendranath, 1991). Regulating this parameter, the marine biota is able to change
the average depth at which the short-wave radiation is absorbed and dissipated into
heat. The resulting heat flux will thus transfer from different depths, covering different
numbers of layers of liquid water mw (cf. Fig. 1). In the atmosphere, the optical thick-
ness of water vapour is exponentially dependent on temperature (see Eq. 5.10). In25

contrast, mw is temperature-independent, being uniquely determined by the average
depth where solar radiation is absorbed, which, in its turn, depends on the concen-
trations of biotically controlled substances. As far as in the stationary case thermal
radiation into space is fixed by the value of coalbedo (see Eq. 5.2), it is possible, by
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increasing penetration of sunlight into depth, to move a considerable or even dominant
part of the greenhouse effect into the ocean. Temperature of the oceanic surface corre-
sponding to mw = 0 will then decrease, an effect similar to the decrease of temperature
of the upper atmospheric layers corresponding to small values of optical depth τ. It is
not unlikely that the known higher transparency of oligotrophic equatorial waters with5

respect to solar radiation (Jerlov, 1976) is a manifestation of such biotic cooling of the
areas with the largest incoming solar fluxes. On the contrary, in the colder regions the
biota may increase turbidity of surface waters, thus making sunlight be absorbed near
the surface and generating the full possible greenhouse effect in the atmosphere due
to the increase of surface temperature up to the maximum value that is locally possi-10

ble. Accordingly, the colder regions of the world ocean are known for higher surface
concentrations of biological nutrients.

The atmospheric concentration of CO2, the second important greenhouse gas, is
also under biotic control. Given the large number of publications on this topic, here we
only note the following. The global biological production (and, consequently, decompo-15

sition) is of the order of 102 Gt C year−1. The global atmospheric CO2 content is of the
order of 103 Gt and coincides in its order of magnitude with the carbon content in the
global biota (see, e.g. Sundquist, 1993). Even a minor imbalance in the fluxes of bio-
logical production and decomposition may lead to drastic changes of atmospheric CO2
content over geologically instantaneous time periods, e.g. if biological decomposition20

exceeds biological production by only 10%, the CO2 concentration will double in less
than 100 years. No geophysical processes are comparable in power with the biological
control of atmospheric CO2.

We note finally that the biological processes (photosynthetic production and metabolic
consumption of organic matter) are based on consumption of solar energy. Accord-25

ingly, the maximum (Carnot) efficiency ηB of these processes is equal to ηB = (TSun −
TEarth)/TSun ≈ (6000 K − 300 K)/6000 K ≈ 0.95 (Gorshkov et al., 2000). In the mean-
time, the maximum efficiency ηGC of the processes of global circulation, which is based
on the difference between the temperatures of the polar and equatorial regions, is equal
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to ηGC = (Tequator − Tpoles)/TEarth ≈ 30 K/300 K ≈ 0.1, which is an order of magnitude
lower than ηB. Thus, also from this point of view, the biotic potential for climate control
is larger than that of physical dynamic processes on the Earth’s surface.

In the modern conditions of increasing anthropogenic impact on the global environ-
ment, including human-induced degradation of the natural biota, further investigations5

into the nature of climate stability on Earth are undoubtedly needed.
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Fig. 1. Dependence of the greenhouse effect on the number m of atmospheric layers absorbing
radiation (optical thickness). Fk (k = 1, 2, 3, ..., m) is the flux of radiation emitted by the k-th
layer upwards and downwards; Fs is the flux of radiation emitted from the surface; Fe is the
outgoing flux of radiation outside the atmosphere equal to the incoming flux of external (solar)
radiation absorbed by the surface (empty arrow).

330

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/2/289/acpd-2-289_p.pdf
http://www.atmos-chem-phys.org/acpd/2/289/comments.php
http://www.copernicus.org/EGS/EGS.html


ACPD
2, 289–337, 2002

Greenhouse effect
and climate stability

V. G. Gorshkov and A. M.
Makarieva

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGS 2002

Fig. 2. Dependence of the upwelling thermal radiation flux on optical depth τ. Thick curve: the
approximate behaviour of f (τ), f (τ) ≡ F +(τ)/Fe = H+(τ)/H , the upwelling thermal radiation flux

scaled by the flux of thermal radiation outgoing into space. Thin lines: a = 1 +
√

3
2 τ is the linear

assymptote of f (τ) at τ � 1 (see Eq. 3.5); b = 3
4τ + 1.033 is the linear assymptote of f (τ) at

τ � 1 (see eq. 3.4). Point τc = 0.28 marks the area where the switch from the first assymptote
to the other approximately takes place.
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Fig. 3. Temperature dependence (Eq. 5.11) of the theoretical physical transmissivity function
b(T ). The modern global value b(288 K) = 0.61 is shown by the empty circle.
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Fig. 4. Temperature dependence (5.12) of the coalbedo a(T ). The modern global value a(288
K) = 0.70 is shown by the empty circle.
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Fig. 5. Theoretical physical potential function U(T ) (Eq. 5.1) constructed on the basis of b(T )
(Eq. 5.11) and a(T ) (Eq. 5.12). States 1 and 3 are stable, corresponding to complete glaciation
of the planet and complete evaporation of the hydrosphere, respectively. State 2, corrsponding
to the modern global mean surface temperature, is unstable. (a) and (b) correspond to different
temperature scales.
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Fig. 6. Theoretical physical dependences of the global mean fluxes Fin(T ) and Fout(T ) of the
absorbed short-wave (thin line) and emitted by the planet into space long-wave (thick line)
radiation on temperature (see Eq. 5.1). The stationary stable points of intersection Fin(T ) =
Fout(T ) are marked with filled circles. The empty circle shows the unstable stationary state (See
legend to Fig. 5 for designations of numbers).
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Fig. 7. (a) The observed transmissivity function bemp(T ) (Eq. 6.3). RR: function bRR(T ) for clear
sky (see Eqs. 6.1a and 6.2a). SG: function bSG(T ) for cloudy sky (see Eqs. 6.1b and6.2b).
Thick solid curve interrupted by dashed line: function b̃(T ) (see Eqs. 6.3 and 6.4). The dashed
line corresponds to the tentative temperature interval where the behaviour of bemp(T ) remains
unknown. Dotted curve: theoretical function b(T ) (Eq. 5.11) in the temperature interval 266
K ≤ T ≤ 302 K (see Fig. 3). (b) Temperature dependence of the outgoing flux of long-wave
radiation, Fout(T ), taking into account its observed behaviour in the vicinity of modern global
mean surface temperature. Thick curve interrupted by dashed line: Fout(T ) ≡ b̃(T )σRT

4. Dotted
curve: theoretical physical behaviour of Fout (see Fig. 6). Thin curve: the global mean flux of
the absorbed solar radiation Fin(T ) (see Fig. 6). The stationary stable points of intersection
Fin(T ) = Fout(T ), corresponding to complete glaciation (1) and modern climate (2) are marked
with filled circles. The empty circles show the unstable stationary states corresponding to
potential stability barriers of the modern climate (see Fig. 8).
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Fig. 8. The potential function Uemp(T ) (Eq. 6.4) of the modern Earth’s climate. Dashed line, as
in Figs. 7a, b, corresponds to the region of the unknown behaviour of bemp(T ) (Eq. 6.3).
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