Emilien Azéma 
  
Farhang Radjaï 
  
Robert Peyroux 
  
Frédéric Dubois 
  
Gilles Saussine 
  
Dinámica vibracional de un medio granular 3D compuesto de partículas poliédricas Vibrational dynamics of 3D granular media composed with polyhedral grains

By means of tree-dimensional contact dynamics simulations, we analyze the vibrational dynamics of a confined granular layer in response to harmonic forcing. The sample is composed of polyedric grains with a shape derived from digitalized ballast. The system involves a jammed state separating passive (loading) and active (unloading) states. We show that an approximate expression of the packing resistance force as a function of the displacement of the free retaining wall from the jamming position provides a good description of the dynamics. We study in detail the scaling of displacements and velocities with loading parameters. In particular, we find that, for a wide range of frequencies, the data collapse by scaling the displacements with the inverse square of frequency, the inverse of the force amplitude and the square of gravity. We show that the mean compaction rate increases linearly with frequency up to a characteristic frequency of 10 Hz and then it declines in inverse proportion to frequency.

Resumen

En la mayoría de los estudios existentes sobre medios granulares vibrados, el material granular está compuesto de partículas esféricas o elipsoidales, y el medio es vibrado verticalmente. En este trabajo, buscamos estudiar la dinámica vibracional de un medio confinado dentro una caja con un muro sometido a un fuerza armonica horizontal, empleando el método de la Dinámica de Contactos. El medio estudiado está compuesto de partículas polihédricas cuya forma fue digitalizada a partir de agregados de balasto reales. Encontramos que el sistema pasa por tres fases : una fase bloqueada ("jamming"), una fase pasiva (descarga), y una fase activa (carga). Se muestra que es posible derivar una expresión que aproxima de forma precisa la fuerza de resistencia del medio en función del desplazamiento del muro libre. En el trabajo se estudian en detalle el desplazamiento y la velocidad del muro en función de los parámetros de carga, encontrando que, para una amplia gama de frecuencias, los desplazamientos son proporcionales al inverso de la frecuencia al cuadrado, al inverso de la amplitud de la fuerza, y a la gravedad al cuadrado. También se muestra que la velocidad de compatacción aumenta linealmente con la frecuencia, hasta una frecuencia característica de 10 Hz, y que luego disminuye de forma proporcional al inverso de la frecuencia.

INTRODUCTION

The dynamics of dense granular materials subjected to vibrations involves collective phenomena resulting from kinematic constraints (steric exclusions, boundary and finite size effects, …) and energy dissipation [START_REF] Aranson | Patterns and Collective Behavior in Granular Media, Theoretical Concepts[END_REF]. Wellknown examples of the vibration-induced phenomena are compaction, convective flow, size segregation and standing wave patterns at the free surface [START_REF] Knight | Density relaxation in a vibrated granular material[END_REF][START_REF] Clement | Pattern formation in vibrated granular layer[END_REF][START_REF] Liffman | Granular convection and transport due to horizontal shaking[END_REF][START_REF] Sano | Dilatancy, buckling, and undulations on a vertically vibrating granular layer[END_REF]. Three different states can be distinguished depending on the intensity and frequency of vibrations: 1) Gas-like or fluidized state: The rate of energy input is such that there are no enduring contacts between particles and the material behaves as a dissipative gas [START_REF] Jaegger | Granular solid, liquids and gases[END_REF][START_REF] Ludding | Granular materials under vibrations : simulation of spheres[END_REF], 2) Solid-like state: Vibrational energy propagates through the network of enduring contacts between particles and the material undergoes slow rearrangements and progressive compaction [START_REF] Kudrolli | Size separation in vibrated granular matter[END_REF]. 3) Liquid-like state: Both particle migration and enduring contact networks are involved in the dynamics and various collective effects can be observed [START_REF] Aoki | Spontaneous Wave Patterns Formation in Vibrated Granular Materials[END_REF][START_REF] Liffman | Granular convection and transport due to horizontal shaking[END_REF].

We may distinguish two methods for inducing vibrational dynamics: by imposed cyclic displacements of a wall or the container (shaking); or by cyclic modulation of a confining stress. The first method has been used in most experiments on granular beds [START_REF] Ludding | Granular materials under vibrations : simulation of spheres[END_REF][START_REF] Ben-Naim | Slow relaxation in granular compaction[END_REF][START_REF] Josserand | Memory Effects in Granular Materials[END_REF]. In this case, the control parameters are the amplitude ! a and the frequency ! " of the vibrations corresponding to a maximal acceleration ! a" 2 where ! " = 2#$ . When a material is moulded inside a closed box, the vibrations should rather be induced by varying a confining force, e.g. a force acting on a wall. Then, the amplitude of displacements is a function of the forcing frequency, and the level of particle accelerations depends on both the applied cyclic force and the reaction force of the packing (Azema 2006(Azema , 2008)). Moreover, in nearly all studies, spherical or nearly spherical particles in 3D or disks or polygons in 2D have been used.

We are interested here in the evolution of the packing in the course of harmonic loading, the short-time compaction (during the first cycles) and the scaling of the dynamics with loading parameters. We used discrete-element numerical simulations by means of the contact dynamics method (CD) in 3D with rigid irregular polyhedral particles. The system is explored for a broad set of loading parameters including the frequency and amplitude of the harmonic driving force. We first introduce the numerical procedures. Then, we present in three sections the dynamics of the packing, scaling with loading parameters, and the evolution of solid fraction.

NUMERICAL PROCEDURES

The simulations were carried out by means of the contact dynamics (CD) method with irregular polyhedral particles [START_REF] Jean | Unilaterality and dry friction in the dynamics of rigid body collections in Proceedings of Contact Mechanics International Symposium[END_REF][START_REF] Moreau | Some numerical methods in multi dynamics : application to granular materials[END_REF][START_REF] Radjaï | Multicontact dynamics of granular systems[END_REF]). The CD method is based on implicit time integration of the equations of motion and a nonsmooth formulation of mutual exclusion and dry friction between particles. This method requires no elastic repulsive potential and no smoothing of the Coulomb friction law for the determination of forces. For this reason, the simulations can be performed with large time steps compared to molecular dynamics simulations. We used LMGC90 which is a multipurpose software developed in our laboratory, capable of modeling a collection of deformable or undeformable particles of various shapes by different algorithms [START_REF] Dubois | LMGC90 une plateforme de développement dédiée à la modélisation des problèmes d'intéraction[END_REF].

Our numerical samples are composed of rigid polyhedral particles with shapes and sizes that represent those of ballast grains (Fig. 1) [START_REF] Saussine | Contribution à la modélisation de granulats tridimensionnels: application au ballast[END_REF]. Each particle has at most 70 faces and 37 vertices and at least 12 faces and 8 vertices. A sample contains nearly 1200 particles. The particle size is characterized as the largest distance between the barycenter and the vertices of the particle, to which we will refer as "diameter" below. We used the following size distribution: 50% of diameter The coefficient of friction between the particles and with the horizontal walls was fixed to 0.4, but it was 0 at the vertical walls. One of the walls is allowed to move horizontally (x direction in Fig. 2) and subjected to a harmonic driving force :

(1) where ! f max and ! f min are the largest and lowest compressive (positive) forces acting on the wall. All other walls are immobile. For all simulations the time step was ! 2.10 "4 s.

ACTIVE AND PASSIVE DYNAMICS

If ! f min is above the (gravitational) force ! f g exerted by the grains on the free wall, ! f will be large enough to prevent the wall from backward motion during the whole cycle. In other words, the granular material is in passive state and the major principal stress direction is horizontal. In this limit, no extension will occur following the initial contraction. On the other hand, if ! f max is below the force ! f g exerted by the grains, ! f will never be large enough to prevent the extension of the packing. This corresponds to the active state where the major principal stress direction remains vertical. In all other cases, both contraction and extension occur during each period, and the displacement of the free wall will be controlled by Figure 5a and 5b shows the evolution of the position x as a function of time and the variation of f g as a function of v for one period, together with the solution of the model. Excluding jamming and unjamming transients, the analytical solution provides a fairly good approximation for the simulation data although the largest contraction velocity is under-estimated in the passive state.

Although we focus here on the average dynamics of the packing, i.e. the displacements of the free wall, it is important to note that the grain velocity field is not a simple oscillation around an average position. The grains undergo a clockwise convective motion in the cell as shown in Figure 5. On the other hand, the contact forces evolve between a fully jammed where chains dominate ; Figure 7a, and the active state, where nearly vertical gravityinduced chains can be observed ; Figure 7b.

SCALING WITH LOADING PARAMETERS

We performed a series of simulations for frequencies ! " ranging from 1 Hz to 60 Hz and for a total time of 1 s. All simulations yield similar results for dynamics. Moreover, a simple analysis leads to the collapse of the data on a single plot. Indeed, the frequency sets the time scale Hence, we propose the following expression for the scaling of displacements with loading parameters:

(3) where C is a dimensionless prefactor. Figure 11 shows [START_REF] Azéma | Vibrational dynamics of confined granular material[END_REF]. Let us also remark that Eq. 3 predicts that ! "x max varies as g 2 . This prediction agrees well with our simulation data Figure 11 : Scaling of the maximum displacement ! "x max with loading parameters from simulations with different values of the frequency (triangles), the force amplitude (circles), the gravity (squares), and for the mass (diamonds) of the free wall.

The inset shows the plot near the origin

COMPACTION AND COMPACTION RATE

In order to evaluate the solid fraction ! " , we consider a control volume enclosing a portion of the packing inside the simulation cell. This volume does not include the initial gap between the top of the packing and the upper wall. The initial value of the solid fraction is 0.50 and, since the grains are angular-shaped, its variations ! "# from the initial state are large. Figure 12 shows the evolution of the variation ! "# of solid fraction for several periods. An initial compaction of 2% is followed by oscillations with a small increase of ! "# in each period. The initial compaction should be attributed to the initial state where the packing is not yet fully confined. We use " 0 = 0.52, reached after a time lag of 0.2 s, as the reference value for the evolution of solid fraction. The compaction of the packing slows down logarithmically at long times (Deboeuf 2005). But, the short-time compaction can well be approximated by a linear function with a constant compaction per period ! "# 1 as seen in figure 12. The average compaction rate The characteristic time ! " c ~0.1s is of the same order of magnitude as the time required for one particle to fall down a distance equal to its diameter. Obviously, the above findings concern only short-time compaction. At longer times, ! ˙ " declines with time, but the scaling with frequency according to Equation 5 is expected to hold at each instant of evolution of the packing.

CONCLUSION

In this paper, we analyzed the short-time behavior of a constrained granular system subjected to vibrational dynamics. The vibrations are induced by harmonic variation of the force exerted on a free retaining wall between zero and a maximum force. The system as a whole has a single degree of freedom represented by the horizontal position of the free wall. This system involves a jammed state separating passive (loading) and active (unloading) states. The contact dynamics method was employed to simulate and analyze the dynamics of this system composed with polyhedral particles.

By construction, our system is devoid of elastic elements and, hence, the behavior is fully governed by collective grain rearrangements.

In the loading phase, the reaction force (exerted by the grains on the free wall) rises almost linearly with the displacement of the free wall, but it increases considerably at the end of this phase in transition to the jammed state. This force enhancement features the jamming transition compared to the rest of the passive state. The reaction force decreases then in the jammed state, balancing thus exactly the driving force, until the latter is low enough for the grains to push the free wall away under the action of their own weights. This unjamming process occurs smoothly and the reaction force increases only slightly but exponentially during the unloading phase. We showed that a rough expression of the reaction force as a function of the displacement of the free wall with respect to the jamming position provides a good prediction of the dynamics except at the jamming and unjamming transients.

Dimensional analysis was used to scale the displacements with the frequency of oscillations. It was shown that the data collapse by scaling the displacements by the inverse square of frequency. We also studied the scaling with confining force and particle weights.

We also investigated the compaction rate of our numerical samples. It is nearly constant for short times. It was shown that the compaction rate increases linearly with frequency up to a characteristic frequency and then it declines nearly in inverse proportion to frequency. The characteristic frequency was interpreted in terms of the time required for the relaxation of a packing in each period to a more compact state by collective grain rearrangements under the action of gravity.
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  d min = 2.5cm, 34% of diameter ! 3.75 cm, and 16% of diameter ! d max = 5 cm.
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 1 Figure 1 : Examples of polyhedral shapes used in the simulations.
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 2 Figure 2 : A snapshot of the packing inside a box with a free wall over which the driving force
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  f min . Without loss of generality, we set! f min = 0.This ensures the largest possible displacement of the wall in the active state.
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 3 Figure 3 : The evolution of the displacement
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 4 Figure4shows the horizontal force
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 5 Figure 5 : Displacement
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 6 Figure 6 : Instantaneous particle velocity field in the passive state, i.e. during inward motion of the free wall.

Figure 7 :

 7 Figure 7 : Normal forces in the passive (a) and active (b) states in a section of the packing. The segments connect particle centers with a thickness proportional to the normal force.
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  = # $1 . Force scales are set by the largest driving force ! f max in the passive state and the particle weights ! mg as well as the smallest driving force ! f min in the active state. Hence, dimensionally, for fixed values of ! mg , ! f min and ! f max , all displacements are expected to scale with ! " #2 and all velocities with ! " #1 .
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 8 Figure 8 : Phase space trajectories for two frequencies without scaling (a) and with scaling (b) of the displacements and velocities with respect to the frequency.
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 10 Figure 9 : Maximum displacement
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  "x max as a function of (3) from different simulations with different values of ! " , ! f max , g and ! m w . We see that the data are in excellent agreement with Eq. 3. The prefactor is C ~0.01. This scaling is the same as in 2D simulations with a material constant ! C ~0.05 for polygonal particles
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 12 Figure 12 : Evolution of the solid fraction
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 13 Figure 13 : The compaction rate