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We study the existence and uniqueness of the positive solutions of the problem (P): ∂tu -∆u + u q = 0 (q > 1) in Ω × (0, ∞), u = ∞ on ∂Ω × (0, ∞) and u(., 0) ∈ L 1 (Ω), when Ω is a bounded domain in R N . We construct a maximal solution, prove that this maximal solution is a large solution whenever q < N/(N -2) and it is unique if ∂Ω = ∂Ω c . If ∂Ω has the local graph property, we prove that there exists at most one solution to problem (P).

Introduction

Let q > 1 and let Ω be a bounded domain in R N with boundary ∂Ω := Γ. It has been proved by Keller [5] and Osserman [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF] that there exists a maximal solution u to the stationnary equation -∆u + |u| q-1 u = 0 in Ω.

(1.1)

When 1 < q < N/(N -2) this maximal solution is a large solution in the sense that lim

ρ(x)→0 u(x) = ∞ (1.2)
where ρ(x) = dist (x, ∂Ω). Furthermore Véron proves in [START_REF] Véron | Generalized boundary value problems for nonlinear elliptic equations[END_REF] that u is the unique large solution whenever ∂Ω = ∂Ω c . When q ≥ N/(N -2) his proof of uniqueness does not apply.

Marcus and Véron prove in [START_REF] Marcus | Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations[END_REF] that, there exists at most one large solution, provided ∂Ω is locally the graph of a continuous function. The aim of this article is to extend these questions to the parabolic equation

∂ t u -∆u + |u| q-1 u = 0 in Ω × (0, ∞). (1.3) 
We are interested into positive solutions which satisfy lim t→0 u(., t) = f in L 1 loc (Ω), (1.4)

1
where f ∈ L 1 loc + (Ω) and lim (x,t)→(y,s) u(x, t) = ∞ ∀(y, s) ∈ Γ × (0, ∞).

(1.5)

Notice that if the initial and boundary conditions are exchanged, i.e. u(., t) blows-up when t → 0 and coincides with a locally integrable function on Γ×(0, ∞), this problem is associated with the study of the initial trace, and much work has been done by Marcus and Véron [START_REF] Marcus | The initial trace of positive solutions of semilinear parabolic equations[END_REF] in the case of a smooth domain. In particular they obtain the existence and uniqueness when q is subcritical, i.e. 1 < q < 1 + 2/N .

In this article we prove two series of results:

Theorem A Assume q > 1 and Ω is a bounded domain. Then for any f ∈ L 1 loc + (Ω) there exists a maximal solution u f to problem (2.5 ) satisfying (1.4 ). If 1 < q < N/(N -2), u f satisfies (1.5 ). At end, if 1 < q < N/(N -2) and ∂Ω = ∂Ω c , u f is the unique solution of the problem which satisfies (1.5 ).

The proof of uniqueness is based upon the construction of self-similar solutions of (2.5 ) in R N \ {0} × (0, ∞), with a persistent strong singularity on the axis {0} × (0, ∞) and a zero initial trace on R N \ {0}. This solution, which is studied in Appendix, is reminiscent of the very singular solution of Brezis, Peletier and Terman [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF], although the method of construction is far different. The uniqueness is a delicate adaptation to the parabolic framework of the proof by contradiction of [START_REF] Véron | Generalized boundary value problems for nonlinear elliptic equations[END_REF].

Theorem B Assume q > 1, Ω is a bounded domain and ∂Ω, is locally a continuous graph. Then for any f ∈ L 1 loc + (Ω) there exists at most one solution to problem (2.5 ) satisfying (1.4 ) and (1.5 ).

For proving this result, we adapt the idea which was introduced in [START_REF] Marcus | Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations[END_REF] of constructing local super and subsolutions by small translations of the domain, but the non-uniformity of the boundary blow-up creates an extra-difficulty. In an appendix we study a self-similar equation which plays a key-role in our construction,

         H ′′ + N -1 r + r 2 H ′ + 1 q -1 H -|H| q-1 = 0 lim r→0 H(r) = ∞ lim r→∞ r 2/(q-1) H(r) = 0. (1.6)
We prove the existence and the uniqueness of the positive solution of (1.6 ) when 1 < q < N/(N -2) and we give precise asymptotics when r → 0 and r → ∞.

This article is organised as follows: 1-Introduction. 2-The maximal solution 3-The case 1 < q < N/(N -2). 4-The local continuous graph property. 5-Appendix.

The maximal solution

In this section Ω is an open domain of R N , with a compact boundary Γ :

= ∂Ω. If G is any open subset of R N and 0 < T ≤ ∞, we denote Q G T := G × (0, T ). If f ∈ L 1 loc + (Ω), we consider the problem        ∂ t u -∆u + |u| q-1 u = 0 in Q Ω ∞ lim t→0 u(., t) = f (.) in L 1 loc (Ω) lim (x,t)→(y,s) u(x, t) = ∞ ∀(y, s) ∈ Γ × (0, ∞). (2.1)
By the next result, we reduce the lateral blow-up condition by a locally uniform one in which we set ρ(x) = dist (x, Γ).

Lemma 2.1

The following two conditions are equivalent lim

(x,t)→(y,s) u(x, t) = ∞ ∀(y, s) ∈ Γ × (0, ∞) (2.2)
and lim

ρ(x)→0 u(x, t) = ∞ uniformly on [τ, T ], (2.3 
)

for any 0 < τ < T < ∞. Proof. It is clear that (2.3 ) is equivalent to the fact that (2.2 ) holds uniformly on Γ × [τ, T ].
By contradiction, we assume that (2.2 ) does not hold uniformly for some T > τ > 0. Then there exists β > 0 such that for any δ > 0, there exist two couples (y

δ , s δ ) ∈ Γ × [τ, T ] and (x δ , t δ ) ∈ Ω × [τ, T ] such that |x δ -y δ | + |t δ -s δ | ≤ δ and u(x δ , t δ ) ≤ β. (2.4) 
Taking δ = 1/n, n ∈ N * , we can assume that {δ} is discrete and that y δ → y ∈ Γ and s δ → s ∈ [τ, T ]. Thus x δ → y and t δ → s. Therefore (2.4 ) contradicts (2.2 ).

Theorem 2.2 For any q > 1 and f ∈ L 1 loc + (Ω), there exists a maximal solution u := u f of

∂ t u -∆u + |u| q-1 u = 0 in Q Ω ∞ (2.5) which satisfies lim t→0 u(., t) = f (.) in L 1 loc (Ω). (2.6) 
Proof. Let Ω n be an increasing sequence of smooth bounded domains such that Ω n ⊂ Ω n+1 ⊂ Ω and ∪Ω n = Ω. For each n let u n,f be the increasing limit when k → ∞ of the

u n,k,f solution of        ∂ t u n,k,f -∆u n,k,f + u q n,k,f = 0 in Q Ωn ∞ u n,k,f (x, t) = k in ∂Ω n × (0, ∞) u n,k,f (x, 0) = f χ Ωn in Ω n .
(2.7)

By the maximum principle and a standard approximation argument n → u n,k,f is decreasing thus n → u n,f too. The limit u f of the u n,f satisfies (2.5 ) and (2.6 ). It is independent of the exhaustion {Ω n } of Ω. Let u be a positive solution of (2.5 ) in Q Ω ∞ which satisfies (2.6 ). Since the initial trace of u is a locally integrable function,

u q ∈ L 1 loc (Ω × [0, ∞)). By
Fubini we can assume that, for any n, u ∈ L 1 loc (∂Ω n × [0, ∞)). Because (u -u n,k,f ) + ≤ u and tends to 0 when k → ∞, it follows by Lebesgue's theorem that lim k→∞ (u -u n,k,f ) + L 1 (∂Ωn×(0,T )) = 0 ∀T > 0.

Applying the maximum principle in Ω n × (0, ∞) yields to

u ≤ lim k→∞ u n,k,f = u n,f =⇒ u ≤ lim n→∞ u n,f = u f .
Theorem 2.3 For any q > 1 and f ∈ L 1 loc + (Ω), there exists a minimal nonnegative solution u f of (2.5 ) in Q Ω ∞ which satisfies (2.6 ). Proof. The scheme of the construction is similar to the one of u f : with the same exhaustion {Ω n } of Ω, we consider the solution u n,0,f solution of

       ∂ t u n,0,f -∆u n,0,f + u q n,0,f = 0 in Q Ωn ∞ u n,0,f (x, t) = 0 in ∂Ω n × (0, ∞) u n,0,f (x, 0) = f χ Ωn in Ω n .
(2.8)

By the maximum principle, n → u n,0,f is increasing and dominated by u f . Therefore it converges to some solution u f of (2.5 ), which satisfies (2.6 ) as u n,0,f and u f do it. Using the same argument as in the proof of Theorem 2.2, there holds u n,0,f ≤ u in Q Ωn ∞ for a suitable exhaustion. Thus u f ≤ u.

Remark. Because of the lack of regularity of ∂Ω, there is no reason for u f (resp u f ) to tend to infinity (resp. zero) on ∂Ω × (0, ∞).

The next statement will be very usefull for proving uniqueness results. Theorem 2.4 Assume q > 1, f ∈ L 1 loc + (Ω) and u f is a nonnegative solution of (2.5 ) satisfying (2.6 ). Then there exists a nonnegative solution u 0 of (2.5 ) satisfying

lim t→0 u 0 (., t) = 0 in L 1 loc (Ω), (2.9 
)

such that 0 ≤ u f -u f ≤ u 0 ≤ u f , (2.10 
)

and 0 ≤ u f -u f ≤ u 0 -u 0 . (2.11) Proof.
Step 1: construction of u 0 . The function w = u f -u f is a nonnegative subsolution of (2.5 ) which satisfies lim t→0 w(., t) = 0 in L 1 loc (Ω). Using the above considered exhaustion of Ω, we denote by v n the solution of

       ∂ t v n -∆v n + v q n = 0 in Q Ωn ∞ v n (x, t) = u f -u f in ∂Ω n × (0, ∞) v n (x, 0) = 0 in Ω n .
(2.12)

By the maximum principle

u f -u f ≤ v n ≤ u f in Q Ωn ∞ .
Therefore v n+1 ≥ v n on ∂Ω n × (0, ∞); this implies that the same inequality holds in Q Ωn ∞ . If we denote by u 0 the limit of the {v n }, it is a solution of (2.5 ) in Q Ω ∞ . For any compact K ∈ Ω, there exists n K and α > 0 such that dist (K, Ω c n ) ≥ α for n ≥ n K therefore v n remains uniformly bounded on K by Brezis-Friedman estimate [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF]. Thus the local equicontinuity of the v n (consequence of the regularity theory for parabolic equations) implies that u 0 satisfies (2.9 ).

Step 2: proof of (2.11 ). We follow a method introduced in [START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case[END_REF] in a different context. For n ∈ N and k > 0 fixed, we set

Z f,n = u f,n -u f and Z 0,n = u 0,n -u 0 ,
where we assume that the n are chosen such that

u f , u 0 ∈ L 1 loc (∂Ω n × [0, ∞)), and 
φ(r, s) =    r q -s q r -s if r = s 0 if r = s. By convexity, r 0 ≥ s 0 , r 1 ≥ s 1 r 1 ≥ r 0 , s 1 ≥ s 0 =⇒ φ(r 1 , s 1 ) ≥ φ(r 0 , s 0 ). Therefore φ(u f,n , u f ) ≥ φ(u 0,n , u 0 ) in Q Ωn T , and 
0 = ∂ t (Z f,n -Z 0,n ) -∆(Z f,n -Z 0,n ) + u q f,n -u q f -u q 0,n + u q 0 = ∂ t (Z f,n -Z 0,n ) -∆(Z f,n -Z 0,n ) + φ(u f,n , u f )Z f,n -φ(u 0,n , u 0 )Z 0,n , which implies ∂ t (Z f,n -Z 0,n ) -∆(Z f,n -Z 0,n ) + φ(u f,n , u f )(Z f,n -Z 0,n ) ≤ 0. But Z f,n -Z 0,n = 0 in Ω n × {0} and ∞ 0 ∂Ωn |Z f,n -Z 0,n | dS dt = 0 by approximations. By the maximum principle Z f,n,k -Z 0,n,k ≤ 0. Letting n → ∞ yields to u f -u f ≤ u 0 -u 0 ,
which ends the proof.

3 The case 1 < q < N/(N -2)

In this section we assume that Ω is a domain of R N with a compact boundary. We first prove that the maximal solution is a large solution Theorem 3.1 Assume 1 < q < N/(N -2) and f ∈ L 1 loc + (Ω) . Then the maximal solution u f of (2.5 ) in Q Ω T which satisfies (2.6 ) satisfies also (2.3 ).

Proof. In Appendix we construct the self-similar solution

V := V N of (2.5 ) in Q R N \{0} ∞
which has initial trace zero in R N \ {0} and satisfies

lim |x|→0 V N (x, t) = ∞, locally uniformly on [τ, ∞), for any τ > 0. Furthermore V N (x, t) = t -1/(q-1) H N (|x|/ √ t). If a ∈ ∂Ω, the restriction to Ω n of the function V N (x -a, t) is bounded from above by u n,f . Letting n → ∞ yields to V N (x -a, t) ≤ u f (x, t) ∀(x, t) ∈ Q Ω ∞ . (3.1)
If we consider x ∈ Ω and denote by a x a projection of x onto ∂Ω, there holds

t -1/(q-1) H N (ρ(x)/ √ t) = V N (x -a x , t) ≤ u f (x, t). (3.2) 
Using (5.2 ), we derive that u f satisfies (2.3 ).

Theorem 3.2 Assume 1 < q < N/(N -2), f ∈ L 1 loc + (Ω) and ∂Ω = ∂Ω c . Then u f is the unique solution of (2.5 ) in Q Ω T which satisfies (2.6
) and (2.3 ).

Proof. Assume that u f is a solution of (2.5 ) in Q Ω T such that (2.6 ) and (2.3 ) hold. By Theorem 2.4 there exists a positive solution u 0 with zero initial trace such that

0 ≤ u f -u 0 ≤ u f (3.3)
and (2.11 ) are satisfied. Since u f (x, t) ≤ ((q -1)t) -1/(q-1) (notice that this last expression is the maximal solution of (2.5 ) in Q R N ∞ ), the function u 0 satisfies also (2.3 ). Therefore, it is sufficient to prove that u 0 = u 0 := u.

Step 1: bilateral estimates. Since ∂Ω = ∂Ω c , for any a ∈ ∂Ω, there exists a sequence

{a n } ⊂ Ω c converging to a. If u is any solution of (2.5 ) in Q Ω T which satisfies (2.
3 ) and (2.9 ), there holds

V N (x -a n , t) ≤ u(x, t) =⇒ V N (x -a, t) ≤ u(x, t).
In particular, if a = a x , we see that u satisfies (3.2 ). In order to obtain an estimate from above we consider for r < ρ(x) the solution (y, t) → u x,r (y, t) of

       ∂ t u x,r -∆u x,r + u q x,r = 0 in Q Br(x) ∞ lim (y,t)→(z,0) u x,r (y, t) = 0 ∀z ∈ B r (x) lim |x|↑r u x,r (x, t) = ∞ locally uniformly on [τ, ∞), for any τ > 0 (3.4) Then u 0 (y, t) ≤ u x,r (y, t) =⇒ u 0 (y, t) ≤ u x,ρ(x) (y, t) ∀(y, t) ∈ Q B ρ(x) (x) ∞ .
In particular, with u 0,r = u r , u 0 (x, t) ≤ u ρ(x) (0, t) = (ρ(x)) -2/(q-1) u 1 (0, t/(ρ(x)) 2 ).

Therefore

t -1/(q-1) H N (ρ(x)/ √ t) ≤ u(x, t) ≤ u 0 (x, t) ≤ (ρ(x)) -2/(q-1) u 1 (0, t/(ρ(x)) 2 ). (3.5)
The function s → u 1 (0, s) is increasing by the same argument as the one of Corollary 4.3 and bounded from above by the unique solution P of

-∆P + P q = 0 in B 1 lim |x|→1 P (x) = ∞. (3.6) 
Therefore it converges to P locally uniformly in B 1 and lim s→∞ u 1 (0, s) = P (0). Thus

t/(ρ(x)) 2 → ∞ =⇒ (ρ(x)) -2/(q-1) u 1 (0, t/(ρ(x)) 2 ) ≈ P (0)(ρ(x)) -2/(q-1) . (3.7) On the other hand, if t/(ρ(x)) 2 → ∞, equivalently ρ(x)/ √ t → 0, t -1/(q-1) H N (ρ(x)/ √ t) ≈ λ N,q t -1/(q-1) (ρ(x)/ √ t) -2/(q-1) = λ N,q (ρ(x)) -2/(q-1) , (3.8) 
by (5.4 ).

Next, in order to obtain an estimate from above of u 1 (0, s) when s → 0, we compare u 1 to a solution u Θ of (2.5 ) in Q Θ ∞ , where Θ is a polyhedra inscribed in B 1 ; this polyhedra is a finite intersection of half spaces Γ i containing Π. In each of the half space Γ i , with boundary γ i , we can consider the solution W i of (2.5 ) in Q Γi ∞ which tends to infinity on γ i × (0, ∞) and has value 0 on Γ i × {0}. This solution depends only on the distance to γ i and t. Thus it is expressed by the function V 1 defined in Proposition 5.1 when N = 1. Moreover, since a sum of solutions is a super solution,

u 1 ≤ u Θ ≤ i W i =⇒ u 1 (0, s) ≤ i H 1 (dist (0, γ i )/ √ s). (3.9) 
We can choose the hyperplanes γ i such that for any δ ∈ (0, 1), there exists

C δ ∈ N * such that u 1 (0, s) ≤ C δ H 1 ((1 -δ)/ √ s). (3.10) Using (5.3 ) we derive u(x, t) ≥ c N,q (ρ(x)) 2/(q-1)-N t N/2-1/(q-1) e -(ρ(x)) 2 /4t , when ρ(x)/ √ t → ∞, and 
u 0 (x, t) ≤ CH 1 ((1-δ)ρ(x)/ √ t) ≤ C(1-δ) 2/(q-1)-1 (ρ(x)) 2/(q-1)-1 t 1/2-1/(q-1) e -((1-δ)ρ(x)) 2 /4t .
Therefore, there exists θ > 1 such that u 0 (x, t) ≤ C(ρ(x)) 2/(q-1)-N t N/2-1/(q-1) e -(ρ(x)) 2 /4θt ≤ Cu(x, θt), (3.11) when ρ(x)/ √ t → ∞. Finally, when m -1 ≤ ρ(x)/ √ t ≤ m for some m > 1, (3.5 ) shows that (ρ(x)) -2/(q-1) u 1 (0, t/(ρ(x)) 2 ) and t -1/(q-1) H N (ρ(x)/ √ t) are comparable. In conclusion, there exist constants C > P (0)/λ N,q > 1 and θ > 1 such that

u(x, t) ≤ u 0 (x, t) ≤ Cu(x, θt) ∀(x, t) ∈ Q Ω ∞ .
(3.12)

Step 2: End of the proof. Let τ > 0 and C ′ > C be fixed. The function

t → u τ (x, t) := C ′ u(x, t + θτ )
is a supersolution of (2.5 ) in Ω × (0, ∞) which satisfies u τ (x, 0) = C ′ u(x, θτ ) > u 0 (x, τ ) by (3.12 ). Furthermore, 1))(ρ(x)) -2/(q-1) , as ρ(x) → 0, locally uniformly for t ∈ [0, ∞). Similarly, u 0 (x, t + τ ) ≤ (ρ(x)) -2/(q-1) u 1 (0, (t + τ )/(ρ(x)) 2 ) = P (0)(1 + o( 1))(ρ(x)) -2/(q-1) , as ρ(x) → 0, and also locally uniformly for t ∈ [0, ∞). Therefore (u 0 (x, t) -u τ (x, t)) + vanishes in a neighborhood of ∂Ω × [0, T ] for any T > 0. By the maximum principle

C ′ u(x, t + θτ ) ≥ C ′ (t + θτ ) -1/(q-1) H N (ρ(x)/ √ t + θτ ) = C ′ λ N,q (1 + o(
u τ (x, t) ≥ u 0 (x, t) ∀(x, t) ∈ Ω × (0, ∞).
Letting τ → 0 and

C ′ → C yields to u(x, t) ≤ u 0 (x, t) ≤ Cu(x, t) ∀(x, t) ∈ Q Ω ∞ . (3.13)
The conclusion of the proof is contradiction, following an idea introduced in [8] and developped by [START_REF] Véron | Generalized boundary value problems for nonlinear elliptic equations[END_REF] in the elliptic case. We assume u = u 0 , thus u < u 0 . By convexity the function

w = u - 1 2C (u 0 -u)
is a supersolution and w < u. Moreover w > w ′ := ((1 + C)/2C)u and w ′ is a subsolution. Consequently, there exists a solution u 1 of (2.5 ) which satisfies

w ′ < u 1 ≤ w =⇒ u 0 -u 1 ≥ 1 + K -1 (u 0 -u) in Q Ω ∞ . (3.14) 
Notice that u 1 satisfies (2.9 ) and (2.3 ), therefore it satisfies (3.13 ) as u does it. Replacing u by u 1 and introducing the supersolution

w 1 = u 1 - 1 2C (u 0 -u 1 )
and the subsolution w ′ 1 := ((1 + C)/2C)u 1 we see that there exists a solution u 2 of (2.5 ) such that

w ′ 1 < u 2 ≤ w 1 =⇒ u 0 -u 2 ≥ 1 + K -1 2 (u 0 -u) in Q Ω ∞ . (3.15)
By induction, we construct a sequence of positive solutions u k of (2.5 ), subject to (2.9 ) and ( 2.3 ) such that

u 0 -u k ≥ 1 + K -1 k (u 0 -u) in Q Ω ∞ . (3.16) This is clearly a contradiction since 1 + K -1 k → ∞ as k → ∞ and u 0 is locally bounded in Q Ω ∞ .

The local continuous graph property

In this section, we assume that ∂Ω is compact and is locally the graph of a continuous function, which means that there exists a finite number of open sets Ω j (j = 1, ..., k) such that Γ ∩ Ω j is the graph of a continuous function. Our main result is the following Theorem 4.1 Assume q > 1 and f ∈ L 1 loc + (Ω). Then there exists at most one positive solution of (2.5 ) in Q Ω ∞ satisfying (2.6 ) and (2.3 ). Suppose u f satisfies (2.5 ) in Q Ω ∞ satisfying (2.6 ) and (2.3 ), then clearly the maximal solution u f endows the same properties. In order to prove that u f = u f , we can assume that f = 0 by Theorem 2.4. We denote by u this large solution with zero initial trace. We consider some j ∈ {1, ..., k}, perform a rotation, denote by

x = (x ′ , x N ) ∈ R N -1 × R the coordinates in R N and represent Γ ∩ Ω j as the graph of a continuous positive function φ defined in C = {x ′ ∈ R N -1 : |x ′ | ≤ R}. We identify C with {x = (x ′ , 0) : |x ′ | ≤ R} and set Γ 1 = {x = (x ′ , φ(x ′ )) : x ′ ∈ C}, Γ 2 = {x = (x ′ , x N ) : x ′ ∈ ∂C, 0 ≤ x N < φ(x ′ ), }, and G R = {x ∈ R N : |x ′ | < R, 0 < x N < φ(x ′ )}.
We can assume that

G R ⊂ Ω ∪ Γ 1 , inf{φ(x ′ ) : x ′ ∈ C} = R 0 > 0 and sup{φ(x ′ ) : x ′ ∈ C} = R 1 > R 0 .
For σ > 0, small enough, we consider

φ σ ∈ C ∞ (C) satisfying φ(x ′ ) -σ/2 ≤ φ σ (x ′ ) ≤ φ(x ′ ) + σ/2 ∀x ′ ∈ C,
and set G σ,R = {x ∈ R N : |x ′ | < R, 0 < x N < φ σ (x ′ ) -σ} and G ′ σ,R = {x ∈ R N : |x ′ | < R, 0 < x N < φ σ (x ′ ) + σ}. The upper boundaries of G σ and G ′ σ are defined by Γ 1,σ = {x = (x ′ , φ σ (x ′ ) -σ) : x ′ ∈ C}, Γ ′ 1,σ = {x = (x ′ , φ σ (x ′ ) + σ) : x ′ ∈ C},
and the remaining boundaries are

Γ 2,σ = {x = (x ′ , x N ) : x ′ ∈ ∂C, 0 ≤ x N ≤ φ σ (x ′ ) -σ}, Γ ′ 2,σ = {x = (x ′ , x N ) : x ′ ∈ ∂C, 0 ≤ x N ≤ φ σ (x ′ ) + σ}.
In order to have the monotonicity of the domains, we can also assume

φ σ (x ′ ) -σ < φ σ ′ (x ′ ) -σ ′ < φ σ ′ (x ′ ) + σ ′ < φ σ (x ′ ) + σ ∀ 0 < σ ′ < σ ∀ x ′ ∈ C, (4.1) 
thus, under the condition 0

< σ ′ < σ, G σ,R ⊂ G σ ′ ,R ⊂ G R ⊂ G ′ σ ′ ,R ⊂ G ′ σ,R . (4.2)
The localization procedure is to consider the restriction of u to

Q GR ∞ := G R × (0, ∞), thus u is regular in G R ∪ Γ 2 × [0, ∞) and satifies lim xN →φ(x ′ ) u(x ′ , x N , t) = ∞, (4.3) 
uniformly with respect to (x ′ , t) ∈ C × [τ, T ], for any 0 < τ < T . We construct v σ as solution of

∂ t v σ -∆v σ + v q σ = 0 in Q Gσ,R ∞ := G σ,R × (0, ∞), (4.4) 
subject to the initial condition

lim t→0 v σ (x, t) = 0 locally uniformly in G σ,R , (4.5) 
and the boundary conditions

lim xN →φσ (x ′ )-σ v σ (x ′ , x N , t) = ∞ ∀(x ′ , t) ∈ C × (0, ∞], (4.6) 
uniformly on any set K × [τ, T ], where T > τ > 0 and K is a compact subset of C and

v σ (x, t) = 0 ∀(x, t) ∈ Γ 2,σ × [0, ∞). (4.7) 
We also construct w σ as solution of

∂ t w σ -∆w σ + w q σ = 0 in Q G ′ σ,R T := G ′ σ,R × (0, ∞), (4.8) 
subject to the initial condition

lim t→0 w σ (x, t) = 0 locally uniformly in G ′ σ,R , (4.9) 
and the boundary conditions

(i) w σ (x, t) = 0 ∀(x, t) ∈ Γ ′ 1,σ × [0, T ], (i ′ ) lim (x,s)→(y,t) w σ (x, t) = ∞ ∀(y, s) ∈ Γ ′ 2,σ × [0, T ]. (4.10) 
The functions v σ and w σ inherit the following properties in which the local graph property plays a fundamental role, allowing translations of the truncated domains in the x N -direction. Lemma 4.2 For σ > σ ′ > 0 there holds

v σ ′ ≤ v σ in Q Gσ,R ∞ , (4.11) 
w σ ′ ≤ w σ in Q G ′ σ ′ ,R ∞ , (4.12) 
(i) v σ (x ′ , x N -2σ, t) ≤ u(x ′ , x N , t) in Q GR ∞ (ii) u(x ′ , x N , t) ≤ v σ (x, t) + w σ (x, t) in Q Gσ,R ∞ . (4.13) 
Proof. The inequalities (4.11 ) and (4.12 ) are the direct consequence of the fact that the domains G σ,R and G ′ σ ′ ,R are Lipschitz and the functions v σ and w σ are constructed by approximations of solutions of (2.5 ) with bounded boundary data. For proving (4.13 )-(i), we compare, for τ > 0, u(x, t -τ ) and

v σ (x ′ , x N -2σ, t) in Q GR ∞ . Because u satisfies (2.
3 ), and v σ (x ′ , x N -2σ, 0) = 0 in G R , (4.13 )-(i) follows by the maximum principle. The proof of (4.13 )-(ii) needs no translation, but the fact that the sum of two solutions is a supersolution. 

v 0 ≤ u ≤ v 0 + w 0 in Q GR ∞ . (4.14) 
Moreover, the functions t → v 0 (x, t) and t → w 0 (x, t) are increasing on (0, ∞), ∀x ∈ G R .

Proof. The first assertion follows from (4.11 )-(4.12 ), and (4.14 ) from (4.13 ). Since v 0 is the limit, when σ → 0 of v σ which satisfy equation (4.4 ) in Q

Gσ,R T

, initial condition (4.5 ) and boundary conditions (4.6 ), (4.7 ), it is sufficient to prove the monotonicity of t → v σ (., t). Moreover v σ is the limit, when k tends to infinity of the v k,σ solutions of (2.5 ) in Q Gσ,R T , which satisfy the same boundary conditions as v σ on Γ 2,σ × [0, T ], the same zero initial condition and lim

xN →φ(x ′ )-σ v k,σ (x ′ , x N , t) = k.
For τ > 0, we define V τ by V τ (x, t) = (v k,σ (x, t) -v k,σ (x, t + τ )) + . Because ∂G σ,R is Lipschitz and V τ is a subsolution of (2.5 ) which vanishes on ∂G σ,R × [0, T ] and at t = 0, it is identically zero. This implies v k,σ (x, t) ≤ v k,σ (x, t + τ ), and the monotonicity property of v 0 , by strict maximum principle and letting σ → 0. The proof of the monotonicity of w 0 is similar.

The key step of the proof is the following result.

Proposition 4.4 Let ǫ, τ > 0. Then there exists δ ǫ > 0 such that, if we denote

G δ,R ′ = {x = (x ′ , x N ) : |x ′ | < R ′ and φ(x ′ ) -δ ≤ x N < φ(x ′ )}, there holds, for R ′ < R/ √ N -1, w 0 (x, t) ≤ ǫv 0 (x, t + τ ) ∀(x, t) ∈ Q G δ,R ′ ∞ . ( 4 

.15)

Proof. Using the result in Appendix, we recall that V := V 1 is the unique positive and self-similar solution of the problem

       ∂ t V -∂ zz V + V q = 0 in R + × R + lim t→0 V (z, t) = 0 ∀z > 0 lim z→0 V (z, t) = ∞ ∀t > 0, (4.16) 
and it is expressed by V 1 (z, t) = t -1/(q-1) H 1 (x/ √ t), where H 1 satisfies (5.2 )-( 5.3 ) with

N = 1. We set R N = R/ √ N -1 so that C ∞ := {x ′ = (x 1 , ..., x N -1 ) : sup j≤N -1 |x j | < R N } ⊂ C = {x ′ : |x ′ | ≤ R} and we define w(x, t) = W (x N , t) + N -1 j=1 (W (x j -R, t) + W (R -x j , t)).
The function w a super solution in Θ × R + where Θ := {(x ′ , x N ) :

x ′ ∈ C ∞ , x N > 0} which blows up on {x : x N = 0 , sup j≤N -1 |x j | ≤ R} j≤N -1 {x : x N ≥ 0 , x j = ±R} . Therefore w 0 ≤ w in Q GR N T
. Moreover w(x, t) → 0 when t → 0, uniformly on

G * α,R ′ := {x = (x 1 , x 2 ) : |x 1 | ≤ R ′ , α ≤ x 2 ≤ φ(x 1 )},
for any α ∈ (0, R 0 ] and R ′ ∈ (0, R N ). Since for any τ > 0, v 0 (x, t + τ ) → ∞ when ρ(x) → 0, locally uniformly on [0, ∞), and w(x, t) remains uniformly bounded on Q

G δ,R ′ ∞
, for any δ > R 0 , it follows that for any ǫ > 0 there exists δ ǫ > 0 such that

w 0 (x, t) ≤ w(x, t) ≤ ǫv 0 (x, t + τ ) ∀(x, t) ∈ Q G δǫ,R ′ ∞ .
Proof of Theorem 4.1. Assume u is a solution of (2.5 ) satisfying (2.6 ) and (2.3 ). Then there holds in Q Remark. The existence of large solutions when q ≥ N/(N -2) is a difficult problem as it is already in the elliptic case. We conjecture that the necessary and sufficient conditions, obtained by Dhersin-Le Gall when q = 2 [4] and Labutin [START_REF] Labutin | Wiener regularity for large solutions of nonlinear equations[END_REF] in the general case q > 1, and expressed by mean of a Wiener type criterion involving the C R N 2,q ′ -Bessel capacity, are still valid. As in [START_REF] Marcus | Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations[END_REF], it is clear that if ∂Ω satisfies the exterior segment property and 1 < q < (N -1)/(N -3), then u 0 is a large solution.

G δǫ,R ′ ∞ , v 0 (., t) ≤ u(., t) ≤ v 0 (., t) + ǫv 0 (., t + τ ). ( 4 

Appendix

The proof of this result is based upon the existence of solution of (2.5 ) 

in Q R N \{0} ∞
with a persistent singularity on {0} × [0, ∞). Proposition 5.1 For any q > 1, there exists a unique positive function V := V N defined in R + × R + satisfying, for any τ > 0

       ∂ t V -∆V + V q = 0 in Q R N \{0} ∞
lim (x,t)→(y,0) V (x, t) = 0 ∀y ∈ R N \ {0} lim |x|→0 V (x, t) = ∞ locally uniformly on [τ, ∞), for any τ > 0 (5.1) Then V N (x, t) = t -1/(q-1) H N (|x|/ √ t), where H := H N is the unique positive function satisfying

         H ′′ + N -1 r + r 2 H ′ + 1 q -1 H -H q = 0 in R + lim r→0 H(r) = ∞
lim r→∞ r 2/(q-1) H(r) = 0.

(5.2)

Furthermore there holds H N (r) = c N,q r 2/(q-1)-N e -r 2 /4 (1 + O(r -2 )) as r → ∞, (5.3) and H N (r) = λ N,q r -2/(q-1) (1 + O(r)) as r → 0, (5.4)

Proof. If we assume 1 < q < N/(N -2), the C 2,1,q ′ parabolic capacity of the axis {0} × R ⊂ R N +1 is positive, therefore there exists a unique solution u := u µ to the problem

∂ t u -∆u + |u| q-1 u = µ ∈ R N × R, (5.5) 
(see [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF]) where µ is the uniform measure on {0} × R + defined by

ζdµ = ∞ 0 ζ(0, t)dt ∀ζ ∈ C ∞ 0 (R N +1 ).
If we denote T ℓ [u](x, t) = ℓ 2/(q-1) u(ℓx, ℓ 2 t) for ℓ > 0, then T ℓ leaves the equation (2.5 ) invariant, and T ℓ [u µ ] = u ℓ 2/(q-1)-N µ . If we replace µ by kµ (k > 0), we obtain T ℓ [u kµ ] = u ℓ 2/(q-1)-N kµ .

(5.6)

Moreover, any solution of (2.5 ) in R N \ {0} × R + which vanishes on R N \ {0} × {0} is bounded from above by the maximum solution u := U of -∆u + u q = 0 in R N \ {0}.

(5.7)

This is obtained by considering the solution U ǫ of

   -∆u + u q = 0 in R N \ B ǫ lim |x|→ǫ u(x) = ∞. (5.8) 
Actually, U (x) := lim ǫ→0 U ǫ (x) = λ N,q |x| -2/(q-1) with λ N,q := 2 q -1 2q q -1 -N

1/(q-1) , (5.9) an expression which exists since 1 < q < N/(N -2). If we let k → ∞ in (5.6 ), using the monotonicity of µ → u µ , we obtain that u kµ → u ∞µ , u ∞µ ≤ U and T ℓ [u ∞µ ] = u ℓ 2/(q-1)-N ∞µ = u ∞µ ∀ℓ > 0.

(5.10)

This implies that u ∞µ is self-similar, that is u ∞µ (x, t) = t -1/(q-1) h(x/ √ t).

Furthermore, h(.) is positive and radial as x → u µ (x, t) is, and it solves

h ′′ + N -1 r + r 2 h ′ + 1 q -1 h -h q = 0 in R + .
(5.11)

Since u µ (x, 0) = 0 for x = 0, the a priori bounds u kµ ≤ U , the equicontinuity of the {u kµ } k>0 implies that u ∞µ (x, 0) = 0 for x = 0; therefore lim r→∞ r 2/(q-1) h(r) = 0.

(5.12)

Corollary 4 . 3

 43 There exist v 0 = lim σ→0 v σ and w 0 = lim σ→0 w σ and there holds

  (., t + τ ) ≥ v 0 (., t) + ǫv 0 (., t + τ ) since t → v 0 (., t) is increasing by Corollary 4.3. The maximal solution u 0 satisfies (4.17 ) too; consequently the following inequality is verified in Q (x, t) -(1 + ǫ)u(x, t + τ )) + is a subsolution, which vanishes at t = 0 and near ∂Ω × [0, T ], it follows that (4.18 ) holds in Q Ω T . Letting ǫ → 0 and τ → 0 yields to u ≥ u 0 .

	from which follows Since ∂Ω is compact, there exists δ * > 0 such that (4.18 ) holds whenever t ∈ [0, T ] (T > 0 ∞ , (1 + ǫ)u(., t + τ ) ≥ u 0 (., t). (4.18) arbitrary) and ρ(x) ≤ δ * . Furthermore lim t→0 max{(u 0 (x, t) -(1 + ǫ)u(x, t + τ )) + : ρ(x) ≥ δ * } = 0 (1 + ǫ)u(., t + τ ) ≥ (1 + ǫ)v 0 G δǫ,R ′ because of (2.6 ). Since (u 0

.17) Therefore v 0 (., t + τ ) ≤ u(., t + τ ) ≤ v 0 (., t + τ ) + ǫv 0 (., t + 2τ ),

The same argument as the one used in the proof of Corollary 4.3 implies that t → u µ (x, t) is increasing, therefore lim x→0 u µ (x, t) = ∞ for t > 0. This implies lim r→0 h(r) = ∞. Then the proof of (5.3 ) follows from [START_REF] Marcus | Semilinear parabolic equations with measure boundary data and isolated singularities[END_REF]Appendix]. When r → 0, h could have two possible behaviours [START_REF] Véron | Singular solutions of some nonlinear elliptic equations[END_REF]:

(ii) or there exists c ≥ 0 such that

where m N (r) is the Newtonian kernel if N ≥ 2 and m 1 (r) = 1 + o(1). If (ii) were true with c > 0 (the case c = 0 implying that h = 0 because of the behavior at ∞ and maximum principle), it would lead to

for all t > 0. Therefore

for any ǫ > 0 and k ∈ (0, ∞]. We write (5.5 ) under the form

where g k = -u q kµ , then u kµ = u ′ kµ + u ′′ k , where

Because of (5.16 ) u ′′ k remains uniformly bounded in L 1 (B 1 × (ǫ, T ). This clearly contradicts lim k→∞ u ′ kµ = ∞. Thus (5.4 ) holds. The proof of uniqueness is an easy adaptation of [7, Lemma 1.1]: the fact that the domain is not bounded being compensated by the strong decay estimate (5.3 ). This unique solution is denoted by V N and h = H N .