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On uniqueness of large solutions of nonlinear

parabolic equations in nonsmooth domains

Waad Al Sayed Laurent Véron

Laboratoire de Mathématiques et Physique Théorique,

Université François Rabelais, Tours, FRANCE

Abstract We study the existence and uniqueness of the positive solutions of the problem (P):

∂tu − ∆u + uq = 0 (q > 1) in Ω × (0,∞), u = ∞ on ∂Ω × (0,∞) and u(., 0) ∈ L1(Ω), when Ω is

a bounded domain in R
N . We construct a maximal solution, prove that this maximal solution is

a large solution whenever q < N/(N − 2) and it is unique if ∂Ω = ∂Ω
c
. If ∂Ω has the local graph

property, we prove that there exists at most one solution to problem (P).

1991 Mathematics Subject Classification. 35K60, 34.
Key words. Parabolic equations, singular solutions, self-similarity, removable singularities

1 Introduction

Let q > 1 and let Ω be a bounded domain in R
N with boundary ∂Ω := Γ. It has been proved

by Keller [5] and Osserman [11] that there exists a maximal solution u to the stationnary
equation

−∆u + |u|q−1u = 0 in Ω. (1.1)

When 1 < q < N/(N − 2) this maximal solution is a large solution in the sense that

lim
ρ(x)→0

u(x) = ∞ (1.2)

where ρ(x) = dist (x, ∂Ω). Furthermore Véron proves in [12] that u is the unique large
solution whenever ∂Ω = ∂Ω

c
. When q ≥ N/(N − 2) his proof of uniqueness does not apply.

Marcus and Véron prove in [7] that, there exists at most one large solution, provided ∂Ω
is locally the graph of a continuous function. The aim of this article is to extend these
questions to the parabolic equation

∂tu − ∆u + |u|q−1u = 0 in Ω × (0,∞). (1.3)

We are interested into positive solutions which satisfy

lim
t→0

u(., t) = f in L1
loc(Ω), (1.4)

1



where f ∈ L1
loc +(Ω) and

lim
(x,t)→(y,s)

u(x, t) = ∞ ∀(y, s) ∈ Γ × (0,∞). (1.5)

Notice that if the initial and boundary conditions are exchanged, i.e. u(., t) blows-up when
t → 0 and coincides with a locally integrable function on Γ×(0,∞), this problem is associated
with the study of the initial trace, and much work has been done by Marcus and Véron [9] in
the case of a smooth domain. In particular they obtain the existence and uniqueness when
q is subcritical, i.e. 1 < q < 1 + 2/N .

In this article we prove two series of results:

Theorem A Assume q > 1 and Ω is a bounded domain. Then for any f ∈ L1
loc+(Ω) there

exists a maximal solution uf to problem (2.5 ) satisfying (1.4 ). If 1 < q < N/(N − 2), uf

satisfies (1.5 ). At end, if 1 < q < N/(N − 2) and ∂Ω = ∂Ω
c
, uf is the unique solution of

the problem which satisfies (1.5 ).

The proof of uniqueness is based upon the construction of self-similar solutions of (2.5 )
in R

N \ {0}× (0,∞), with a persistent strong singularity on the axis {0}× (0,∞) and a zero
initial trace on R

N \ {0}. This solution, which is studied in Appendix, is reminiscent of the
very singular solution of Brezis, Peletier and Terman [2], although the method of construction
is far different. The uniqueness is a delicate adaptation to the parabolic framework of the
proof by contradiction of [12].

Theorem B Assume q > 1, Ω is a bounded domain and ∂Ω, is locally a continuous graph.
Then for any f ∈ L1

loc +(Ω) there exists at most one solution to problem (2.5 ) satisfying
(1.4 ) and (1.5 ).

For proving this result, we adapt the idea which was introduced in [7] of constructing
local super and subsolutions by small translations of the domain, but the non-uniformity
of the boundary blow-up creates an extra-difficulty. In an appendix we study a self-similar
equation which plays a key-role in our construction,



















H ′′ +

(

N − 1

r
+

r

2

)

H ′ +
1

q − 1
H − |H |q−1 = 0

limr→0 H(r) = ∞
limr→∞ r2/(q−1)H(r) = 0.

(1.6)

We prove the existence and the uniqueness of the positive solution of (1.6 ) when 1 < q <
N/(N − 2) and we give precise asymptotics when r → 0 and r → ∞.

This article is organised as follows: 1- Introduction. 2- The maximal solution 3- The
case 1 < q < N/(N − 2). 4- The local continuous graph property. 5- Appendix.

2 The maximal solution

In this section Ω is an open domain of R
N , with a compact boundary Γ := ∂Ω. If G is

any open subset of R
N and 0 < T ≤ ∞, we denote QG

T := G × (0, T ). If f ∈ L1
loc+(Ω), we
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consider the problem















∂tu − ∆u + |u|q−1u = 0 in QΩ
∞

limt→0 u(., t) = f(.) in L1
loc(Ω)

lim(x,t)→(y,s) u(x, t) = ∞ ∀(y, s) ∈ Γ × (0,∞).

(2.1)

By the next result, we reduce the lateral blow-up condition by a locally uniform one in which
we set ρ(x) = dist (x, Γ).

Lemma 2.1 The following two conditions are equivalent

lim
(x,t)→(y,s)

u(x, t) = ∞ ∀(y, s) ∈ Γ × (0,∞) (2.2)

and
lim

ρ(x)→0
u(x, t) = ∞ uniformly on [τ, T ], (2.3)

for any 0 < τ < T < ∞.

Proof. It is clear that (2.3 ) is equivalent to the fact that (2.2 ) holds uniformly on Γ× [τ, T ].
By contradiction, we assume that (2.2 ) does not hold uniformly for some T > τ > 0. Then
there exists β > 0 such that for any δ > 0, there exist two couples (yδ, sδ) ∈ Γ × [τ, T ] and
(xδ, tδ) ∈ Ω × [τ, T ] such that

|xδ − yδ| + |tδ − sδ| ≤ δ and u(xδ, tδ) ≤ β. (2.4)

Taking δ = 1/n, n ∈ N
∗, we can assume that {δ} is discrete and that yδ → y ∈ Γ and

sδ → s ∈ [τ, T ]. Thus xδ → y and tδ → s. Therefore (2.4 ) contradicts (2.2 ). �

Theorem 2.2 For any q > 1 and f ∈ L1
loc +(Ω), there exists a maximal solution u := uf of

∂tu − ∆u + |u|q−1u = 0 in QΩ
∞ (2.5)

which satisfies
lim
t→0

u(., t) = f(.) in L1
loc(Ω). (2.6)

Proof. Let Ωn be an increasing sequence of smooth bounded domains such that Ωn ⊂
Ωn+1 ⊂ Ω and ∪Ωn = Ω. For each n let un,f be the increasing limit when k → ∞ of the
un,k,f solution of















∂tun,k,f − ∆un,k,f + uq
n,k,f = 0 in QΩn

∞

un,k,f (x, t) = k in ∂Ωn × (0,∞)

un,k,f (x, 0) = fχ
Ωn

in Ωn.

(2.7)

By the maximum principle and a standard approximation argument n 7→ un,k,f is decreasing
thus n 7→ un,f too. The limit uf of the un,f satisfies (2.5 ) and (2.6 ). It is independent
of the exhaustion {Ωn} of Ω. Let u be a positive solution of (2.5 ) in QΩ

∞ which satisfies
(2.6 ). Since the initial trace of u is a locally integrable function, uq ∈ L1

loc(Ω× [0,∞)). By
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Fubini we can assume that, for any n, u ∈ L1
loc(∂Ωn × [0,∞)). Because (u − un,k,f )+ ≤ u

and tends to 0 when k → ∞, it follows by Lebesgue’s theorem that

lim
k→∞

‖(u − un,k,f )+‖L1(∂Ωn×(0,T )) = 0 ∀T > 0.

Applying the maximum principle in Ωn × (0,∞) yields to

u ≤ lim
k→∞

un,k,f = un,f =⇒ u ≤ lim
n→∞

un,f = uf .

�

Theorem 2.3 For any q > 1 and f ∈ L1
loc+(Ω), there exists a minimal nonnegative solution

uf of (2.5 ) in QΩ
∞ which satisfies (2.6 ).

Proof. The scheme of the construction is similar to the one of uf : with the same exhaustion
{Ωn} of Ω, we consider the solution un,0,f solution of















∂tun,0,f − ∆un,0,f + uq
n,0,f = 0 in QΩn

∞

un,0,f(x, t) = 0 in ∂Ωn × (0,∞)

un,0,f(x, 0) = fχ
Ωn

in Ωn.

(2.8)

By the maximum principle, n 7→ un,0,f is increasing and dominated by uf . Therefore it
converges to some solution uf of (2.5 ), which satisfies (2.6 ) as un,0,f and uf do it. Using

the same argument as in the proof of Theorem 2.2, there holds un,0,f ≤ u in QΩn
∞ for a

suitable exhaustion. Thus uf ≤ u. �

Remark. Because of the lack of regularity of ∂Ω, there is no reason for uf (resp uf ) to tend
to infinity (resp. zero) on ∂Ω × (0,∞).

The next statement will be very usefull for proving uniqueness results.

Theorem 2.4 Assume q > 1, f ∈ L1
loc+(Ω) and uf is a nonnegative solution of (2.5 )

satisfying (2.6 ). Then there exists a nonnegative solution u0 of (2.5 ) satisfying

lim
t→0

u0(., t) = 0 in L1
loc(Ω), (2.9)

such that
0 ≤ uf − uf ≤ u0 ≤ uf , (2.10)

and
0 ≤ uf − uf ≤ u0 − u0. (2.11)

Proof. Step 1: construction of u0. The function w = uf − uf is a nonnegative subsolution
of (2.5 ) which satisfies

lim
t→0

w(., t) = 0 in L1
loc(Ω).

Using the above considered exhaustion of Ω, we denote by vn the solution of














∂tvn − ∆vn + vq
n = 0 in QΩn

∞

vn(x, t) = uf − uf in ∂Ωn × (0,∞)

vn(x, 0) = 0 in Ωn.

(2.12)
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By the maximum principle

uf − uf ≤ vn ≤ uf in QΩn
∞ .

Therefore vn+1 ≥ vn on ∂Ωn × (0,∞); this implies that the same inequality holds in QΩn
∞ .

If we denote by u0 the limit of the {vn}, it is a solution of (2.5 ) in QΩ
∞. For any compact

K ∈ Ω, there exists nK and α > 0 such that dist (K, Ωc
n) ≥ α for n ≥ nK therefore vn remains

uniformly bounded on K by Brezis-Friedman estimate [3]. Thus the local equicontinuity of
the vn (consequence of the regularity theory for parabolic equations) implies that u0 satisfies
(2.9 ).

Step 2: proof of (2.11 ). We follow a method introduced in [8] in a different context. For
n ∈ N and k > 0 fixed, we set

Zf,n = uf,n − uf and Z0,n = u0,n − u0,

where we assume that the n are chosen such that uf , u0 ∈ L1
loc(∂Ωn × [0,∞)), and

φ(r, s) =







rq − sq

r − s
if r 6= s

0 if r = s.

By convexity,
{

r0 ≥ s0, r1 ≥ s1

r1 ≥ r0, s1 ≥ s0
=⇒ φ(r1, s1) ≥ φ(r0, s0).

Therefore
φ(uf,n, uf ) ≥ φ(u0,n, u0) in QΩn

T ,

and

0 = ∂t(Zf,n − Z0,n) − ∆(Zf,n − Z0,n) + uq
f,n − uq

f − uq
0,n + uq

0

= ∂t(Zf,n − Z0,n) − ∆(Zf,n − Z0,n) + φ(uf,n, uf )Zf,n − φ(u0,n, u0)Z0,n,

which implies

∂t(Zf,n − Z0,n) − ∆(Zf,n − Z0,n) + φ(uf,n, uf )(Zf,n − Z0,n) ≤ 0.

But Zf,n − Z0,n = 0 in Ωn × {0} and

∫ ∞

0

∫

∂Ωn

|Zf,n − Z0,n| dS dt = 0

by approximations. By the maximum principle Zf,n,k − Z0,n,k ≤ 0. Letting n → ∞ yields
to

uf − uf ≤ u0 − u0,

which ends the proof. �
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3 The case 1 < q < N/(N − 2)

In this section we assume that Ω is a domain of R
N with a compact boundary. We first

prove that the maximal solution is a large solution

Theorem 3.1 Assume 1 < q < N/(N − 2) and f ∈ L1
loc+(Ω) . Then the maximal solution

uf of (2.5 ) in QΩ
T which satisfies (2.6 ) satisfies also (2.3 ).

Proof. In Appendix we construct the self-similar solution V := VN of (2.5 ) in Q
R

N\{0}
∞

which has initial trace zero in R
N \ {0} and satisfies

lim
|x|→0

VN (x, t) = ∞,

locally uniformly on [τ,∞), for any τ > 0. Furthermore VN (x, t) = t−1/(q−1)HN(|x|/
√

t). If
a ∈ ∂Ω, the restriction to Ωn of the function VN (x − a, t) is bounded from above by un,f .
Letting n → ∞ yields to

VN (x − a, t) ≤ uf (x, t) ∀(x, t) ∈ QΩ
∞. (3.1)

If we consider x ∈ Ω and denote by ax a projection of x onto ∂Ω, there holds

t−1/(q−1)HN (ρ(x)/
√

t) = VN (x − ax, t) ≤ uf (x, t). (3.2)

Using (5.2 ), we derive that uf satisfies (2.3 ). �

Theorem 3.2 Assume 1 < q < N/(N − 2), f ∈ L1
loc +(Ω) and ∂Ω = ∂Ω

c
. Then uf is the

unique solution of (2.5 ) in QΩ
T which satisfies (2.6 ) and (2.3 ).

Proof. Assume that uf is a solution of (2.5 ) in QΩ
T such that (2.6 ) and (2.3 ) hold. By

Theorem 2.4 there exists a positive solution u0 with zero initial trace such that

0 ≤ uf − u0 ≤ uf (3.3)

and (2.11 ) are satisfied. Since uf (x, t) ≤ ((q − 1)t)−1/(q−1) (notice that this last expression

is the maximal solution of (2.5 ) in QR
N

∞ ), the function u0 satisfies also (2.3 ). Therefore, it
is sufficient to prove that u0 = u0 := u.

Step 1: bilateral estimates. Since ∂Ω = ∂Ω
c
, for any a ∈ ∂Ω, there exists a sequence

{an} ⊂ Ω
c

converging to a. If u is any solution of (2.5 ) in QΩ
T which satisfies (2.3 ) and

(2.9 ), there holds

VN (x − an, t) ≤ u(x, t) =⇒ VN (x − a, t) ≤ u(x, t).

In particular, if a = ax, we see that u satisfies (3.2 ). In order to obtain an estimate from
above we consider for r < ρ(x) the solution (y, t) 7→ ux,r(y, t) of















∂tux,r − ∆ux,r + uq
x,r = 0 in Q

Br(x)
∞

lim(y,t)→(z,0) ux,r(y, t) = 0 ∀z ∈ Br(x)

lim|x|↑r ux,r(x, t) = ∞ locally uniformly on [τ,∞), for any τ > 0

(3.4)
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Then
u0(y, t) ≤ ux,r(y, t) =⇒ u0(y, t) ≤ ux,ρ(x)(y, t) ∀(y, t) ∈ Q

Bρ(x)(x)
∞ .

In particular, with u0,r = ur,

u0(x, t) ≤ uρ(x)(0, t) = (ρ(x))−2/(q−1)u1(0, t/(ρ(x))2).

Therefore

t−1/(q−1)HN (ρ(x)/
√

t) ≤ u(x, t) ≤ u0(x, t) ≤ (ρ(x))−2/(q−1)u1(0, t/(ρ(x))2). (3.5)

The function s 7→ u1(0, s) is increasing by the same argument as the one of Corollary 4.3
and bounded from above by the unique solution P of

{

−∆P + P q = 0 in B1

lim|x|→1 P (x) = ∞.
(3.6)

Therefore it converges to P locally uniformly in B1 and lim
s→∞

u1(0, s) = P (0). Thus

t/(ρ(x))2 → ∞ =⇒ (ρ(x))−2/(q−1)u1(0, t/(ρ(x))2) ≈ P (0)(ρ(x))−2/(q−1). (3.7)

On the other hand, if t/(ρ(x))2 → ∞, equivalently ρ(x)/
√

t → 0,

t−1/(q−1)HN (ρ(x)/
√

t) ≈ λN,qt
−1/(q−1)(ρ(x)/

√
t)−2/(q−1) = λN,q(ρ(x))−2/(q−1) , (3.8)

by (5.4 ).

Next, in order to obtain an estimate from above of u1(0, s) when s → 0, we compare u1

to a solution uΘ of (2.5 ) in QΘ
∞, where Θ is a polyhedra inscribed in B1; this polyhedra is a

finite intersection of half spaces Γi containing Π. In each of the half space Γi, with boundary
γi, we can consider the solution Wi of (2.5 ) in QΓi

∞ which tends to infinity on γi × (0,∞)
and has value 0 on Γi × {0}. This solution depends only on the distance to γi and t. Thus
it is expressed by the function V1 defined in Proposition 5.1 when N = 1. Moreover, since
a sum of solutions is a super solution,

u1 ≤ uΘ ≤
∑

i

Wi =⇒ u1(0, s) ≤
∑

i

H1(dist (0, γi)/
√

s). (3.9)

We can choose the hyperplanes γi such that for any δ ∈ (0, 1), there exists Cδ ∈ N∗ such
that

u1(0, s) ≤ CδH1((1 − δ)/
√

s). (3.10)

Using (5.3 ) we derive

u(x, t) ≥ cN,q(ρ(x))2/(q−1)−N tN/2−1/(q−1)e−(ρ(x))2/4t,

when ρ(x)/
√

t → ∞, and

u0(x, t) ≤ CH1((1−δ)ρ(x)/
√

t) ≤ C(1−δ)2/(q−1)−1(ρ(x))2/(q−1)−1t1/2−1/(q−1)e−((1−δ)ρ(x))2/4t.
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Therefore, there exists θ > 1 such that

u0(x, t) ≤ C(ρ(x))2/(q−1)−N tN/2−1/(q−1)e−(ρ(x))2/4θt ≤ Cu(x, θt), (3.11)

when ρ(x)/
√

t → ∞. Finally, when m−1 ≤ ρ(x)/
√

t ≤ m for some m > 1, (3.5 ) shows that
(ρ(x))−2/(q−1)u1(0, t/(ρ(x))2) and t−1/(q−1)HN (ρ(x)/

√
t) are comparable. In conclusion,

there exist constants C > P (0)/λN,q > 1 and θ > 1 such that

u(x, t) ≤ u0(x, t) ≤ Cu(x, θt) ∀(x, t) ∈ QΩ
∞. (3.12)

Step 2: End of the proof. Let τ > 0 and C′ > C be fixed. The function

t 7→ uτ (x, t) := C′u(x, t + θτ)

is a supersolution of (2.5 ) in Ω × (0,∞) which satisfies uτ (x, 0) = C′u(x, θτ) > u0(x, τ) by
(3.12 ). Furthermore,

C′u(x, t + θτ) ≥ C′(t + θτ)−1/(q−1)HN (ρ(x)/
√

t + θτ ) = C′λN,q(1 + o(1))(ρ(x))−2/(q−1),

as ρ(x) → 0, locally uniformly for t ∈ [0,∞). Similarly,

u0(x, t + τ) ≤ (ρ(x))−2/(q−1)u1(0, (t + τ)/(ρ(x))2) = P (0)(1 + o(1))(ρ(x))−2/(q−1) ,

as ρ(x) → 0, and also locally uniformly for t ∈ [0,∞). Therefore (u0(x, t) − uτ (x, t))+
vanishes in a neighborhood of ∂Ω × [0, T ] for any T > 0. By the maximum principle

uτ (x, t) ≥ u0(x, t) ∀(x, t) ∈ Ω × (0,∞).

Letting τ → 0 and C′ → C yields to

u(x, t) ≤ u0(x, t) ≤ Cu(x, t) ∀(x, t) ∈ QΩ
∞. (3.13)

The conclusion of the proof is contradiction, following an idea introduced in [8] and de-
velopped by [12] in the elliptic case. We assume u 6= u0, thus u < u0. By convexity the
function

w = u − 1

2C
(u0 − u)

is a supersolution and w < u. Moreover w > w′ := ((1 + C)/2C)u and w′ is a subsolution.
Consequently, there exists a solution u1 of (2.5 ) which satisfies

w′ < u1 ≤ w =⇒ u0 − u1 ≥
(

1 + K−1
)

(u0 − u) in QΩ
∞. (3.14)

Notice that u1 satisfies (2.9 ) and (2.3 ), therefore it satisfies (3.13 ) as u does it. Replacing
u by u1 and introducing the supersolution

w1 = u1 −
1

2C
(u0 − u1)

and the subsolution w′
1 := ((1 + C)/2C)u1 we see that there exists a solution u2 of (2.5 )

such that
w′

1 < u2 ≤ w1 =⇒ u0 − u2 ≥
(

1 + K−1
)2

(u0 − u) in QΩ
∞. (3.15)
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By induction, we construct a sequence of positive solutions uk of (2.5 ), subject to (2.9 )
and (2.3 ) such that

u0 − uk ≥
(

1 + K−1
)k

(u0 − u) in QΩ
∞. (3.16)

This is clearly a contradiction since
(

1 + K−1
)k → ∞ as k → ∞ and u0 is locally bounded

in QΩ
∞. �

4 The local continuous graph property

In this section, we assume that ∂Ω is compact and is locally the graph of a continuous
function, which means that there exists a finite number of open sets Ωj (j = 1, ..., k) such
that Γ ∩ Ωj is the graph of a continuous function. Our main result is the following

Theorem 4.1 Assume q > 1 and f ∈ L1
loc +(Ω). Then there exists at most one positive

solution of (2.5 ) in QΩ
∞ satisfying (2.6 ) and (2.3 ).

Suppose uf satisfies (2.5 ) in QΩ
∞ satisfying (2.6 ) and (2.3 ), then clearly the maximal

solution uf endows the same properties. In order to prove that uf = uf , we can assume
that f = 0 by Theorem 2.4. We denote by u this large solution with zero initial trace. We
consider some j ∈ {1, ..., k}, perform a rotation, denote by x = (x′, xN ) ∈ R

N−1 × R the
coordinates in R

N and represent Γ ∩ Ωj as the graph of a continuous positive function φ
defined in C = {x′ ∈ R

N−1 : |x′| ≤ R}. We identify C with {x = (x′, 0) : |x′| ≤ R} and set

Γ1 = {x = (x′, φ(x′)) : x′ ∈ C},

Γ2 = {x = (x′, xN ) : x′ ∈ ∂C, 0 ≤ xN < φ(x′), },
and

GR = {x ∈ R
N : |x′| < R, 0 < xN < φ(x′)}.

We can assume that GR ⊂ Ω ∪ Γ1,

inf{φ(x′) : x′ ∈ C} = R0 > 0 and sup{φ(x′) : x′ ∈ C} = R1 > R0.

For σ > 0, small enough, we consider φσ ∈ C∞(C) satisfying

φ(x′) − σ/2 ≤ φσ(x′) ≤ φ(x′) + σ/2 ∀x′ ∈ C,

and set
Gσ,R = {x ∈ R

N : |x′| < R, 0 < xN < φσ(x′) − σ}
and

G′
σ,R = {x ∈ R

N : |x′| < R, 0 < xN < φσ(x′) + σ}.
The upper boundaries of Gσ and G′

σ are defined by

Γ1,σ = {x = (x′, φσ(x′) − σ) : x′ ∈ C},

Γ′
1,σ = {x = (x′, φσ(x′) + σ) : x′ ∈ C},
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and the remaining boundaries are

Γ2,σ = {x = (x′, xN ) : x′ ∈ ∂C, 0 ≤ xN ≤ φσ(x′) − σ},

Γ′
2,σ = {x = (x′, xN ) : x′ ∈ ∂C, 0 ≤ xN ≤ φσ(x′) + σ}.

In order to have the monotonicity of the domains, we can also assume

φσ(x′) − σ < φσ′ (x′) − σ′ < φσ′ (x′) + σ′ < φσ(x′) + σ ∀ 0 < σ′ < σ ∀x′ ∈ C, (4.1)

thus, under the condition 0 < σ′ < σ,

Gσ,R ⊂ Gσ′,R ⊂ GR ⊂ G′
σ′,R ⊂ G′

σ,R. (4.2)

The localization procedure is to consider the restriction of u to QGR
∞ := GR × (0,∞), thus

u is regular in GR ∪ Γ2 × [0,∞) and satifies

lim
xN→φ(x′)

u(x′, xN , t) = ∞, (4.3)

uniformly with respect to (x′, t) ∈ C× [τ, T ], for any 0 < τ < T . We construct vσ as solution
of

∂tvσ − ∆vσ + vq
σ = 0 in QGσ,R

∞ := Gσ,R × (0,∞), (4.4)

subject to the initial condition

lim
t→0

vσ(x, t) = 0 locally uniformly in Gσ,R, (4.5)

and the boundary conditions

lim
xN→φσ(x′)−σ

vσ(x′, xN , t) = ∞ ∀(x′, t) ∈ C × (0,∞], (4.6)

uniformly on any set K × [τ, T ], where T > τ > 0 and K is a compact subset of C and

vσ(x, t) = 0 ∀(x, t) ∈ Γ2,σ × [0,∞). (4.7)

We also construct wσ as solution of

∂twσ − ∆wσ + wq
σ = 0 in Q

G′

σ,R

T := G′
σ,R × (0,∞), (4.8)

subject to the initial condition

lim
t→0

wσ(x, t) = 0 locally uniformly in G′
σ,R, (4.9)

and the boundary conditions
{

(i) wσ(x, t) = 0 ∀(x, t) ∈ Γ′
1,σ × [0, T ],

(i′) lim(x,s)→(y,t) wσ(x, t) = ∞ ∀(y, s) ∈ Γ′
2,σ × [0, T ].

(4.10)

The functions vσ and wσ inherit the following properties in which the local graph property
plays a fundamental role, allowing translations of the truncated domains in the xN -direction.
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Lemma 4.2 For σ > σ′ > 0 there holds

vσ′ ≤ vσ in QGσ,R
∞ , (4.11)

wσ′ ≤ wσ in Q
G′

σ′,R
∞ , (4.12)

(i) vσ(x′, xN − 2σ, t) ≤ u(x′, xN , t) in QGR
∞

(ii) u(x′, xN , t) ≤ vσ(x, t) + wσ(x, t) in Q
Gσ,R
∞ .

(4.13)

Proof. The inequalities (4.11 ) and (4.12 ) are the direct consequence of the fact that the
domains Gσ,R and G′

σ′,R are Lipschitz and the functions vσ and wσ are constructed by
approximations of solutions of (2.5 ) with bounded boundary data. For proving (4.13 )-(i),
we compare, for τ > 0, u(x, t − τ) and vσ(x′, xN − 2σ, t) in QGR

∞ . Because u satisfies (2.3
), and vσ(x′, xN − 2σ, 0) = 0 in GR, (4.13 )-(i) follows by the maximum principle. The
proof of (4.13 )-(ii) needs no translation, but the fact that the sum of two solutions is a
supersolution. �

Corollary 4.3 There exist v0 = lim
σ→0

vσ and w0 = lim
σ→0

wσ and there holds

v0 ≤ u ≤ v0 + w0 in QGR
∞ . (4.14)

Moreover, the functions t 7→ v0(x, t) and t 7→ w0(x, t) are increasing on (0,∞), ∀x ∈ GR.

Proof. The first assertion follows from (4.11 )-(4.12 ), and (4.14 ) from (4.13 ). Since v0

is the limit, when σ → 0 of vσ which satisfy equation (4.4 ) in Q
Gσ,R

T , initial condition
(4.5 ) and boundary conditions (4.6 ), (4.7 ), it is sufficient to prove the monotonicity of
t 7→ vσ(., t). Moreover vσ is the limit, when k tends to infinity of the vk,σ solutions of (2.5 )

in Q
Gσ,R

T , which satisfy the same boundary conditions as vσ on Γ2,σ × [0, T ], the same zero
initial condition and

lim
xN→φ(x′)−σ

vk,σ(x′, xN , t) = k.

For τ > 0, we define Vτ by Vτ (x, t) = (vk,σ(x, t) − vk,σ(x, t + τ))+. Because ∂Gσ,R is
Lipschitz and Vτ is a subsolution of (2.5 ) which vanishes on ∂Gσ,R × [0, T ] and at t = 0, it
is identically zero. This implies vk,σ(x, t) ≤ vk,σ(x, t + τ), and the monotonicity property of
v0, by strict maximum principle and letting σ → 0. The proof of the monotonicity of w0 is
similar. �

The key step of the proof is the following result.

Proposition 4.4 Let ǫ, τ > 0. Then there exists δǫ > 0 such that, if we denote

Gδ,R′ = {x = (x′, xN ) : |x′| < R′ and φ(x′) − δ ≤ xN < φ(x′)},

there holds, for R′ < R/
√

N − 1,

w0(x, t) ≤ ǫv0(x, t + τ) ∀(x, t) ∈ Q
Gδ,R′

∞ . (4.15)
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Proof. Using the result in Appendix, we recall that V := V1 is the unique positive and
self-similar solution of the problem















∂tV − ∂zzV + V q = 0 in R+ × R+

limt→0 V (z, t) = 0 ∀z > 0

limz→0 V (z, t) = ∞ ∀t > 0,

(4.16)

and it is expressed by V1(z, t) = t−1/(q−1)H1(x/
√

t), where H1 satisfies (5.2 )-(5.3 ) with
N = 1. We set RN = R/

√
N − 1 so that

C∞ := {x′ = (x1, ..., xN−1) : sup
j≤N−1

|xj | < RN} ⊂ C = {x′ : |x′| ≤ R}

and we define

w̃(x, t) = W (xN , t) +

N−1
∑

j=1

(W (xj − R, t) + W (R − xj , t)).

The function w̃ a super solution in Θ × R
+ where Θ := {(x′, xN ) : x′ ∈ C∞, xN > 0} which

blows up on

{x : xN = 0 , sup
j≤N−1

|xj | ≤ R}
⋃

j≤N−1

{x : xN ≥ 0 , xj = ±R} .

Therefore w0 ≤ w̃ in Q
GRN

T . Moreover w̃(x, t) → 0 when t → 0, uniformly on

G∗
α,R′ := {x = (x1, x2) : |x1| ≤ R′, α ≤ x2 ≤ φ(x1)},

for any α ∈ (0, R0] and R′ ∈ (0, RN). Since for any τ > 0, v0(x, t + τ) → ∞ when

ρ(x) → 0, locally uniformly on [0,∞), and w̃(x, t) remains uniformly bounded on Q
Gδ,R′

∞ ,
for any δ > R0, it follows that for any ǫ > 0 there exists δǫ > 0 such that

w0(x, t) ≤ w̃(x, t) ≤ ǫv0(x, t + τ) ∀(x, t) ∈ Q
Gδǫ,R′

∞ .

�

Proof of Theorem 4.1. Assume u is a solution of (2.5 ) satisfying (2.6 ) and (2.3 ). Then

there holds in Q
Gδǫ,R′

∞ ,

v0(., t) ≤ u(., t) ≤ v0(., t) + ǫv0(., t + τ). (4.17)

Therefore
v0(., t + τ) ≤ u(., t + τ) ≤ v0(., t + τ) + ǫv0(., t + 2τ),

from which follows

(1 + ǫ)u(., t + τ) ≥ (1 + ǫ)v0(., t + τ) ≥ v0(., t) + ǫv0(., t + τ)
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since t 7→ v0(., t) is increasing by Corollary 4.3. The maximal solution u0 satisfies (4.17 )

too; consequently the following inequality is verified in Q
Gδǫ,R′

∞ ,

(1 + ǫ)u(., t + τ) ≥ u0(., t). (4.18)

Since ∂Ω is compact, there exists δ∗ > 0 such that (4.18 ) holds whenever t ∈ [0, T ] (T > 0
arbitrary) and ρ(x) ≤ δ∗. Furthermore

lim
t→0

max{(u0(x, t) − (1 + ǫ)u(x, t + τ))+ : ρ(x) ≥ δ∗} = 0

because of (2.6 ). Since (u0(x, t) − (1 + ǫ)u(x, t + τ))+ is a subsolution, which vanishes at
t = 0 and near ∂Ω × [0, T ], it follows that (4.18 ) holds in QΩ

T . Letting ǫ → 0 and τ → 0
yields to u ≥ u0. �

Remark. The existence of large solutions when q ≥ N/(N − 2) is a difficult problem as it
is already in the elliptic case. We conjecture that the necessary and sufficient conditions,
obtained by Dhersin-Le Gall when q = 2 [4] and Labutin [6] in the general case q > 1,

and expressed by mean of a Wiener type criterion involving the CR
N

2,q′ -Bessel capacity, are
still valid. As in [7], it is clear that if ∂Ω satisfies the exterior segment property and
1 < q < (N − 1)/(N − 3), then u0 is a large solution.

5 Appendix

The proof of this result is based upon the existence of solution of (2.5 ) in Q
R

N\{0}
∞ with a

persistent singularity on {0} × [0,∞).

Proposition 5.1 For any q > 1, there exists a unique positive function V := VN defined in
R+ × R+ satisfying, for any τ > 0















∂tV − ∆V + V q = 0 in Q
R

N\{0}
∞

lim(x,t)→(y,0) V (x, t) = 0 ∀y ∈ R
N \ {0}

lim|x|→0 V (x, t) = ∞ locally uniformly on [τ,∞), for any τ > 0

(5.1)

Then VN (x, t) = t−1/(q−1)HN (|x|/
√

t), where H := HN is the unique positive function
satisfying



















H ′′ +

(

N − 1

r
+

r

2

)

H ′ +
1

q − 1
H − Hq = 0 in R+

limr→0 H(r) = ∞
limr→∞ r2/(q−1)H(r) = 0.

(5.2)

Furthermore there holds

HN (r) = cN,qr
2/(q−1)−Ne−r2/4(1 + O(r−2)) as r → ∞, (5.3)

and
HN (r) = λN,qr

−2/(q−1)(1 + O(r)) as r → 0, (5.4)
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Proof. If we assume 1 < q < N/(N −2), the C2,1,q′ parabolic capacity of the axis {0}×R ⊂
R

N+1 is positive, therefore there exists a unique solution u := uµ to the problem

∂tu − ∆u + |u|q−1u = µ ∈ RN × R, (5.5)

(see [1]) where µ is the uniform measure on {0} × R+ defined by

∫

ζdµ =

∫ ∞

0

ζ(0, t)dt ∀ζ ∈ C∞
0 (RN+1).

If we denote Tℓ[u](x, t) = ℓ2/(q−1)u(ℓx, ℓ2t) for ℓ > 0, then Tℓ leaves the equation (2.5 )
invariant, and Tℓ[uµ] = uℓ2/(q−1)−N µ. If we replace µ by kµ (k > 0), we obtain

Tℓ[ukµ] = uℓ2/(q−1)−N kµ. (5.6)

Moreover, any solution of (2.5 ) in R
N \ {0} × R+ which vanishes on R

N \ {0} × {0} is
bounded from above by the maximum solution u := U of

−∆u + uq = 0 in R
N \ {0}. (5.7)

This is obtained by considering the solution Uǫ of







−∆u + uq = 0 in R
N \ Bǫ

lim
|x|→ǫ

u(x) = ∞.
(5.8)

Actually,

U(x) := lim
ǫ→0

Uǫ(x) = λN,q|x|−2/(q−1) with λN,q :=

[(

2

q − 1

) (

2q

q − 1
− N

)]1/(q−1)

,

(5.9)
an expression which exists since 1 < q < N/(N − 2). If we let k → ∞ in (5.6 ), using the
monotonicity of µ 7→ uµ, we obtain that ukµ → u∞µ, u∞µ ≤ U and

Tℓ[u∞µ] = uℓ2/(q−1)−N∞µ = u∞µ ∀ℓ > 0. (5.10)

This implies that u∞µ is self-similar, that is

u∞µ(x, t) = t−1/(q−1)h(x/
√

t).

Furthermore, h(.) is positive and radial as x 7→ uµ(x, t) is, and it solves

h′′ +

(

N − 1

r
+

r

2

)

h′ +
1

q − 1
h − hq = 0 in R+. (5.11)

Since uµ(x, 0) = 0 for x 6= 0, the a priori bounds ukµ ≤ U , the equicontinuity of the {ukµ}k>0

implies that u∞µ(x, 0) = 0 for x 6= 0; therefore

lim
r→∞

r2/(q−1)h(r) = 0. (5.12)
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The same argument as the one used in the proof of Corollary 4.3 implies that t 7→ uµ(x, t)
is increasing, therefore limx→0 uµ(x, t) = ∞ for t > 0. This implies limr→0 h(r) = ∞. Then
the proof of (5.3 ) follows from [10, Appendix]. When r → 0, h could have two possible
behaviours [13]:

(i) either
h(r) = λN,qr

−2/(q−1)(1 + O(r)), (5.13)

(ii) or there exists c ≥ 0 such that

h(r) = cmN (r)(1 + O(r)), (5.14)

where mN (r) is the Newtonian kernel if N ≥ 2 and m1(r) = 1 + o(1).

If (ii) were true with c > 0 (the case c = 0 implying that h = 0 because of the behavior
at ∞ and maximum principle), it would lead to

u∞µ(x) = c|x|2−N tN−2−1/(q−1)(1 + o(1)) as x → 0, (5.15)

for all t > 0. Therefore
∫ T

ǫ

∫

B1

uq
kµdx dt < C(ǫ), (5.16)

for any ǫ > 0 and k ∈ (0,∞]. We write (5.5 ) under the form

∂tukµ − ∆ukµ = gk + kµ

where gk = −uq
kµ, then ukµ = u′

kµ + u′′
k, where

∂tu
′
kµ − ∆u′

kµ = kµ

and
∂tu

′′
k − ∆u′′

k = gk.

By linearity u′
kµ = ku′

µ. Because of (5.16 ) u′′
k remains uniformly bounded in L1(B1× (ǫ, T ).

This clearly contradicts limk→∞ u′
kµ = ∞. Thus (5.4 ) holds. The proof of uniqueness

is an easy adaptation of [7, Lemma 1.1]: the fact that the domain is not bounded being
compensated by the strong decay estimate (5.3 ). This unique solution is denoted by VN

and h = HN . �
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