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Abstract

Such difficult analyses as disease association studieghveim at mappping genetic variants underlying complex hruma
diseases, rely on high-throughput genotyping technigiitmwever, a shortcoming of these techniques is the genarafio
missing calls. Computational inference of missing dataesgnts a challenging alternative to genotyping again tissing
regions. In this paper, we presesitiPShuttle, an algorithm designed to gain accuracy over a formethod described by
Roberts and co-authorg][(NPUTE). Given ansNPpanel,NPUTE algorithm infers missing data through a single parse, mglyi
on local similarity within sliding windows. InsteadNPShuttle scans aanpPpanel in an iterative bi-directional way, to resolve
missing data with more confidence.






I ntroduction

DNA strings consisting of billion of chemical bases A, T, GlaA constitute the hereditary material stored in the
pairs of chromosomes of eukaryotes. These genetic sequeontin information that influences physical traits,
the likelihood of suffering from disease as well as respaogmthogens, chemicals and other agents. Differences
in individual bases are the most common type of genetic tiaria These genetic differences, called single nu-
cleotide polymorphismss{urs), are detected on chips analyzed through high-througigndtyping techniques.

In the domain of genetical epidemiology, associationsistudttempt to link genetic variants to the risk for spe-
cific illnesses, with the objective of proposing new methoflpreventing, diagnosing, and treating diseases.
Case-control association studies are considered to béntipdest framework to help elucidate the genetic basis of
complex diseases. Such studies deal with populations @lated individuals split into cohorts diagnosed with
the disease of interest and cohorts of unaffected contfidie. issue at stake is identifying genetic determinants
- possibly combinations of determinants - , which shoulduatglate among cases. Amongst various difficulties
likely to introduce a bias in the studies, not a least proliecope with is the presence of undetermiseds, or
"missing calls", in the data generated by genotyping teqes (approximately betweéfi and10%).

There are three alternatives to repeating the genotypimtfiéomissing data, a prohibitive task both in terms of
time and cost: (i) merely dismissing entire rows and colupfrtie SNP panel containing the missing calls is quite
a drastic solution, with a strong impact on the power to detsease-predisposing variants; (ii) inferring missing
data prior to the task of interedtd., disease association study, genetic mapping, (iii) handling missing data
while the task of interest is performed. Indeed, this thiategory amounts to off-line or on-line inference. A
peculiar case may lead to some confusion in minds: standardtgping techniques can not distinguish the two
homologous chromosomes of an individual, therefore ordy'tmphased" genotyped., the combination of the
two homologous haplotypes) is directly observable. Thugmthe task of interest, genotype phasing, applies to
data containing missing calls, two missing-data problemerfer. From now on, we will refer to genotypes as
unphased genotypes.

Various computational methods have been proposed to irdfempute - missing genotypes. Assignment of
the most frequent allele identified to the missing call coned and k-nearest neighbor voting methokisN)
are the most simple. A review of eight methods has been maefgally dedicated to such previous methods,
as well as various regression methodi8]] Other methods implement expectation maximizatiély Bayesian
approachesd], Decision Forest pattern recognitioh?], neural networks 13, 11], as well as Gibbs sampling
combined with tree-based approadh [

Other methods explicitly cope with the haplotype block stuwe of eukaryotic genomes. Empirical studies
have confirmed that over short regions (a few kilobases indrugenome), haplotypes tend to cluster into groups
[5,14], which entails interesting constraints for the corresping genotypes. To inpute missing calls, this feature
is exploited in various ways: entropy measure combined dytiamic programming to partition haplotypes into
blocks [LQ], cluster membership allowed to change continuously alivegchromosome according to a hidden
Markov model B]. In this line, Roberts and co-authors designed a new algoriNnPUTE, which performsNN
imputation in the context of sliding windows modelling hafylpe blocks 7]. Their algorithm deals with SNP
panels where the number of markers is much higher than théeuaf individuals (up td0* in the case of some
chromosomes). The very point centraNBUTE is efficient knowledge management from current window tat nex
one.

Finally, among specific softwares yet also able to handlsimisdata, we mention for illustration methods
dedicated to genotype phasir§] and detection of causal variants that have not been djrgethotyped, in the
framework of association studie3, p].

Thoroughly examining\PUTE, we identified in dependencies between sliding windows anfsing lead to
infer missing calls with more confidence, therefore expers gain of accuracy.



M ethods

Foreword

Beside gaining accuracy due to bi-directional parsing, meadso resolute to design a method which would not
depend on memory availability constraints.To meet thiosdgurpose, we implemented successive loadings
of consecutive "small'sNp blocks during each parsing of trenp panel. Thus, contrary te&PUTE, memory
needs only be allocated for @np block rather than for the wholsnp panel. Therefore, we wish to design a
variant of algorithmNnPUTE, KNNWINOpti, together with a novel algorithranPShuttle. In the following, we
will first briefly describe the original method of Roberts arwauthors. In this occasion, we will highlight the
existence of calculation dependencies between blockseaNk panel. Moreover, thesenp block dependencies
are either backward or forward dependencies, which malesiéisign of software also managisgP block
loading a delicate task. Then we will presemNWinOpti. Finally, the scheme afNPShuttle will be depicted.

The common basic concepts of NPUTE, KNNWINnOpti and SNPShuttle

The input parameters forPUTE algorithm are thesnp panel, loaded as the matrixp[0 .. M — 1][0 .. N — 1]

of M rows (markers) and columns (individuals) and,, the "half-size" of any sliding window. The elements of
the sNP matrix belong to{0, 1, 2}, where0 denotes the allele with major frequency for each genetikerat

is that of the least frequent allele afds the label for "missing data". The key idean#uTE is performing fast
imputation over overlapping sliding windows. In the sequed will respectively denote sub-matrices and rows as
snp[m .. m'|[n .. n'] andsnplm .. m'][n]. snp*[m — L .. m+ L][n .. n’] will refer to a matrix deprived of rown.
Specifically,snp*[m — L .. m + L][0 .. N — 1] will be namedW,,, for conciseness.

The idea central tawPUTE is to infer the missing marker. of some individualn, snp[m][n], "copying" it
from the markern of the nearest neighbour of individua) say individualn,,, in the contexdV,,,. Such contexts
roughly model the concept of haplotype block. Namely,is identified as the individual minimizing a distance
criterion, denoted\, overW,,. Computing the distancA(snp*[m — L .. m + L][n], snp*[m — L .. m + L][n/])
involves comparing the projection of individualsandn’ onto current window\,,, :

A(snp*[m — L .. m + L][n,], snp*[m — L .. m + L][n]) = Ri=m+L A (snpli][n], snpli][n']).

i=m—L,i#m

The distance between markers,,, is merely computed as follows:
Oifi=j
A _m(i,j) =< 24f (i,5) = (0,1) or(i,j) = (1,0) It must be highlighted that in this algorithm, the miss-
lifi=2o0rj=2

ing calls (2”) of the context participate in the distance computation. e denotel/,,, the vector of the
n (n — 1)/2 pairwise mismatch distances between individual projestionto current windowV,,. GivenW,,,,
the Pairwise Mismatch Vector (PMV) relateditd,,,, inference for any missingnp[m][n] is straightforward: con-
sidering only theV — 1 relevant entrieg$n, n’) (n < n’) and(n’,n) (n’ < n) in W,,, the smallest distance with
individual n is identified, say, for individuak,,. Provided thaknp[m][n,] is not missing itself, it is assigned to
snplm][n]. From now on, we will namé® MV (m) the Pairwise Mismatch Vector with(n — 1)/2 entries such
thatPMV (m)[(n,n’)] = A (snp[m][n], snp[m][n’]), (n < n').

For tractability over largesnp panels,NPUTE fully exploits window sliding. The parsing of thene panel
is implemented shifting the current window one range furtiteeach step. Thus, the PMV relative to a window
centered on range: is merely the PMV relative to the previous overlapping wiwdientered on range: — 1,
from which the contribution of range — L — 1 must be substracted and that of ramge- L. must be added (see
Figure2). In addition, note that there afex L + 1 non symmetric windows to be specially processed, among
which2 x L are not symmetric.

However, in the simple case of a symmetric wind®¥,, is not merely computed d¢/,,,_1 — PMV (m —
L —1)+ PMV(m + L). Rowm itself does not contribute to the calculationi®?,,, which is indeed computed
as follows

Wy = W1+ PMV(m—1) — PMV(m) — PMV(m — L —1)+ PMV(m + L).(1)
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Figure 1: Sliding windowsM = 14; L. = 2. Depending on the row: of the sSNPinferred, the sliding window is
either centered om or is non symmetric.

Now all basic concepts common tePUTE, KNNWinOpti and sNPShuttle are settled. However, even the
original algorithm,NPUTE, is not so simple since special care must be taken regardingymmetric windows.
In the sequel, we will proceed gradually in the presentatitthe sketch of the original algorithm, the adaptations
implemented to meet the memory sparing purpose and thedtimebi-directional variant.

Sketch of the original method

The sketch fosNPpanel processing is reminded in Algorithm 1. The algoritimocpsses apart the non symmetric
window 0 (lines1 to 3 ), then runs three loops. First loop (liBg processes non symmetric windowshrough

L — 1 and first symmetric windouL. Third loop (linel8) processes only non symmetric windows— L through

M — 1. General formulg1) (line 14) is adapted to the case of tliewindows successively encompassing an
increasing number of rows (lif@, whereas it is symmetrically tuned to the case offHast windows (line20).

Algorithm L NPUTE(M, N, SNP, L)

Input: M, the number of genetic marker®], the number of individuals; a matri@NP[0 .. M — 1][0 .. N — 1] of known markers (belonging t§0, 1})
and missing marker=j, each column corresponding to a given individda/:half-size of a sliding window.
Output: matrix SN'P, where each previously missing val2és now replaced with eithey or 1.
1: W «— sum_of_PMVs_from_to(1, L)
2! inference_of_missing_markers_for_range(0)
3: previous_PMYV «— compute_PMV (0)
4
5. form=1toL /I Loopr |
6: (1) current_PMV «— compute_PMV (m)
7. W — W + previous_PMV — current_PMV + compute_PMV (m + L)
8: (2) previous_PMV «— current_PMV
: inference_of_missing_markers(W)
10: endfor
11:
12: form =L+ 1toM — L — 1 // Loor Il
13: processasin (1)
14: W — +W + previous_PMV — current_PMV + compute_ PMV (m + L) — compute PMV(m — L — 1)
15 process asin (2)
16: endfor
17
18: form =M — LtoM — 1 /I Loor Il
19: process asin (1)
20: W «— +W + previous_PMV — current_PMV — compute_ PMV (m — L — 1)
21: processasin (2)
22: endfor
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Management of backward and forward dependencies for the purpose of memory sparing

Before adaptingNpPblock loading to the previous algorithm, a remark is impgeatin line 14 of Algorithm 1, due

to backward dependenciestrpute_ PMV (m — L — 1)) and forward dependenciesnpute_ PMV (m + L)),

the computation ofVs is not optimized. IndeedPMV (m + L) will be computed again as a contribution to
Wi+r (line 13 referring to line6). Similarly, PMV (m — L — 1) (line 14) has already been computed since it
had to be dismissed frofV,,,_r_; as "current_PMV". These remarks point out that the memaorization should
not restrain to the single last PMV vector calculated (life$5 and21 in algorithm ), but should extend to the
latest, PMVs computed instead. Moreover, similarly, forward degenties will be accounted for through the
memorization of the, PMVs relative to the highest row numbers calculated.

It now remains to combine such dependency management weitbakling of successiv@npPblocks of R rows
(R is an input parameter). The sketch of this novel versiomyWinOpti, is described in Algorithm 2. Since
the combination of the two modifications (dependency mameg, SNP block loading) brings complexity in the
description of the novel version, we will carefully commaérin the following.

In the original version, two PMVs are computed for row PMV (m + L) andPMV (m — L — 1) (Algo. 1,
line 14). Instead, in novel Algo. 2PMV (m + L) is computed (liné 2) and stored in the FIF@® MV _forward
(line 13) for further reuse (lin@5 referring to linel 1). Besides, when it is time to infer missing data in a given,row
not only is the PMV relative to this row available as head d&FGIPMV _forward (line 25 referring to linell),
its update after inference is added to FIFQ/V _backward (line 27 pointing to linel6) so that it may be reused
asPMV(m' — L — 1), the head of the previous FIFO at the time of inference formowm’ = m + L + 1), at
line 26. Figure3 A shows on a simple example how the two FIFO lists are synéhedn Finally, thesnp block
loading manager (linex3 and32) ensures that row+ L was also loaded for last roiin each newly loaded block
of LooP Il. The preliminary loading of a block df x L + 1 rows, required by inference of rovandLooPr |, is
crucial to the whole synchronization of te&rblock loading manager with the inferring process under Wate
thatLooP Il does not refer to forward dependencies. Figiillustrates the synchronization between inference
and block loading.

Depending on the number of rows involvediuoor Il, the last iteration in this loop may require the loading
of less thanR rows, which explains a special (trivial) treatment (lif@sand31 to 34).

A PMV_forward | PMV_backward
o 12 { B time
2
N 23 1 2o i///%
34 12 toop loop I ! ////%
2 2 ///%
R 45 123 3 %
23 a7
56 234 5
4 34 loop II 6
. 67 345 loop II 7
45 8
9 %
112 8910 10 %
1 1213 91011 Loop TII 12 % | -
— & .
12
o m L loop III SNP row loading
13 {3 - SNP row inference

Figure 2:A Synchronization of forward and backward FIFO li®@sSynchronization ofNPblock loading manager
and missing data inferenc&®f = 14; L = 2; R = 4.
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Algorithm 2 K NNWinOpti(M, N, SNP, L, R)

Input and Output: in addition to those of algorithm , input paramefey size of theS NV P blocks to be successively loaded

Auxiliary variables:
PMV _backward, PMV _forward: two FIFO lists initialized as empty lists

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

. endfor

41

NNRERERRRR R R R
POOONOURWNROLINDTRWNE

: SNP « load_next_ranges(2L + 1)
W 0
ifori=1to L

PMYV «— compute_PMV (i); add_queue(PMV _forward, PMV);W «— W + PMV

endfor

D current_PMYV _inferred «— inference_of_missing_markers(W) inference for row 0
. add_queue(PMV _backward, current_PMYV _inferred)

I previous_ PMV «— current_PMV _inferred

fori=1to L /I LooP |

(1) current_PMYV «— remove_head(PMYV _forward)
PMV_forward_aux < compute_ PMV(m + L)
add_queue(PMV_forward, PMV_forward_aux)

W — W + previous_PMV — current_PMV + PMV _forward_aux

(2) current_PMV _inferred <« inference_of_missing_markers(W)
add_queue(PMV_backward, current_PMV_inferred)
previous_PMYV «— current_PMYV _inferred

. endfor

I (nb_loadings, lastIter Apart, rest) < compute_nb_SN P_block_loadings()

fori = 1tonb_loadings /I Loor Il
SNP « load_next_ranges(R)
forj=1toR
process as in (1)
W — W + previous_PMV — current_PMV + PMV _forward_aux — remove_head(PMV _backward)
process as in (2)
endfor
endfor

if lastIter Apart /I Loor Il (end)

SNP «— load_next_ranges(rest)

process as in lines 23 through 27 (withrest instead of r)
endif

form =1toL /I Loop 1N
current_PMV « remove_head(PMV _forward)
W — W + previous_ PMV — current_PMYV — remove_head(PMV _backward)
current_PMV _inferred «— inference_of_missing_markers(W)
previous_PMV «— current_PMYV _inferred
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| terative bi-directional inference

In their method, Roberts and co-authors use a specific dattste, a mismatch accumulator array MMA, which
is computed before performing inference. To be short, pthe same role ifl’ computation as the PMV vectors
aforementioned. However, since the MMA is calculated ofé] the inference for rown will not benefit from
the inference for rows of lower ranks. That is, in all caseenehtistance\,, (i, j) is approximated as if 4 or j

is equal to2, an update would possibly lead to a refined distahoe 1. We took this remark into account when
designing Algorithm 2, which is therefore not a simple ti@istion of Roberts and co-workers’ method merely
augmented with block loading and FIFO list management. éddeve are careful that any newly inferred row is
added to theP MV _backward list (line 15), so that the inference might be more accurate.

Moreover, this update concern allows further optimizatibmas of no consequence for Robegtsal. to scan
the sNPpanel from top to bottonm®) or from bottom to top&T) since contexiV,,, did not account of the results
of previous inference for rows: — L to m — 1. Nonetheless, it is attractive to confront the result afsascan
with that of aBT scan, in order to resolve the missiagrs with more confidence, which is implemented in our
second versiorsNPShuttle. Thus, angNPinferred as the same allele identifier by successiandBT scans can
be fixed. Any uncertaisNP will remain tagged as "missing"” until a further iteratiorelgls identicalrs andsT
results. The entire process is to be iterated until a minpeatentage of missing data remains uncertain or until
a maximal number of iterations is reached. T panel is successively cleared from its missing calls, istart
with the markers easiest to guess and enriching the contextrs more difficult to infer.

Algorithm 3 presents the scheme sfiPShuttle. At line4, the call totop_to_bottom_scan procedure is
actually a call tokNNWInOpti. Similarly, callbottom_to_top_scan is applied on the currerginpP panel inverted
row per row.

Algorithm 3 SNPShuttle(M,N,SNP,L, R, T)

Input and Output: in addition to those of algorithm , input parametespecifies the minimal percentage of missing data allowedrt@am uncertain

1: modified < true; percentage_of_non_solved_SN Ps < 100
2: while(modified and (percentage_of_non_solved_SN Ps > 7))

3. modified +— false

4: TB_inferred_SNPs « top_to_bottom_scan(SN P)
5. BT_inferred_SNPs < bottom_to_top_scan(SN P)
6: solved_SNPs «+ compare(TB_inferred_SN Ps, BT_inferred_SN Ps)
7. if (solved_SN Ps is not empty)

8: updateWith(SN P, solved_SNPs)

9: update(percentage_of_non_solved_SN Ps)

10: modified «— true

11: endif

12: endwhile

Conclusion

Roberts and co-authors precursory work provided a prognisasis to gain accuracy with a simple algorithm. In
this paper, we proposed a novel algorithm, based on iterbiidirectional parsing aiNPpanels. We are currently
implementing the two algorithmgNNWinOpti andsnpPShuttle. Also do we have to adaptinWinOpti (the core

of sNPShuttle) to obtain pre-processing software dedicated@ddbntification of the optimized window "half-
size" L (the corresponding accuracy is computed for all non missiagkers, temporarily considered as missing
calls and inferred). As chip resolution increase will alise the number of SNPs available for each chromosome,
it is crucial to implement SNP block loading, as we plan toifithe software is intended to run on on standard
computer. Finally, one of our future tasks is more thoroygi¥amining the idea of benefitting from previously
inferred missing calls, locally relying on regions of higinedjty.
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