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 when the target distribution is sub-exponential in the tails.

Introduction

This paper deals with the convergence of Adaptive Markov Chain Monte Carlo (AM-CMC). Markov Chain Monte Carlo (MCMC) is a well known, widely used method to sample from arbitrary probability distributions. One of the major limitation of the method is the difficulty in finding sensible values for the parameters of the Markov kernels. Adaptive MCMC provides a general framework to tackle this problem where the parameters are adaptively tuned, often using previously generated samples. This approach generates a class of stochastic processes that is the object of this paper.

Denote π the probability measure of interest on some measure space (X, X ). Let {P θ , θ ∈ Θ} be a family of φ-irreducible and aperiodic Markov kernels each with invariant distribution π. We are interested in the class of stochastic processes based on non-homogeneous Markov chains {(X n , θ n ), n ≥ 0} with transition kernels { P (n; (x, θ); (dx ′ , dθ ′ )) , n ≥ 0} satisfying Θ P (n; (x, θ); (•, dθ ′ )) = P θ (x, •). Often, these transition kernels are of the form {P θ (x, dy)δ Hn(θ,y) (dθ ′ ), n ≥ 0} where {H l , l ≥ 0} is a family measurable functions, H l : Θ × X → Θ. The stochastic approximation dynamic corresponds to the case H l (θ, x) = θ + γ l H(θ, x). In this latter case, it is assumed that the best values for θ are the solutions of the equation H(θ, x)π(dx) = 0. Since the pioneer work of [START_REF] Gilks | Adaptive Markov chain Monte Carlo through regeneration[END_REF]; [START_REF] Holden | Adaptive chains[END_REF]; [START_REF] Haario | An adaptive Metropolis algorithm[END_REF]; [START_REF] Andrieu | Controlled MCMC for optimal sampling[END_REF], the number of AMCMC algorithms in the literature has significantly increased in recent years. But despite many recent works on the topic, the asymptotic behavior of these algorithms is still not completely understood. Almost all previous works on the convergence of AMCMC are limited to the case when each kernel P θ is geometrically ergodic (see e.g.. [START_REF] Roberts | Coupling and ergodicity of adaptive MCMC[END_REF]; [START_REF] Andrieu | On the ergodicity properties of some adaptive MCMC algorithms[END_REF]). In this paper, we weaken this condition and consider the case when each transition kernel is sub-geometrically ergodic.

More specifically, we study the ergodicity of the marginal {X n , n ≥ 0} i.e. the convergence to π of the distribution of X n irrespective of the initial distribution, and the existence of a strong law of large numbers for AMCMC.

We first show that a diminishing adaptation assumption of the form |θ n -θ n-1 | → 0 in a sense to be made precise (assumption B1) together with a uniform-in-θ positive recurrence towards a small set C (assumptions A1(i) and A1(iii)) and a uniform-in-θ ergodicity condition of the kernels {P θ , θ ∈ Θ} (assumption A1(ii)) are enough to imply the ergodicity of AMCMC.

We believe that this result is close to be optimal. Indeed, it is well documented in the literature that AMCMC can fail to be ergodic if the diminishing assumption does not hold (see e.g. [START_REF] Roberts | Coupling and ergodicity of adaptive MCMC[END_REF] for examples). Furthermore, the additional assumptions are also fairly weak since in the case where Θ is reduced to the single point {θ ⋆ } so that {X n , n ≥ 0} is a Markov chain with transition kernel P θ⋆ , these conditions hold if P θ⋆ is an aperiodic positive that is polynomially ergodic.

We then prove a strong law of large numbers for AMCMC. We show that the diminishing adaptation assumption and a uniform-in-θ polynomial drift condition towards a small set C of the form P θ V ≤ V -cV 1-α + b½ C (x), α ∈ (0, 1), implies a strong law of large number for all real-valued measurable functions f for which sup

X (|f |/V β ) < ∞, β ∈ [0, 1 -α).
This result is close to what can be achieved with Markov chains (with fixed transition kernel) under similar conditions [START_REF] Meyn | Markov chains and stochastic stability[END_REF]).

On a more technical note, this paper makes two key contributions to the analysis of AMCMC. Firstly, to study the ergodicity, we use a more careful coupling technique which extends the coupling approach of [START_REF] Roberts | Coupling and ergodicity of adaptive MCMC[END_REF]. Secondly, we tackle the law of large numbers using a resolvent kernel approach together with martingales theory. This approach has a decisive advantage over the more classical Poisson equation approach [START_REF] Andrieu | On the ergodicity properties of some adaptive MCMC algorithms[END_REF]) in that no continuity property of the resolvent kernels is required. It is also worth noting that the results developed in this paper can be applied to adaptive Markov chains beyond Markov Chain Monte Carlo simulation provided all the transition kernels have the same invariant distribution.

The remainder of the paper is organized as follows. In Section 2 we state our assumptions followed by a statement of our main results. Detailed discussion of the assumptions and some comparison with the literature are provided in Section 2.4. We apply our results to the analysis of the Adaptive Random Walk Metropolis algorithm of [START_REF] Haario | An adaptive Metropolis algorithm[END_REF] when the target distribution is sub-exponential in the tails. This is covered in Section 3 together with a toy example taken from [START_REF] Atchade | On adaptive Markov chain Monte Carlo algorithm[END_REF]. All the proofs are postponed to Section 4.

Statement of the results and discussion

2.1. Notations. For a transition kernel P on a measurable general state space (T, B(T)), denote by P n , n ≥ 0, its n-th iterate defined as P 0 (x, A) If µ is a signed measure on a measurable space (T, B(T)), the total variation norm µ TV is defined as

µ TV def = sup {f,|f | 1 ≤1} |µ(f )| = 2 sup A∈B(T) |µ(A)| = sup A∈B(T) µ(A) -inf A∈B(T) µ(A) ;
and the V -norm, for some function V : T → [1, +∞), is defined as µ

V def = sup {g,|g| V ≤1} |µ(g)|.
Let X, Θ be two general state space resp. endowed with a countably generated σ-field X and B(Θ). Let {P θ , θ ∈ Θ} be a family of Markov transition kernels on (X, X ) such that

for any (x, A) ∈ X × X , θ → P θ (x, A) is measurable. Let { P (n; •, •), n ≥ 0} be a family of transition kernels on (X × Θ, X ⊗ B(Θ)), satisfying for any A ∈ X , A×Θ P n; (x, θ); (dx ′ , dθ ′ ) = P θ (x, A) . (1) 
An adaptive Markov chain is a non-homogeneous Markov chain

{Z n = (X n , θ n ), n ≥ 0} on X × Θ with transition kernels { P (n; •; •), n ≥ 0}.
Among examples of such transition kernels, consider the case when {(X n , θ n ), n ≥ 0} is obtained through the algorithm: given (X n , θ n ), sample X n+1 ∼ P θn (X n , •) and set

θ n+1 = θ n with probability 1 -p n+1 or set θ n+1 = Ξn+1 (X n , θ n , X n+1 ) with probability p n+1 . Then P n; (x, θ); (dx ′ , dθ ′ ) = P θ (x, dx ′ ) (1 -p n+1 ) δ θ (dθ ′ ) + p n+1 δ Ξn+1 (x,θ,x ′ ) (dθ ′ ) .
A special case is the case when p n+1 = 1 and θ n+1 = H n+1 (θ n , X n+1 ), where {H l , l ≥ 0} is a family of measurable functions H l : Θ × X → Θ. Then,

P n; (x, θ); (dx ′ , dθ ′ ) def = P θ (x, dx ′ ) δ H n+1 (θ,x ′ ) (dθ ′ ) .
Such a situation occurs for example if θ n+1 is updated following a stochastic approximation dynamic:

θ n+1 = θ n + γ n+1 H(θ n , X n+1 ).
From { P (n; •, •) , n ≥ 0} and for any integer l ≥ 0, we introduce a family -indexed by l -of sequence of transition kernels { Pl (n; x,θ and E (l)

x,θ the probability and expectation on the canonical space (Ω, F) of the canonical non-homogeneous Markov chain {Z n = (X n , θ n ), n ≥ 0} with transition kernels { Pl (n; •; •), n ≥ 0} and initial distribution δ (x,θ) . We denote by θ the shift operator on Ω and by {F k , k ≥ 0} the natural filtration of the process {Z k , k ≥ 0}. We use the notations P x,θ and E x,θ as shorthand notations for P (0)

x,θ and E

(0) x,θ . Set D(θ, θ ′ ) def = sup x∈X P θ (x, •) -P θ ′ (x, •) TV .
2.2. Convergence of the marginals. We assume that minorization, drift conditions and ergodicity are available for P θ uniformly in θ. For a set C, denote by τ C the return-time

to C × Θ : τ C def = inf{n ≥ 1, X n ∈ C}.
A1 There exist a measurable function V : X → [1, +∞) and a measurable set C such that (i) sup l sup C×Θ E (l)

x,θ [r(τ C )] < +∞ for some non-decreasing function r : N → (0, +∞) such that n 1/r(n) < +∞.

(ii) there exist a probability measure π such that

lim n→+∞ sup x∈X V -1 (x) sup θ∈Θ P n θ (x, •) -π TV = 0 . (iii) sup θ P θ V ≤ V on C c and sup C×Θ {P θ V (x) + V (x)} < +∞.
B1 There exist probability distributions ξ 1 , ξ 2 resp. on X, Θ such that for any ǫ > 0,

lim n P ξ 1 ,ξ 2 (D(θ n , θ n-1 ) ≥ ǫ) = 0.
Theorem 2.1. Assume A1 and B1. Then

lim n→+∞ sup {f,|f | 1 ≤1} |E ξ 1 ,ξ 2 [f (X n ) -π(f )]| = 0 .
Sufficient conditions for A1 to hold are the following uniform-in-θ conditions A2 (i) The transition kernels P θ are φ-irreducible, aperiodic.

(ii) There exist a function V : X → [1, +∞), α ∈ (0, 1) and constants b, c such that for any θ ∈ Θ

P θ V (x) ≤ V (x) -c V 1-α (x) + b½ C (x) .
(iii) For any level set D of V , there exist ǫ D > 0 and a probability ν D such that for any θ, P θ (x,

•) ≥ ǫ D ½ D (x) ν D (•).
We thus have the corollary Corollary 2.2. (of Theorem 2.1) Assume A2 and B1. Then

lim n→+∞ sup {f,|f | 1 ≤1} |E ξ 1 ,ξ 2 [f (X n ) -π(f )]| = 0 .
Assumption A1(i) and A1(iii) are designed to control the behavior of the chain "far from the center". When the state space X is "bounded" so that for example, V = 1 in A1(ii), then we have the following result Lemma 2.3. If there exists a probability measure π such that lim n→+∞ sup X×Θ P n θ (x, •)π(•) TV = 0, then A1(i) and A1(iii) hold with a bounded function V and C = X.

Combining the assumptions of Lemma 2.3 and B1, we deduce from Theorem 2.1 the convergence of the marginals. This result coincides with (Roberts and Rosenthal, 2007, Theorem 5). As observed by Bai (2008) (personal communication), assumption A2 also imply the "containment condition" as defined in [START_REF] Roberts | Coupling and ergodicity of adaptive MCMC[END_REF]. Consequently, Corollary 2.2 could also be established by applying (Roberts and Rosenthal, 2007, Theorem 13): this would yield to the following statement, which is adapted from [START_REF] Bai | The simultaneous drift conditions for Adaptive Markov Chain Monte Carlo algorithms[END_REF]. Define M ǫ (x, θ)

def = inf{n ≥ 1, P n θ (x, •) -π(•) TV ≤ ǫ}.
Proposition 2.4. Assume A2 and B1. Then for any ǫ > 0, the sequence {M ǫ (X n , θ n ), n ≥ 0} is bounded in probability for the probability P ξ 1 ,ξ 2 and

lim n→+∞ sup {f,|f | 1 ≤1} |E ξ 1 ,ξ 2 [f (X n ) -π(f )]| = 0 .

Strong law of large numbers. Assumptions A1 and B1 are strengthened as follows

A3 There exist a probability measure ν on X, a positive constant ε and a set C ∈ X such that for any θ ∈ Θ,

P θ (x, •) ≥ ½ C (x) εν(•).
A4 There exist a measurable function V : X → [1, +∞), 0 < α < 1 and positive constants b, c such that for any θ ∈ Θ,

P θ V ≤ V -c V 1-α + b½ C .
A5 There exist a probability measure π and some 0 ≤ β < 1 -α such that for any x,θ (D(θ n , θ n-1 ) ≥ ǫ) = 0 .

level set D def = {x ∈ X, V (x) ≤ d} of V , lim n→+∞ sup D×Θ P n θ (x, •) -π V β = 0 .
Theorem 2.5. Assume A3-5 and B2. Then for any measurable function f : X → R in

L V β and any initial distribution ξ 1 , ξ 2 resp. on X, Θ such that ξ 1 (V ) < +∞, lim n→+∞ n -1 n k=1 f (X k ) = π(f ) , P ξ 1 ,ξ 2 -a.s.
As in the case of the convergence of the marginals, when A5 and B2 hold with D = X and β = 0, A3 and A4 can be omitted. We thus have Proposition 2.6. Assume that A5 and B2 hold with D = X and β = 0. Then for any measurable bounded function f : X → R and any initial distribution

ξ 1 , ξ 2 resp. on X, Θ lim n→+∞ n -1 n k=1 f (X k ) = π(f ) , P ξ 1 ,ξ 2 -a.s.
2.4. Discussion.

2.4.1. Non-adaptive case. We start by comparing our assumptions to assumptions in Markov chain theory under which the law of large numbers hold. In the setup above, taking Θ = {θ ⋆ } and H(θ ⋆ , x) = θ ⋆ reduces {X n , n ≥ 0} to a Markov chain with transition kernel P θ⋆ . Assume that P θ⋆ is Harris-recurrent.

In that case, a condition which is known to be minimal and to imply ergodicity in total variation norm is that P θ⋆ is an aperiodic positive Harris recurrent transition kernel (Meyn and Tweedie, 1993, Theorems 11.0.1 and 13.0.1). Condition A1(i) is stronger than positive Harris recurrence since it requires sup C E x [r(τ C )] < +∞ for some rate r, r(n) >> n. Nevertheless, as discussed in the proof (see remark 2, Section 4), the condition n {1/r(n)} < +∞ is really designed for the adaptive case. A1(ii) is stronger than what we want to prove (since A1(ii) implies the conclusion of Theorem 2.1 in the non-adaptive case); this is indeed due to our technique of proof which is based on the comparison of the adaptive process to a process -namely, a Markov chain with transition kernel P θwhose stationary distribution is π. Our proof is thus designed to address the adaptive case. Finally, B1 is trivially true.

For the strong law of large numbers (Theorem 2.5), B2 is still trivially true in the Markovian case and A5 is implied by A3 and A4 combined with the assumption that P θ⋆ is φ-irreducible and aperiodic (see Appendix A and references therein). In the Markovian case, whenever P θ⋆ is φ-irreducible and aperiodic, A3 and A4 are known sufficient conditions for a strong law of large numbers for f ∈ L V 1-α , which is a bit stronger than the conclusions of Theorem 2.5. This slight loss of efficiency is due to the technique of proof based on martingale theory (see comments Section 2.4.5). Observe that in the geometric case, there is the same loss of generality in (Andrieu and Moulines, 2006, Theorem 8).

More generally, any proof of the law of large numbers based on the martingale theory (through for example the use of the Poisson's equation or of the resolvent kernel) will incur the same loss of efficiency since limit theorems exist only for L p -martingale with p > 1.

2.4.2. Checking assumptions A1(ii) and A5. A1(ii) and A5 are the most technical of our assumptions. Contrary to the case of a single kernel, the relations between A1(ii) (resp. A5) and A1(i)-A3 (resp. A3, A4) are not completely well understood. Nevertheless these assumptions can be checked under conditions which are essentially of the form A3, A4 plus the assumptions that each transition kernel P θ is φ-irreducible and aperiodic, as discussed in Appendix A.

2.4.3. On the uniformity in θ in assumptions A1(i), A1(ii), A3 and A4. We have formulated A1(i), A1(ii), A3 and A4 such that all the constants involved are independent of θ, for θ ∈ Θ. Intuitively, this corresponds to AMCMC algorithms based on kernels with overall similar ergodicity properties. This uniformity assumption might seem unrealistically strong at first. But the next example shows that when these conditions do not hold uniformly in θ for θ ∈ Θ, pathologies can occur if the adaptation parameter can wander to the boundary of Θ. Example 1. The example is adapted from [START_REF] Winkler | Image analysis, random fields and Markov chain Monte Carlo methods[END_REF]. Let X = {0, 1} and {P θ , θ ∈ (0, 1)} be a family of transition matrices with P θ (0, 0) = P θ (1, 1) = 1 -θ. Let {θ n , n ≥ 0}, θ n ∈ (0, 1), be a deterministic sequence of real numbers decreasing to 0 and {X n , n ≥ 0} be a non-homogeneous Markov chain on {0, 1} with transition matrices {P θn , n ≥ 0}. One can check that D(θ n , θ n-1 ) ≤ θ n-1 -θ n for all n ≥ 1 so that B1 and B2 hold.

For any compact subset K of (0, 1), it can be checked that A1(i), A1(ii), A3 and A4 hold uniformly for all θ ∈ K. But these assumptions do not hold uniformly for all θ ∈ (0, 1). Therefore Theorems 2.1 and 2.5 do not apply. Actually one can easily check

that P x,θ 0 (X n ∈ •) → π(•) as n → ∞, but that E x,θ 0 n -1 n k=1 f (X k ) -π(f ) 2 do not
converge to 0 for bounded functions f . That is, the marginal distribution of X n converges to π but a weak law of large numbers fails to hold.

This raises the question of how to construct AMCMC when A1(i), A1(ii), A3 and A4 do not hold uniformly for all θ ∈ Θ. When these assumptions hold uniformly on any compact subsets of Θ and the adaptation is based on stochastic approximation, one approach is to stop the adaptation or to reproject θ n back on K whenever θ n / ∈ K for some fixed compact K of Θ. A more elaborate strategy is Chen's truncation method which -roughly speaking -reinitializes the algorithm with a larger compact, whenever θ n / ∈ K [START_REF] Chen | Stochastic approximation procedures with randomly varying truncations[END_REF]; [START_REF] Chen | Convergence and robustness of the Robbins-Monro algorithm truncated at randomly varying bounds[END_REF]). A third strategy consists in proving a drift condition on the bivariate process {(X n , θ n ), n ≥ 0} in order to ensure the stability of the process [START_REF] Andrieu | General result for the stability of controlled MCMC[END_REF], see also [START_REF] Benveniste | Adaptive algorithms and Stochastic Approximations[END_REF]). This question is however out of the scope of this paper; the use of the Chen's truncation method to weaken our assumption is addressed in [START_REF] Atchade | Limit theorems for some adaptive MCMC algorithms with subgeometric kernels[END_REF] 

P θ V (x) ≤ λV (x) + b1 C (x), (2) 
for λ ∈ (0, 1), b < ∞ and θ ∈ Θ. [START_REF] Andrieu | On the ergodicity properties of some adaptive MCMC algorithms[END_REF] undertook a thorough analysis of adaptive chains under the geometric drift condition (2) and proved a strong law of large numbers and a central limit theorem. [START_REF] Andrieu | On the efficiency of adaptive MCMC algorithms[END_REF] gives a theoretical discussion on the efficiency of AMCMC under (2). [START_REF] Roberts | Coupling and ergodicity of adaptive MCMC[END_REF] improves on the literature by relaxing the convergence rate assumption on the kernels. They prove the convergence of the marginal and a weak law of large numbers for bounded functions. But their analysis requires a uniform control on certain moments of the drift function, a condition which is easily checked in the geometric case (i.e. when A2 or A4 is replaced with (2)). Till recently, it was an open question in the polynomial case but this has been recently solved by [START_REF] Bai | The simultaneous drift conditions for Adaptive Markov Chain Monte Carlo algorithms[END_REF] -contemporaneously with our work -who proves that such a control holds under conditions which are essentially of the form A2.

Yang ( 2007) tackles some open questions mentioned in [START_REF] Roberts | Coupling and ergodicity of adaptive MCMC[END_REF], by providing sufficient conditions -close to the conditions we give in Theorems 2.1 and 2.5 -to ensure convergence of the marginals and a weak law of large numbers for bounded functions. The conditions in (Yang, 2007, Theorems 3.1 and 3.2) are stronger than our conditions. But we have noted some skips and mistakes in the proofs of these theorems.

2.4.5. Comments on the methods of proof. The proof of Theorem 2.1 is based on an argument extended from [START_REF] Roberts | Coupling and ergodicity of adaptive MCMC[END_REF] which can be sketched heuristically as follows. For N large enough, we can expect P N θn (X n , •) to be within ǫ to π (by ergodicity). On the other hand, since the adaptation is diminishing, by waiting long enough, we can find n such that the distribution of X n+N given (X n , θ n ) is within ǫ to P N θn (X n , •). Combining these two arguments, we can then conclude that the distribution of X n+N is within 2ǫ to π. This is essentially the argument of [START_REF] Roberts | Coupling and ergodicity of adaptive MCMC[END_REF]. The difficulty with this argument is that the distance between P N θn (x, •) and π depends in general on x and can rarely be bounded uniformly in x. We solve this problem here by introducing some level set C of V and by using two basic facts: (i) under A1(i), the process cannot wait too long before coming back in C; (ii) under A1(ii-iii), a bound on the distance between P N θn (x, •) and π uniformly in x, for x ∈ C, is possible. The proof of Theorem 2.5 is based on a resolvent kernel approach that we adapted from [START_REF] Merlevede | Recent advances in invariances principles for stationary sequences[END_REF] (see also [START_REF] Maxwell | Central limit theorems for additive functional of Markov chains[END_REF]), combined with martingale theory. Another possible route to the SLLN is the Poisson's equation technique which has been used to study adaptive MCMC in [START_REF] Andrieu | On the ergodicity properties of some adaptive MCMC algorithms[END_REF]. Under A3 and A4, a solution g θ to the Poisson's equation with transition kernel P θ exists for any

f ∈ L V β , 0 ≤ β ≤ 1 -α and g θ ∈ L V β+α .
But in order to use {g θ , θ ∈ Θ} to obtain a SLLN for f , we typically need to control |g θ -g θ ′ | which overall can be expensive. Here we avoid these pitfalls by introducing the resolvent ĝa (x, θ) of the process

{X n }, defined by ĝ(l) a (x, θ) def = j≥0 (1 -a) j+1 E (l) x,θ [f (X j )] , x ∈ X, θ ∈ Θ, a ∈ (0, 1), l ≥ 0 .

Examples

3.1. A toy example. We first consider an example discussed in [START_REF] Atchade | On adaptive Markov chain Monte Carlo algorithm[END_REF] (see also [START_REF] Roberts | Coupling and ergodicity of adaptive MCMC[END_REF]). Let π be a target density on the integers

{1, • • • , K}, K ≥ 4. Let {P θ , θ ∈ {1, • • • , M }} be a family of Random Walk Metropolis algorithm with proposal distribution q θ , the uniform distribution on {x -θ, • • • , x -1, x + 1, • • • , x + θ}. Consider the sequence {(X n , θ n ), n ≥ 0} defined as follows: given X n , θ n , • the conditional distribution of X n+1 is P θn (X n , •). • if X n+1 = X n , set θ n+1 = max(1, θ n -1) with probability p n+1 and θ n+1 = θ n otherwise; if X n+1 = X n , set θ n+1 = min(M, θ n + 1) with probability p n+1 and θ n+1 = θ n otherwise.
This algorithm defines a non-homogeneous Markov chain -still denoted {(X n , θ n ), n ≥ 0} -on a canonical probability space endowed with a probability P. The transitions of this Markov process are given by the family of transition kernels { P (n; (x, θ), (dx ′ , dθ ′ ), n ≥ 0} where

P (n; (x, θ), (dx ′ , dθ ′ ) = P θ (x, dx ′ ) ½ x=x ′ p n+1 δ 1∨(θ-1) (dθ ′ ) + (1 -p n+1 ) δ θ (dθ ′ ) +½ x =x ′ p n+1 δ M ∧(θ+1) (dθ ′ ) + (1 -p n+1 ) δ θ (dθ ′ ) .
In this example, each kernel P θ is uniformly ergodic : P θ is φ-irreducible, aperiodic, possesses an invariant probability measure π and lim

n sup x∈X P n θ (x, •) -π(•) TV = 0 .
Since Θ is finite, this implies that A1(ii) (resp. A5) hold with V = 1 (resp. D = X and

β = 0). Furthermore, E (l) 
x,θ [D(θ n , θ n+1 )] ≤ 2p n+1 so that B1 (resp. B2) hold with any probability measures ξ 1 , ξ 2 (resp. with D = X) provided p n → 0. By Lemma 2.3 combined with Theorem 2.1, and by Proposition 2.6, we have Proposition 3.1. Assume lim n p n = 0. For any probability distributions ξ 1 , ξ 2 on X, Θ,

(i) sup {f,|f | 1 ≤1} |E ξ 1 ,ξ 2 [f (X n )] -π(f )| → 0 (ii) For any bounded function f n -1 n k=1 f (X k ) → π(f ) , P ξ 1 ,ξ 2 -a.s.
3.2. The adaptive Random Walk Metropolis of [START_REF] Haario | An adaptive Metropolis algorithm[END_REF]. We illustrate our results with the adaptive Random Walk Metropolis of [START_REF] Haario | An adaptive Metropolis algorithm[END_REF]. The Random Walk Metropolis (RWM) algorithm is a popular MCMC algorithm [START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their application[END_REF]; [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF]. Let a target density π, absolutely continuous w.r.t. the Lebesgue measure µ Leb with density still denoted by π. Choose a proposal distribution with density w.r.t. µ Leb denoted q, and assume that q is a positive symmetric density on R p . The algorithm generates a Markov chain {X n , n ≥ 0} with invariant distribution π as follows.

Given

X n = x, a new value Y = x + Z is proposed where Z is generated from q(•). Then we either 'accept' Y and set X n+1 = Y with probability α(x, Y ) def = min (1, π(Y )/π(x)) or we 'reject' Y and set X n+1 = x.
For definiteness, we will assume that q is a zero-mean multivariate Gaussian distribution (this assumption can be replaced by regularity conditions and moment conditions on the proposal distribution). Given a proposal distribution with finite second moments, the convergence rate of the RWM kernel depends mainly on the tail behavior of the target distribution π. If π is super-exponential in the tails with regular contours, then the RWM kernel is typically geometrically ergodic [START_REF] Jarner | Geometric ergodicity of Metropolis algorithms[END_REF]). Otherwise, it is typically sub-geometric (Fort andMoulines (2000, 2003); [START_REF] Douc | Practical drift conditions for subgeometric rates of convergence[END_REF]).

Define

µ ⋆ def = X x π(x) µ Leb (dx) , Σ ⋆ def = X xx T π(x)µ Leb (dx) -µ ⋆ µ T ⋆ ,
resp. the expectation and the covariance matrix of π (• T denotes the transpose operation). Theoretical results suggest setting the variance-covariance matrix Σ of the proposal distribution Σ = c ⋆ Σ ⋆ where c ⋆ is set so as to reach the optimal acceptance rate ᾱ in stationarity (typically ᾱ is set to values around 0.3 -0.4). See e.g. [START_REF] Roberts | Optimal scaling of various Metropolis-Hastings algorithms[END_REF] for more details. [START_REF] Haario | An adaptive Metropolis algorithm[END_REF] have proposed an adaptive algorithm to learn Σ * adaptively during the simulation. This algorithm has been studied in detail in Andrieu and Moulines ( 2006) under the assumption that π is super-exponential in the tails.

An adaptive algorithm to find the optimal value c ⋆ has been proposed in [START_REF] Atchade | On adaptive Markov chain Monte Carlo algorithm[END_REF] (see also [START_REF] Atchade | An adaptive version for the Metropolis adjusted Langevin algorithm with a truncated drift[END_REF]) and studied under the assumption that π is super-exponential in the tails. We extend these results to cases where π is sub-exponential in the tails.

Let Θ + be a convex compact of the cone of p × p symmetric positive definite matrices endowed with the Shur norm

| • | s , |A| s def = Tr(A T A).
For example, for a, M > 0,

Θ + = {A + a Id: A is symmetric positive semidefinite and |A| s ≤ M }. Next, for -∞ < κ l < κ u < ∞ and Θ µ a compact subset of X, we introduce the space Θ def = Θ µ ×Θ + ×[κ l , κ u ].
For θ = (µ, Σ, c) ∈ Θ, denote by P θ the transition kernel of the RWM algorithm with proposal q θ where q θ stands for the multivariate Gaussian distribution with variancecovariance matrix e c Σ.

Consider the adaptive RWM defined as follows Algorithm 3.1. Initialization: Let ᾱ be the target acceptance probability. Choose

X 0 ∈ X, (µ 0 , Σ 0 , c 0 ) ∈ Θ. Iteration: Given (X n , µ n , Σ n , c n ): 1: Generate Z n+1 ∼ q θn dµ Leb and set Y n+1 = X n + Z n+1 . With probabil- ity α(X n , Y n+1 ) set X n+1 = Y n+1 and with probability 1 -α(X n , Y n+1 ), set X n+1 = X n . 2: Set µ = µ n + (n + 1) -1 (X n+1 -µ n ) , (3) 
Σ = Σ n + (n + 1) -1 (X n+1 -µ n ) (X n+1 -µ n ) T -Σ n , (4) 
c = c n + 1 n + 1 (α(X n , Y n+1 ) -ᾱ) .
(5)

3: If (µ, Σ, c) ∈ Θ, set µ n+1 = µ, Σ n+1 = Σ and c n+1 = c. Otherwise, set µ n+1 = µ n , Σ n+1 = Σ n and c n+1 = c n .
This is an algorithmic description of a random process {(X n , θ n ), n ≥ 0} which is a nonhomogeneous Markov chain with successive transitions kernels { P (n; (x, θ), (dx ′ , dθ ′ )), n ≥ 0} given by

P (n; (x, θ), (dx ′ , dθ ′ )) = q θ (z) α(x, x + z)δ x+z (dx ′ ) + (1 -α(x, x + z))δ x (dx ′ ) • • • ½ {φ(θ,x+z,x ′ )∈Θ} δ φ(θ,x+z,x ′ ) (dθ ′ ) + ½ {φ(θ,x+z,x ′ ) / ∈Θ} δ θ (dθ ′ ) dµ Leb (dz)
where φ is the function defined from the rhs expressions of (3) to (5). Integrating over θ ′ , we see that for any A ∈ X ,

A×Θ P (n; (x, θ), (dx ′ , dθ ′ )) = P θ (x, A) .
Lemma 3.2. Assume that π is bounded from below and from above on compact sets. Then any compact subset C of X with µ Leb (C) > 0 satisfies A3.

Proof. See (Roberts and Tweedie, 1996, Theorem 2.2).

Following [START_REF] Fort | V -subgeometric ergodicity for a Hastings-Metropolis algorithm[END_REF]), we assume that π is sub-exponential in the tails:

D1 π is positive and continuous on R p , and twice continuously differentiable in the tails.

D2 there exist m ∈ (0, 1), positive constants d i < D i , i = 0, 1, 2 and r, R > 0 such that for |x| ≥ R:

(i) ∇π(x) |∇π(x)| , x |x| ≤ -r. (ii) d 0 |x| m ≤ -log π(x) ≤ D 0 |x| m , (iii) d 1 |x| m-1 ≤ |∇ log π(x)| ≤ D 1 |x| m-1 , (iv) d 2 |x| m-2 ≤ |∇ 2 log π(x)| ≤ D 2 |x| m-2 .
Examples of target density that satisfies D1-D2 are the Weibull distributions on R with [START_REF] Fort | V -subgeometric ergodicity for a Hastings-Metropolis algorithm[END_REF].

density π(x) ∝ |x| m-1 exp(-β|x| m ) (for large |x|), β > 0, m ∈ (0, 1). Multidimensional examples are provided in

Law of large numbers for exponential functions.

In this subsection, we assume that

D3 there exist s ⋆ > 0, 0 < υ < 1 -m and 0 < η < 1 such that as |x| → +∞, sup θ∈Θ {z,|z|≥η|x| υ } 1 ∨ π(x) π(x + z) s⋆ q θ (z) µ Leb (dz) = o |x| 2(m-1) .
A sufficient condition for D3 is that π(x + z) ≥ π(x)π(z) for any x large enough and |z| ≥ η|x| υ (which holds true for Weibull distributions with 0 < m < 1). Indeed, we then have

{z,|z|≥η|x| υ } 1 ∨ π(x) π(x + z) s⋆ q θ (z)µ Leb (dz) ≤ C exp(-λ ⋆ η 2 |x| 2υ ) sup θ∈Θ exp(s ⋆ D 0 |z| m ) exp(λ ⋆ |z| 2 ) q θ (z)µ Leb (dz)
for some constant C < +∞, and λ ⋆ > 0 such that the rhs is finite.

Lemma 3.3. Assume D1-3. For 0 < s ≤ s ⋆ , define V s (x) def = 1 + π -s (x)
. There exist 0 < s ≤ s ⋆ and for any α ∈ (0, 1), there exist positive constants b, c and a compact set C such that

sup θ∈Θ P θ V s (x) ≤ V s (x) -cV 1-α s (x) + b½ C (x).
Hence A2-5 hold. 

(i) For any probability measures ξ

1 , ξ 2 such that | ln π| 2/m dξ 1 < +∞, sup {f,|f | 1 ≤1} |E ξ 1 ,ξ 2 [f (X n )] -π(f )| → 0 .
(ii) There exists 0 < s ≤ s ⋆ such that for any probability measures ξ 1 , ξ 2 such that |π| -s dξ 1 < +∞, and any function

f ∈ L 1+π -r , 0 ≤ r < s, n -1 n k=1 f (X k ) → π(f ) , P ξ 1 ,ξ 2 -a.s.
The drift function V s exhibited in Lemma 3.3. is designed for limit theorems relative to functions f increasing as exp(β|x| m ). This implies a condition on the initial distribution ξ 1 which has to possess sub-exponential moments (see Proposition 3.5(ii)), which always

holds with ξ 1 = δ x , x ∈ X.
3.2.2. Law of large numbers for polynomially increasing functions. Proposition 3.5 also addresses the case when f is of the form 1 + |x| r , r > 0. Nevertheless, the conditions on ξ 1 and the assumptions D3 can be weakened in that case.

We have to find a drift function V such that V 1-α (x) ∼ 1 + |x| r+ι for some α ∈ (0, 1), ι > 0. Under D3, this can be obtained from the proof of Lemma 3.3. and this yields V (x) ∼ 1 + |x| r+ι+2-m (apply the Jensen's inequality to the drift inequality (24) with the concave function φ(t) ∼ [ln t] (r+ι+2)/m-1 ; see (Jarner and Roberts, 2002, Lemma 3.5) for similar calculations). Hence, the condition on ξ 1 gets into ξ 1 (|x| r+ι+2-m ) < +∞ for some ι > 0.

Drift inequalities with V ∼ (-ln π) s for some s > 2/m -1, can also be derived by direct computations: in that case, D3 can be removed. Details are omitted and left to the interested reader.

To conclude, observe that these discussions relative to polynomially increasing functions can be extended to any function f which is a concave transformation of π -s .

Proofs of the results of Section 2

For a set C ∈ X , define the hitting-time on

C × Θ of {Z n , n ≥ 0} by σ C def = inf{n ≥ 0, Z n ∈ C × Θ}. If π(|f |) < +∞, we set f def = f -π(f ).
4.1. Preliminary results. We gather some useful preliminary results in this section. a (x, θ).

4.1.1. Optimal coupling.

Lemma 4.1. For any integers l ≥ 0, N ≥ 2, any measurable bounded function f on X N and any

(x, θ) ∈ X × Θ, ∆ def = E (l) x,θ [f (X 1 , • • • , X N )] - X N P θ (x, dx 1 ) N k=2 P θ (x k-1 , dx k )f (x 1 , • • • , x n ) ≤ |f | 1 N -1 j=1 j i=1 E (l) x,θ [D(θ i , θ i-1 )] .
Proof. We can assume w.l.g. that |f | 1 ≤ 1. Set z k = (x k , t k ). With the convention that b k=a a k = 1 for a > b and upon noting that

X P θ (x, dx ′ )h(x ′ ) = X×Θ Pl (0; (x, θ), (dx ′ , dθ ′ ))h(x ′ )
for any bounded measurable function h :

X → R, ∆ = (X×Θ) N N -1 j=1 Pl (0; (x, θ), dz 1 ) j k=2 Pl (k -1; z k-1 , dz k ) • • • Pl (j; z j , dz j+1 ) -Pl (0; (x j , θ), dz j+1 ) N k=j+2 Pl (0; (x k-1 , θ), dz k )f (x 1 , • • • , x N ) ≤ N -1 j=1 X j Pl (0; (x, θ), dz 1 ) j k=2 Pl (k -1; z k-1 , dz k ) sup x∈X P t j (x, •) -P θ (x, •) TV
where we used that

(X×Θ) N-j-1 N k=j+2 Pl (0; (x k-1 , θ), dz k )f (x 1 , • • • , x N ) is bounded by a function Ξ(x 1 , • • • , x j+1 ) that does not depend upon t k , k ≤ N and for any bounded function Ξ on X j+1 X×Θ Pl (j; z j , dz j+1 ) -Pl (0; (x j , θ), dz j+1 ) Ξ(x 1 , • • • , x j+1 ) = X P t j (x j , dx j+1 ) -P θ (x j , dx j+1 ) Ξ(x 1 , • • • , x j+1 ) ≤ sup x∈X P t j (x, •)-P θ (x, •) TV |Ξ| 1 . Hence ∆ ≤ N -1 j=1 E (l) x,θ sup x∈X P θ j (x, •) -P θ 0 (x, •) TV ≤ N -1 j=1 E (l) x,θ j i=1 sup x∈X P θ i (x, •) -P θ i-1 (x, •) TV = N -1 j=1 j i=1 E (l) x,θ [D(θ i , θ i-1 )] .
Lemma 4.2. Let µ, ν be two probability distributions. There exist a probability space

(Ω, F, P) and random variables X, Y on (Ω, F) such that X ∼ µ, Y ∼ ν and P(X = Y ) = 1 -µ -ν TV .
The proof can be found e.g. in (Roberts and Rosenthal, 2004, Proposition 3). As a consequence of Lemmas 4.1 and 4.2, we have Proposition 4.3. Let l ≥ 0, N ≥ 2 and set z = (x, θ). There exists a process {(X k , Xk ), 0 ≤ k ≤ N } defined on a probability space endowed with the probability P (l)

z,z such that

P (l) z,z X k = Xk , 0 ≤ k ≤ N ≥ 1 - N -1 j=1 j i=1 E (l) z [D(θ i , θ i-1 )] , (X 0 , • • • , X N ) has the X-marginal distribution of P (l)
z restricted to the time-interval {0, • • • , N }, and ( X0 , • • • , XN ) has the same distribution as a homogeneous Markov chain with transition kernel P θ and initial distribution δ x .

4.1.2. Modulated moments for the adaptive chain. Let V : X → [1, +∞) be a measurable function and assume that there exist C ∈ X , positive constants b, c and 0 < α ≤ 1 such that for any θ ∈ Θ,

P θ V ≤ V -cV 1-α + b½ C . ( 6 
)
Lemma 4.4. Assume ( 6). There exists b such that for any 0 ≤ β ≤ 1, θ ∈ Θ:

P θ V β ≤ V β -βcV β-α + b½ C .
Proof. See (Jarner and Roberts, 2002, Lemma 3.5).

Proposition 4.5. Assume ( 6). For any l ≥ 0, (x, θ) ∈ X × Θ, and any stopping-time τ ,

c E (l) x,θ τ -1 k=0 (kαc + 1) α -1 -1 ≤ V (x) + b E (l) x,θ τ -1 k=0 ((k + 1)αc + 1) α -1 -1 ½ C (X k ) .
Proof. The proof can be adapted from [START_REF] Douc | Practical drift conditions for subgeometric rates of convergence[END_REF], Proposition 2.1) and (Meyn and Tweedie, 1993, Proposition 11.3.2)and is omitted.

Proposition 4.6. Assume ( 6).

(i) There exists b such that for any j ≥ 0, 0

≤ β ≤ 1, l ≥ 0 and (x, θ) ∈ X × Θ E (l)
x,θ V β (X j ) ≤ V β (x) + bj β .

(ii) Let 0 ≤ β ≤ 1 and 0 ≤ a ≤ 1. For any stopping-time τ ,

E (l) x,θ (1 -a) τ V β (X τ )½ τ <+∞ + E (l) x,θ   τ -1 j=0 (1 -a) j {a V β (X j ) + βc(1 -a)V β-α (X j )}   ≤ V β (x) + b(1 -a)E (l) x,θ   τ -1 j=0 (1 -a) j ½ C (X j )   .. (iii) Let 0 ≤ β ≤ 1 -α and 0 < a < 1.
For any stopping-time τ and any q ∈ [1, +∞],

E (l) x,θ   τ -1 j=0 (1 -a) j V β (X j )   ≤ a 1/q-1 (1 -a) -1/q V β+α/q (x)   1 + b E (l) x,θ   τ -1 j=0 (1 -a) j ½ C (X j )     (αc) -1/q ,
(with the convention that 1/q = 0 when q = +∞).

Proof. The proof is done in the case l = 0. The general case is similar and omitted.

(i) is a trivial consequence of Lemma 4.4. (ii) Let β ≤ 1. Set τ N = τ ∧N and Y n = (1-a) n V β (X n ).
Then

Y τ N = Y 0 + τ N j=1 (Y j -Y j-1 ) = Y 0 + τ N j=1 (1 -a) j-1 (1 -a)V β (X j ) -V β (X j-1 ) = Y 0 + τ N j=1 (1 -a) j V β (X j ) -V β (X j-1 ) -a τ N j=1
(1 -a) j-1 V β (X j-1 ) .

Hence,

E x,θ [Y τ N ] + a E x,θ   τ N -1 j=0 (1 -a) j V β (X j )   = V β (x) + j≥1 (1 -a) j E x,θ V β (X j ) -V β (X j-1 ) ½ j≤τ N ≤ V β (x) + j≥1 (1 -a) j E x,θ -βc V β-α (X j-1 ) + b½ C (X j-1 ) ½ j≤τ N ,
where we used Lemma 4.4 in the last inequality. This implies

E x,θ [Y τ N ] + a E x,θ   τ N -1 j=0 (1 -a) j V β (X j )   + (1 -a)βc E x,θ   τ N -1 j=0 (1 -a) j V β-α (X j )   ≤ V β (x) + b(1 -a)E x,θ   τ N -1 j=0 (1 -a) j ½ C (X j )   .
The results follows when N → +∞.

(iii) The previous case provides two upper bounds, namely for 0

< β ≤ 1 -α, a E x,θ   τ -1 j=0 (1 -a) j V β (X j )   ≤ V β (x) + b (1 -a)E x,θ   τ -1 j=0 (1 -a) j ½ C (X j )   ,
and

(1 -a) ((β + α)c) E x,θ   τ -1 j=0 (1 -a) j V β (X j )   ≤ V β+α (x) + bE x,θ   τ -1 j=0 (1 -a) j ½ C (X j )   .
We then use the property

[c ≤ c 1 ∧ c 2 ] =⇒ c ≤ c 1/q 1 c 1-1/q 2 for any q ∈ [1, +∞].
Proposition 4.7. Assume (6). Let {r n , n ≥ 0} be a non-increasing positive sequence.

There exists b such that for any l ≥ 0, (x, θ)

∈ X × Θ, 0 ≤ β ≤ 1 and n ≥ 0, βc E (l) x,θ   k≥n r k+1 V β-α (X k )   ≤ r n E (l) x,θ V β (X n ) + b E (l) x,θ   k≥n r k+1 ½ C (X k )   .
The proof is on the same lines as the proof of Proposition 4.6(ii) and is omitted. 

x,θ ) the sequence of N-valued random variables {τ n , n ≥ 1} as

τ 0 def = τ D , τ 1 def = τ 0 + n ⋆ + τ D • θ τ 0 +n⋆ , τ k+1 def = τ k + N + τ D • θ τ k +N , k ≥ 1 .
Proposition 4.8. Assume A3 and there exist V : X → [1, +∞) and a constant b < +∞ such that for any θ ∈ Θ,

P θ V ≤ V -1 + b½ C . Let D ∈ X . Let n ⋆ , N be two non-negative integers. Then ε ν(D) E (l) x,θ τ D -1 k=0 ½ C (X k ) ≤ 1 ,
and if sup D V < +∞ and ν(D) > 0, there exists a (finite) constant C depending upon ε, ν(D), sup D V, b, n ⋆ , N such that for any l ≥ 0, (x, θ) ∈ X × Θ and k ≥ 0,

E (l) x,θ τ k ≤ k C + V (x) .
Proof. Since V ≥ 1, Proposition 4.6(ii) applied with a = 0,

β = α = 1, c = 1 and τ = τ D implies E (l) x,θ [τ D ] ≤ V (x) + b E (l) x,θ τ D -1 k=0 ½ C (X k ) .
By A3, we have

P θ (x, D) ≥ [εν(D)] ½ C (x) for any (x, θ) so that εν(D) E (l) x,θ τ D -1 k=0 ½ C (X k ) ≤ E (l) x,θ τ D -1 k=0 P θ k (X k , D) = E (l) x,θ τ D -1 k=0 ½ D (X k+1 ) ≤ 1 . Hence E (l) x,θ [τ D ] ≤ V (x) + b[εν(D)] -1
. By the Markov property and Proposition 4.6(i)

E (l) x,θ τ 1 ≤ n ⋆ + V (x) + b[εν(D)] -1 + E (l) x,θ E (n⋆+l+τ D ) Z n⋆+τ D [σ D ] ≤ n ⋆ + 2 b[εν(D)] -1 + V (x) + sup D V + n ⋆ b .
The proof is by induction on k. Assume that

E (l) x,θ τ k ≤ kC+V (x) with C ≥ 2 b[εν(D)] -1 + sup D V + (N ∨ n ⋆ )(1 + b).
Then using again the Markov property and Proposition 4.6(i), and upon noting that

P (l) x,θ (Z τ k ∈ D) = 1, E (l) x,θ τ k+1 ≤ N + E (l) x,θ τ k + E (l) x,θ E (τ k +N +l) Z τ k +N [τ D ] ≤ N + b[εν(D)] -1 + E (l) x,θ τ k + E (l) x,θ V (X τ k +N ) ≤ N + b[εν(D)] -1 + E (l) x,θ τ k + E (l) x,θ E (τ k +l) Z τ k [V (X N )] ≤ N + b[εν(D)] -1 + E (l) x,θ τ k + sup D V + N b . 4.1.4. Generalized Poisson equation. Assume (6). Let 0 < a < 1, l ≥ 0 and 0 ≤ β ≤ 1 -α. For f ∈ L V β such that π(|f |) < +∞, let us define the function ĝ(l) a (x, θ) def = j≥0 (1 -a) j+1 E (l) x,θ [ f (X j )] .
Proposition 4.9. Assume ( 6). Let 0 ≤ β ≤ 1 -α and f ∈ L V β . For any (x, θ) ∈ X × Θ, l ≥ 0 and 0 < a < 1, ĝ(l) a exists, and

f (x) = 1 1 -a ĝ(l) a (x, θ) -E (l) x,θ ĝ(l+1) a (X 1 , θ 1 ) . Proof. By Proposition 4.6(i), E (l) x,θ f (X j ) ≤ | f | V β V β (x) + bj β . Hence, ĝ(l) a (x, θ)
exists for any x, θ, l. Furthermore, ĝ(l+1)

a (X 1 , θ 1 ) is P (l)
x,θ -integrable. By definition of ĝ(l) a and by the Markov property,

E (l) x,θ ĝ(l+1) a (X 1 , θ 1 ) = j≥0 (1-a) j+1 E (l) x,θ f (X j+1 ) = (1-a) -1 j≥1 (1-a) j+1 E (l) x,θ f (X j ) = (1 -a) -1 ĝ(l) a (x, θ) -(1 -a) f (x) .
Theorem 4.10. Assume A3-5 and B2. Let 0 ≤ β < 1 -α. For any ǫ > 0, there exists an integer n ≥ 2 such that for any 0

< a < 1, f ∈ L V β , l ≥ 0, (x, θ) ∈ X × Θ and q ∈ [1, +∞], | f | V β -1 ĝ(l) a (x, θ) ≤ 4 ǫ (1 -(1 -a) n ) -1 n + V β+α/q (x) a 1-1/q (1 -a) 1/q (αc) -1/q 1 + b[εν(D)] -1 + 2 (1 + bn ⋆ )(1 + b) sup D V β+α/q .
By convention, 1/q = 0 when q = +∞. In particular,

lim a→0 | f | V β -1 aĝ (l) a (x, θ) = 0.
Remark 1. Before dwelling into the proof of the theorem, we first make two important remarks. Firstly, a simplified restatement of Theorem 4.10 is the following. There exists a finite constant c 0 such that for any 0

< a ≤ 1/2, f ∈ L V β , l ≥ 0, (x, θ) ∈ X × Θ and q ∈ [1, +∞], ĝ(l) a (x, θ) ≤ c 0 | f | V β a -1 1 + a 1/q V β+α/q (x) . (7) 
This follows by taking ǫ = 1, say, and upon noting that n (1

-(1 -a) n ) -1 ≤ 2 n-1 /a.
The second point is that if we take a 1 , a 2 ∈ (0, 1) we can write ĝ(l)

a 1 (x, θ) -ĝ(l) a 2 (x, θ) = a 2 -a 1 (1 -a 1 )(1 -a 2 ) × k≥0 (1 -a 1 ) k+1 E (l) x,θ ĝ(l+k) a 2 (X k , θ k ) .
By (7) and Proposition 4.6 (iii), it holds ĝ(l)

a 1 (x, θ) -ĝ(l) a 2 (x, θ) ≤ c 1 | f | V β |a 2 -a 1 |a -1 2 a -2+1/q 1 V β+α/q (x), (8) 
for some finite constant c 1 , for all 0 < a 1 , a

2 ≤ 1/2, f ∈ L V β , l ≥ 0, (x, θ) ∈ X × Θ and q ∈ [1, +∞].
Proof. Let ǫ > 0. Let us consider the sequence of stopping times {τ k , k ≥ 0} defined in Section 4.1.3 where (D, N, n ⋆ ) are defined below.

Choice of D, N, n ⋆ . Choose a level set D of V large enough so that ν(D) > 0. Choose

N such that 1 N N -1 j=0 sup D×Θ P j θ (x, •) -π(•) V β ≤ ǫ , (9) 
the existence of which is given by A5; and such that -since α + β < 1, - -β) (which can be assumed to be strictly lower than N -2 since β > 0). By B2, choose n ⋆ such that for any q ≥ n ⋆ , l ≥ 0,

(αc) -1 N -1 sup D V β+α + bN β+α + b[εν(D)] -1 ≤ ǫ . ( 10 
) Set ǫ N def = N -2 {ǫ sup D V β + bN -1 N -1 j=1 j β -1 } 1/(1
sup D×Θ P (l)
x,θ (D(θ q , θ q-1 ) ≥ ǫ N /2) ≤ ǫ N /4. By Proposition 4.8, P

(l) x,θ (τ k < +∞) = 1 for any (x, θ) ∈ X × Θ, l ≥ 0, k ≥ 0. Optimal coupling. With these definitions, sup i≥1 sup k≥1 E (l) x,θ E (τ k +l) Z τ k [D(θ i , θ i-1 )] ≤ ǫ N , upon noting that P (l)
x,θ (n ⋆ ≤ τ k ) = 1 and D(θ, θ ′ ) ≤ 2. We apply Proposition 4.3 and set

E N def = {X k = Xk , 0 ≤ k < N }. We have for any l ≥ 0, k ≥ 1, (x, θ) ∈ X × Θ, E (l) x,θ P (τ k +l) Z τ k ,Z τ k (E c N ) ≤ N -1 j=1 j i=1 E (l) x,θ E (τ k +l) Z τ k [D(θ i , θ i-1 )] ≤ N 2 ǫ N < 1 . ( 11 
)
Observe that D, N and n ⋆ do not depend upon a, l, x, θ and f .

Proof of Theorem 4.10. Assume that for any 0 < a < 1, l ≥ 0, (x, θ) ∈ X × Θ and

k ≥ 2, E (l) x,θ   N -1 j=0 (1 -a) τ k +j+1 f X τ k +j   ≤ | f | V β 3N ǫ (1 -a) n⋆+(k-1)N . ( 12 
)
We have

ĝ(l) a (x, θ) = j≥0 (1 -a) j+1    E (l) x,θ f (X j )½ j<τ 1 + k≥1 E (l) x,θ f (X j )½ τ k ≤j<τ k+1    .
On one hand, by Proposition 4.6(iii) applied with τ = τ D and Proposition 4.8,

j≥0 (1 -a) j+1 E (l) x,θ f (X j )½ j<τ 0 = E (l) x,θ   τ D -1 j=0 (1 -a) j+1 f (X j )   ≤ | f | V β E (l) x,θ   τ D -1 j=0 (1 -a) j+1 V β (X j )   ≤ | f | V β V β+α/q (x) a 1-1/q 1 + b[εν(D)] -1 (1 -a) 1/q (αc) -1/q .
Applied with τ = τ D , Propositions 4.6(i and (iii) and 4.8 yield

| f | -1 V β j≥0 (1 -a) j+1 E (l) x,θ f (X j )½ τ 0 ≤j<τ 1 = | f | -1 V β E (l) x,θ   τ D +n⋆+τ D •θ n⋆+τ D -1 j=τ D (1 -a) j+1 f (X j )   ≤ E (l) x,θ   E (τ D +l) Zτ D   n⋆+τ D •θ n⋆ -1 j=0 (1 -a) j+1 V β (X j )     ≤ E (l) x,θ   E (τ D +l) Zτ D   n⋆-1 j=0 (1 -a) j+1 V β (X j )     + E (l) x,θ   E (τ D +n⋆+l) Z τ D +n⋆   τ D -1 j=0 (1 -a) j+1 V β (X j )     ≤ 2 (1 + bn ⋆ )(1 + b) a 1-1/q (1 -a) 1/q (αc) -1/q sup D V β+α/q . For k ≥ 1, j≥0 (1 -a) j+1 E (l) x,θ f (X j )½ τ k ≤j<τ k+1 ≤ E (l) x,θ   τ k +N -1 j=τ k (1 -a) j+1 f (X j )   + E (l) x,θ   (1 -a) τ k +N E (τ k +N +l) Z τ k +N   τ D -1 j=0 (1 -a) j+1 f (X j )     .
By Proposition 4.6(i) and (ii) applied with τ = τ D , Proposition 4.8 and Eq. ( 12), and upon noting that

τ k ≥ n ⋆ + (k -1)N P (l) (x,θ) -a.s. , j≥0 (1 -a) j+1 E (l) x,θ f (X j )½ τ k ≤j<τ k+1 ≤ | f | V β E (l) x,θ (1 -a) n⋆+(k-1)N 3N ǫ + (1 -a) N {V β+α (X τ k +N ) + b[εν(D)] -1 }(αc) -1 ≤ | f | V β (1 -a) n⋆+(k-1)N 3N ǫ + (αc) -1 sup r,D×Θ E (r) x,θ V β+α (X N ) + b[εν(D)] -1 ≤ | f | V β (1 -a) n⋆+(k-1)N 3N ǫ + (αc) -1 sup D V β+α + bN β+α + b[εν(D)] -1 ≤ 4 ǫ | f | V β (1 -a) (k-1)N N ,
where we used the definition of N (see Eq. ( 10)) and Proposition 4.6(i). This yields the desired result.

Proof of Eq.( 12). By the strong Markov property and since τ k ≥ n ⋆ +N (k -1) P (l)

x,θ -a.s.

E (l) x,θ   N -1 j=0 (1 -a) τ k +j+1 f X τ k +j   ≤ (1-a) n⋆+N (k-1) E (l) x,θ   E (τ k +l) Z τ k   N -1 j=0 (1 -a) j+1 f (X j )     .
Furthermore, by Proposition 4.3,

E (τ k +l) Z τ k   N -1 j=0 (1 -a) j+1 f (X j )   = E (τ k +l) Z τ k ,Z τ k   N -1 j=0 (1 -a) j+1 f (X j )   = E (τ k +l) Z τ k ,Z τ k   N -1 j=0 (1 -a) j+1 f ( Xj )   + E (τ k +l) Z τ k ,Z τ k   N -1 j=0 (1 -a) j+1 { f (X j ) -f ( Xj )}½ E c N   .
On one hand, we have P (l)

x,θa.s.,

E (τ k +l) Z τ k ,Z τ k   N -1 j=0 (1 -a) j+1 f ( Xj )   ≤ | f | V β N -1 j=0 (1-a) j+1 sup D×Θ P j θ (x, •)-π(•) V β ≤ | f | V β N ǫ
by ( 9). On the other hand, P

x,θa.s.,

E (τ k +l) Z τ k ,Z τ k   N -1 j=0 (1 -a) j+1 { f (X j ) -f ( Xj )}½ E c N   ≤ | f | V β E (τ k +l) Z τ k ,Z τ k   N -1 j=0 (1 -a) j+1 {V β (X j ) + V β ( Xj )}½ E c N   ≤ | f | V β E (τ k +l) Z τ k ,Z τ k      N -1 j=0 (1 -a) j+1 V β (X j ) + V β ( Xj )   β -1    β P (τ k +l) Z τ k ,Z τ k (E c N )
1-β by using the Jensen's inequality (β < 1). By the Minkowski inequality, by Proposition 4.6(i), and by iterating the drift inequality A4

E (τ k +l) Z τ k ,Z τ k      N -1 j=0 (1 -a) j+1 V β (X j ) + V β ( Xj )   β -1    β ≤ N -1 j=0 (1 -a) j+1 E (τ k +l) Z τ k ,Z τ k [V (X j )] β + E (τ k +l) Z τ k ,Z τ k V ( Xj ) β ≤ N -1 j=0 (1 -a) j+1 sup l,D×Θ E (l) x,θ [V (X j )] β + sup D×Θ P j θ V (x) β ≤ 2 N -1 j=0 (1 -a) j+1 sup D V + j b β ≤ 2N   sup D V β + bN -1 N -1 j=1 j β   .
Finally,

E (l) x,θ P (τ k +l) Z τ k ,Z τ k (E c N ) 1-β ≤ E (l)
x,θ P (τ k +l)

Z τ k ,Z τ k (E c N ) 1-β ≤ N 2 ǫ N 1-β
where we used (11) in the last inequality. To conclude the proof, use the definition of ǫ N .

4.2. Proof of Theorem 2.1. Let ǫ > 0. We prove that there exists n ǫ such that for any

n ≥ n ǫ , sup {f,|f | 1 ≤1} E ξ 1 ,ξ 2 f (X n ) ≤ ǫ. 4.2.1. Definition of D, N , Q and n ⋆ . By A1(i), choose Q such that sup l sup (x,θ)∈C×Θ E (l) x,θ [r(τ C )] k≥Q 1 r(k) ≤ ǫ . ( 13 
)
By A1(ii), choose N such that sup

(x,θ)∈C×Θ V -1 (x) P N θ (x, •) -π(•) TV ≤ ǫ Q . ( 14 
)
By B1, choose n ⋆ such that for any n ≥ n ⋆ ,

P ξ 1 ,ξ 2 D(θ n , θ n-1 ) ≥ ǫ/(2(N + Q -1) 2 Q) ≤ ǫ 4(N + Q -1) 2 Q . ( 15 
)
4.2.2. Optimal coupling. We apply Proposition 4.3 with l = 0 and

N ← N + Q. Set E N +Q def = {X k = Xk , 0 ≤ k ≤ N + Q}. It holds for any r ≥ n ⋆ , E ξ 1 ,ξ 2 ½ Xr∈C P (r) Zr,Zr E c N +Q ≤ N +Q-1 j=1 j i=1 E ξ 1 ,ξ 2 ½ Xr∈C E (r) Zr [D(θ i , θ i-1 )] ≤ N +Q-1 j=1 j i=1 E ξ 1 ,ξ 2 [D(θ i+r , θ i+r-1 )] ≤ ǫQ -1 , ( 16 
)
where in the last inequality, we use that D(θ, θ ′ ) ≤ 2 and the definition of n ⋆ (see Eq. ( 15)).

Proof.

Let n ≥ N + Q + n ⋆ . We consider the partition given by the last exit from the set C before time n -N . We use the notation {X n:m / ∈ C} as a shorthand notation for m k=n {X k / ∈ C}; with the convention that {X m+1:m / ∈ C} = Ω. We write

E ξ 1 ,ξ 2 f (X n ) = E ξ 1 ,ξ 2 f (X n )½ X 0:n-N / ∈C + n-N k=0 E ξ 1 ,ξ 2 f (X n )½ X k ∈C ½ X k+1:n-N / ∈C . Since f is bounded on X by | f | 1 , we have E ξ 1 ,ξ 2 f (X n )½ X 0:n-N / ∈C ≤ | f | 1 P ξ 1 ,ξ 2 (τ C ≥ n -N ) ≤ | f | 1 E ξ 1 ,ξ 2 τ C n -N ∧ 1 .
The rhs is upper bounded by

| f | 1 ǫ for n large enough. By definition of Q in (13), n-(N +Q) k=0 E ξ 1 ,ξ 2 f (X n )½ X k ∈C ½ X k+1:n-N / ∈C ≤ | f | 1 n-(N +Q) k=0 E ξ 1 ,ξ 2 ½ X k ∈C P (k) X k ,θ k (τ C ≥ n -N -k) ≤ | f | 1 sup l sup C×Θ E (l) x,θ [r(τ C )] k≥Q 1 r(k) ≤ | f | 1 ǫ . (17) Let k ∈ {n -(N + Q) + 1, • • • , n -N }.
By definition of N and n ⋆ (see Eqs. ( 14) and ( 15)),

upon noting that k ≥ n -(N + Q) ≥ n ⋆ , E ξ 1 ,ξ 2 f (X n )½ X k ∈C ½ X k+1:n-N / ∈C -| f | 1 E ξ 1 ,ξ 2 ½ X k ∈C P (k) Z k ,Z k E c N +Q ≤ E ξ 1 ,ξ 2 ½ X k ∈C E (k) Z k ,Z k f (X n-k )½ X 1:n-N-k / ∈C ½ E N+Q ≤ E ξ 1 ,ξ 2 ½ X k ∈C E (k) Z k ,Z k f ( Xn-k )½ X1:n-N-k / ∈C ½ E N+Q ≤ E ξ 1 ,ξ 2 ½ X k ∈C E (k) Z k ,Z k f ( Xn-k )½ X1:n-N-k / ∈C + | f | 1 E ξ 1 ,ξ 2 ½ X k ∈C P (k) Z k ,Z k E c N +Q ≤ E ξ 1 ,ξ 2 ½ X k ∈C E (k) Z k ,Z k ½ X1:n-N-k / ∈C P N θ k f ( Xn-N-k ) + | f | 1 ǫQ -1 ≤ | f | 1 ǫQ -1 E ξ 1 ,ξ 2 ½ X k ∈C E (k) Z k ,Z k ½ X1:n-N-k / ∈C V ( Xn-N-k ) + | f | 1 ǫQ -1 ≤ | f | 1 ǫQ -1 sup (x,θ)∈C×Θ P θ V (x) + sup C V + | f | 1 ǫQ -1 ,
where we used A1(iii) in the last inequality. Hence,

n-N k=n-(N +Q)+1 E ξ 1 ,ξ 2 f (X n )½ X k ∈C ½ X k+1:n-N / ∈C ≤ 1 + sup (x,θ)∈C×Θ P θ V (x) + sup C V ǫ | f | 1 .
This concludes the proof.

Remark 2. In the case the process is non-adaptive, we can assume w.l.g. that it possesses an atom α; in that case, the lines (17) can be modified so that the assumptions n {1/r(n)} < +∞ can be removed. In the case of an atomic chain, we can indeed apply the above computations with C replaced by α and write:

n-(N +Q) k=0 E ξ 1 f (X n )½ X k ∈α ½ X k+1:n-N / ∈α ≤ | f | 1 n-(N +Q) k=0 P α (τ α ≥ n -N -k) ≤ | f | 1 k≥Q P α (τ α ≥ k) .
The rhs is small for convenient Q, provided E α [r(τ α )] < +∞ with r(n) = n. Unfortunately, the adaptive chain {(X n , θ n ), n ≥ 0} does not possess an atom thus explaining the condition on r. 

x,θ [τ D ] ≤ cV (x). This implies that for

0 < η ≤ 1 -α, E (l) x,θ τ D k=0 (k + 1) η ≤ E (l) x,θ τ D k=0 E (k+l) X k ,θ k [τ D ] η ≤ c η E (l) x,θ τ D k=0 V 1-α (X k ) ≤ C V (x) + b E (l) x,θ [τ D ] ≤ C ′ V (x) ,
for some finite constants C, C ′ independent upon θ. Hence A1(i) holds with r(n) ∼ n 1+η .

Finally, P θ V ≤ V -cV 1-α + b½ C implies P θ V ≤ V -cγV 1-α + b½ D for any γ ∈ (0, 1) and the level set D def = {x, V 1-α ≤ b[c(1 -γ)] -1 }. This yields A1(iii).
4.4. Proof of Proposition 2.4. Under A2, there exists a constant C -that does not depend upon θ -such that for any (x, θ) ∈ X × Θ, n ≥ 0 and κ ∈ [1, α -1 ],

P n θ (x, •) -π(θ) TV ≤ C V κα (x) (n + 1) κ-1 ;
(see Appendix A). To apply (Roberts and Rosenthal, 2007, Theorem 13), we only have to prove that there exists κ ∈ [1, α -1 ] such that the sequence {V κα (X n ); n ≥ 0} is bounded in probability, which is equivalent to prove that {V β (X n ); n ≥ 0} is bounded in probability for some (and thus any) β ∈ (0, 1] . This is a consequence of Lemma 4.11 applied with W = V β for some β ∈ (0, 1] and r(n) = (n + 1) 1+η for some η > 0 (see the proof of Corollary 2.2 for similar computations).

Lemma 4.11. Assume that there exist a set C and functions W : X → (0, +∞) and r : N → (0, +∞) such that r is non-decreasing, P θ W ≤ W on C c and

sup C×Θ P θ W < +∞ , sup l sup C×Θ E (l) x,θ [r(τ C )] < +∞ , k {1/r(k)} < +∞
For any probability distributions ξ 1 , ξ 2 resp. on X, Θ {W (X n ), n ≥ 0} is bounded in probability for the probability P ξ 1 ,ξ 2 .

Proof. Let ǫ > 0. We prove that there exists M ǫ , N ǫ such that for any M ≥ M ǫ and

n ≥ N ǫ , P x,θ (W (X n ) ≥ M ) ≤ ǫ. Choose N ǫ such that for any n ≥ N ǫ E ξ 1 ,ξ 2 τ C n ∧ 1 ≤ ǫ/3 , sup l sup C×Θ E (l) x,θ [r(τ C )] k≥n {1/r(k)} ≤ ǫ/3 ,
and choose M ǫ such that for any M ≥ M ǫ , N ǫ sup C×Θ P θ W ≤ ǫM/3. We write

P ξ 1 ,ξ 2 (W (X n ) ≥ M ) = n-1 k=0 P ξ 1 ,ξ 2 (W (X n ) ≥ M, X k ∈ C, X k+1:n / ∈ C)+P ξ 1 ,ξ 2 (W (X n ) ≥ M, X 0:n / ∈ C) .
By the Markov inequality, for n ≥ N ǫ ,

P ξ 1 ,ξ 2 (W (X n ) ≥ M, X 0:n / ∈ C) ≤ P ξ 1 ,ξ 2 (X 0:n / ∈ C) ≤ P ξ 1 ,ξ 2 (τ C > n) ≤ E ξ 1 ,ξ 2 τ C n ∧ 1 ≤ ǫ/3 . Furthermore, for n ≥ N ǫ , n-Nǫ k=0 P ξ 1 ,ξ 2 (W (X n ) ≥ M, X k ∈ C, X k+1:n / ∈ C) ≤ n-Nǫ k=0 P ξ 1 ,ξ 2 (X k ∈ C, X k+1:n / ∈ C) ≤ n-Nǫ k=0 E ξ 1 ,ξ 2 ½ C (X k ) sup l sup C×Θ P (l) x,θ (X 1:n-k / ∈ C) ≤ n-Nǫ k=0 sup l sup C×Θ P (l) x,θ (τ C ≥ n -k) ≤ n k=Nǫ 1 r(k) sup l sup C×Θ E (l) x,θ [r(τ C )] ≤ ǫ/3 .
Finally, for n ≥ N ǫ we write

n k=n-Nǫ+1 P x,θ (W (X n ) ≥ M, X k ∈ C, X k+1:n / ∈ C) ≤ n k=n-Nǫ+1 E x,θ ½ C (X k ) P (k) X k ,θ k (W (X n-k ) ≥ M, X 1:n-k / ∈ C)
We have, for any k ∈ {n -

N ǫ + 1, • • • , n} and (x, θ) ∈ C × Θ P (k) x,θ (W (X n-k ) ≥ M, X 1:n-k / ∈ C) ≤ 1 M E (k) x,θ [W (X n-k )½ C c (X 1:n-k-1 )] ≤ 1 M E (k) x,θ [W (X 1 )]
where, in the last inequality, we used the drift inequality on W outside C. Hence,

n k=n-Nǫ+1 P x,θ (W (X n ) ≥ M, X k ∈ C, X k+1:n / ∈ C) ≤ N ǫ M sup C×Θ P θ W (x) ≤ ǫ/3 .
The proof is concluded.

4.5. Proof of Theorem 2.5. By using the function ĝ(l) a introduced in Section 4.1.4 and by Proposition 4.9, we write P x,θa.s.

n -1 n k=1 f (X k ) = n -1 n k=1 (1 -a) -1 ĝ(k) a (X k , θ k ) -E (k) X k ,θ k ĝ(k+1) a (X 1 , θ 1 ) = n -1 (1 -a) -1 n k=1 ĝ(k) a (X k , θ k ) -E x,θ ĝ(k) a (X k , θ k )|F k-1 + n -1 (1 -a) -1 n k=1 E x,θ ĝ(k) a (X k , θ k )|F k-1 -(1 -a)E x,θ ĝ(k+1) a (X k+1 , θ k+1 ) |F k = n -1 (1 -a) -1 n k=1 ĝ(k) a (X k , θ k ) -E x,θ ĝ(k) a (X k , θ k )|F k-1 + n -1 (1 -a) -1 E x,θ ĝ(1) a (X 1 , θ 1 )|F 0 -E x,θ ĝ(n+1) a (X n+1 , θ n+1 )|F n + a n -1 (1 -a) -1 n k=1 E x,θ ĝ(k+1) a (X k+1 , θ k+1 ) |F k .
We apply the above inequalities with a = a n and consider the different terms in turn.

We show that they tend P x,θa.s. to zero when the deterministic sequence {a n , n ≥ 1} satisfies conditions which are verified e.g. with a n = (n + 1) -ζ for some ζ such that

ζ > 0 , 2ζ < 1 -0.5 ∨ β(1 -α) -1 , ζ < 1 -β(1 -α) -1 .
To prove that each term converges a.s. to zero, we use the following characterization

∀ǫ > 0 , lim n→+∞ P sup m≥n |X m | ≥ ǫ ⇐⇒ [{X n , n ≥ 0} → 0 P -a.s.] .
Hereafter, we assume that |f | V β = 1. In the following, c (and below, c 1 , c 2 ) are constant the value of which may vary upon each appearance.

Convergence of Term 1. Set p def = (1 -α)/β. We prove that

n -1 (1 -a n ) -1 n k=1 ĝ(k) an (X k , θ k ) -E ξ 1 ,ξ 2 ĝ(k) an (X k , θ k )|F k-1 -→ 0 , P ξ 1 ,ξ 2 -a.s.
provided the sequence {a n , n ≥ 0} is non increasing, lim n→∞ n max(1/p,1/2)-1 /a n = 0,

n n -1 [n max(1/p,1/2)-1 /a n ] p < +∞ and n |a n -a n-1 |a -2 n-1 [n max(1/p,1/2)-1 /a n ] < +∞. Proof. Define D n,k def = ĝ(k) an (X k , θ k )-E ξ 1 ,ξ 2 ĝ(k) an (X k , θ k )|F k-1 ; S n,k def = k j=1 D n,j , if k ≤ n and S n,k def = n j=1 D n,j + k j=n+1 D j,j if k > n; and R n def = n-1 j=1 D n,j -D n-1,j .
Then for each n, {(S n,k , F k ), k ≥ 1} is a martingale. For k > n and by Lemma B.1, there exists a universal constant C such that

E ξ 1 ,ξ 2 [|S n,k | p ] ≤ Ck max(p/2,1)-1   n j=1 E ξ 1 ,ξ 2 [|D n,j | p ] + k j=n+1 E ξ 1 ,ξ 2 [|D j,j | p ]   ≤ c 1 | f | V β k max(p/2,1)-1 a -p k k j=1 E ξ 1 ,ξ 2 [V (X j )] ≤ c 1 | f | V β k max(p/2,1) a -p k ξ 1 (V ), ( 18 
)
where we used (7) and Proposition 4.6(ii). It follows that for any n ≥ 1, lim

N →∞ N -p E ξ 1 ,ξ 2 (|S n,N | p ) ≤ c 1 lim N →∞ N max(1/p,1/2)-1 /a N p = 0.
Then by the martingale array extension of the Chow-Birnbaum-Marshall's inequality (Lemma B.2),

2 -p δ p P ξ 1 ,ξ 2   sup m≥n m -1 (1 -a m ) -1 n j=1 D n,j > δ   ≤ ∞ k=n k -p -(k + 1) -p E ξ 1 ,ξ 2 [|S n,k | p ] + ∞ k=n+1 k -1 E 1/p ξ 1 ,ξ 2 [|R k | p ] p .
Under the assumptions on the sequence {a n , n ≥ 0} and given the bound (18), the first term in the rhs tends to zero as n → +∞. To bound the second term, we first note that {( k j=1 D n,j -D n-1,j , F k ), k ≥ 1} is a martingale for each n. Therefore, by Lemma B.1 and the definition of D n,j

E ξ 1 ,ξ 2 [|R n | p ] ≤ C n max(p/2,1)-1 n-1 j=1 E ξ 1 ,ξ 2 [|D n,j -D n-1,j | p ] ≤ 2C n max(p/2,1)-1 n-1 j=1 E ξ 1 ,ξ 2 |ĝ (j)
an (X j , θ j )ĝ(j) a n-1 (X j , θ j )| p .

Then, using (8) (with q = ∞) and the usual argument of bounding moments of V β (X j ),

we get

E 1/p ξ 1 ,ξ 2 [|R n | p ] ≤ c 1 | f | V β n max(1/2,1/p) |a n -a n-1 | a -1 n a -2 n-1 ξ 1 (V ).
Under the assumptions, n n -1 E

1/p ξ 1 ,ξ 2 [|R n | p ]
< +∞ and this concludes the proof.

Convergence of Term 2. We prove that

n -1 (1 -a n ) -1 E ξ 1 ,ξ 2 ĝ(1) an (X 1 , θ 1 )|F 0 -→ 0 ,
provided lim n na n = +∞ and lim n a n = 0.

Proof. By Theorem 4.10 applied with q = +∞, it may be proved that there exist constants c, N such that

E ξ 1 ,ξ 2 ĝ(1) an (X 1 , θ 1 )|F 0 ≤ ca -1 n ξ 1 (V ) + c 1 -(1 -a n ) N -1 N
Divided by n -1 (1 -a n ), the rhs tends to zero as n → +∞.

Convergence of Term 3. We prove that

n -1 (1 -a n ) -1 E ξ 1 ,ξ 2 ĝ(n+1) an (X n+1 , θ n+1 )|F n -→ 0 , P ξ 1 ,ξ 2 -a.s.
provided the sequence {n -1 a -1 n , n ≥ 1} is non-increasing, lim n n 1-β(1-α) -1 a n = +∞, n (na n ) -(1-α)β -1 < +∞ and lim n a n = 0.

Proof. There exist constants c 1 , c 2 , N such that for any n large enough (i.e. such that 1 -a n ≥ 1/2) and

p def = (1 -α)β -1 > 1 P ξ 1 ,ξ 2 sup m≥n m -1 (1 -a m ) -1 E ξ 1 ,ξ 2 ĝ(m+1) am (X m+1 , θ m+1 )|F m ≥ δ ≤ 2 p δ -p E ξ 1 ,ξ 2 sup m≥n m -p E ξ 1 ,ξ 2 ĝ(m+1) am (X m+1 , θ m+1 )|F m p ≤ 2 p δ -p m≥n m -p E ξ 1 ,ξ 2 E ξ 1 ,ξ 2 ĝ(m+1) am (X m+1 , θ m+1 )|F m p ≤ 2 p δ -p m≥n m -p E ξ 1 ,ξ 2 ĝ(m+1) am (X m+1 , θ m+1 ) p ≤ 2 2p-1 δ -p m≥n m -p c 1 a p m E ξ 1 ,ξ 2 V βp (X m+1 ) + c 2 N (1 -(1 -a m ) N ) p
where we used Theorem 4.10 with q = +∞. Furthermore by Propositions 4.6(i) and 4.7 and the drift inequality,

P ξ 1 ,ξ 2 sup m≥n m -1 (1 -a m ) -1 E ξ 1 ,ξ 2 ĝ(n+1) am (X m+1 , θ m+1 )|F m ≥ δ ≤ 2 p c 3 δ p    n -p a -p n E ξ 1 ,ξ 2 [V (X n )] + m≥n m -p a -p m + m≥n m -p N (1 -(1 -a m ) N ) p    ≤ 2 p c 3 δ p    n -p a -p n ξ 1 (V ) + n b + b m≥n m -p a -p m + m≥n m -p N (1 -(1 -a m ) N ) p    .
Under the stated conditions on {a n , n ≥ 1}, the rhs tends to zero as n → +∞.

Convergence of Term 4. We prove that

a n n -1 (1 -a n ) -1 n k=1 E ξ 1 ,ξ 2 ĝ(k+1) an (X k+1 , θ k+1 )|F k -→ 0 , P ξ 1 ,ξ 2 -a.s. provided {a 1∧[(1-α-β)/α] n n -1 , n ≥ 1} is non-increasing, n a 1∧[(1-α-β)/α] n
n -1 < +∞, and lim n a n = 0.

Proof. Choose q ≥ 1 such that β + α/q ≤ 1 -α. Fix ǫ > 0. From Theorem 4.10, there exist constants C, N such that for any n ≥ 1, l ≥ 0, (x, θ)

∈ X × Θ, ĝ(l) an (x, θ) ≤ C a 1/q-1 n V β+α/q (x) + 4ǫN (1 -(1 -a n ) N ) -1 .
Hence for n large enough such that (1 -a n ) ≥ 1/2

a n n -1 (1 -a n ) -1 n k=1 E ξ 1 ,ξ 2 ĝ(k+1) an (X k+1 , θ k+1 )|F k ≤ 8a n ǫN (1 -(1 -a n ) N ) -1 + 2C a 1/q n n -1 n k=1 E ξ 1 ,ξ 2 V β+α/q (X k+1 )|F k ≤ 8a n ǫN (1 -(1 -a n ) N ) -1 + 2C a 1/q n n -1 n k=1 V 1-α (X k ) + 2C a 1/q n b ,
where we used β+α/q ≤ 1-α and Proposition 4.6(i) in the last inequality. Since lim n a n = 0 and lim n a n ǫN (1-(1-a n ) N ) -1 = ǫ, we only have to prove that a

1/q n n -1 n k=1 V 1-α (X k ) converges to zero P ξ 1 ,ξ 2 -a.s.
By the Kronecker Lemma (see e.g (Hall and Heyde, 1980, Section 2.6)), this amounts to prove that k≥1 a

1/q k k -1 V 1-α (X k
) is finite a.s. This property holds upon noting that by Proposition 4.7 and Proposition 4.6(i)

E ξ 1 ,ξ 2   k≥n a 1/q k k -1 V 1-α (X k )   ≤ a 1/q n n -1 E ξ 1 ,ξ 2 [V (X n )] + k≥n a 1/q k k -1 ≤ a 1/q n n -1 ξ 1 (V ) + bn + k≥n a 1/q k k -1 ,
and the rhs tends to zero under the stated assumptions.

4.6. Proof of Proposition 2.6. We only give the sketch of the proof since the proof is very similar to that of Theorem 2.5. We start with proving a result similar to Theorem 4.10.

Since D = X, the sequence {τ k , k ≥ 0} is deterministic and τ k+1 = τ k +N +1. By adapting the proof of Theorem 4.10 (f is bounded and D = X), we establish that for any ǫ > 0, there exists an integer n ≥ 2 such that for any 0 < a < 1, any bounded function f , l ≥ 0,

(x, θ) ∈ X × Θ | f | 1 -1 ĝ(l) a (x, θ) ≤ n + ǫ (1 -(1 -a) n ) -1 n .
We then introduce the martingale decomposition as in the proof of Theorem 2.5 and follow the same lines (with any p > 1).

Appendix A. Explicit control of convergence

We provide sufficient conditions for the assumptions A1(ii) and A5. The technique relies on the explicit control of convergence of a transition kernel P on a general state space (T, B(T)) to its stationary distribution π.

Proposition A.1. Let P be a φ-irreducible and aperiodic transition kernel on (T, B(T)).

(i) Assume that there exist a probability measure ν on T, positive constants ε, b, c, a measurable set C, a measurable function V : T → [1, +∞) and 0 < α ≤ 1 such that

P (x, •) ≥ ½ C (x) ε ν(•) , P V ≤ V -c V 1-α + b ½ C . ( 19 
)
Then P possesses an invariant probability measure π and π(V 1-α ) < +∞.

(ii) Assume in addition that c inf

C c V 1-α ≥ b, sup C V < +∞ and ν(C) > 0.
Then there exists a constant C depending upon sup C V , ν(C) and ε, α, b, c such that for any

0 ≤ β ≤ 1 -α and 1 ≤ κ ≤ α -1 (1 -β), (n + 1) κ-1 P n (x, •) -π(•) V β ≤ C V β+ακ (x). ( 20 
)
Proof. The conditions (19) imply that V is unbounded off petite set and P is recurrent. It also implies that {V < +∞} is full and absorbing: hence there exists a level set D of V large enough such that ν(D) > 0. Following the same lines as in the proof of Proposition 4.8, we prove that sup D E x [τ D ] < +∞. The proof of (i) in concluded by (Meyn and Tweedie, 1993, Theorems 8.4.3., 10.0.1). The proof of (ii) is given in e.g. [START_REF] Fort | Polynomial ergodicity of Markov transition kernels[END_REF] (see also [START_REF] Andrieu | Explicit control of subgeometric ergodicity[END_REF]; Douc et al. ( 2007)).

When b ≤ c, c inf C c V 1-α ≥ b.
Otherwise, it is easy to deduce the conditions of (ii) from conditions of the form (i).

Corollary A.2. Let P be a phi-irreducible and aperiodic transition kernel on (T, B(T)).

Assume that there exist positive constants b, c, a measurable set C, an unbounded measurable function V : T → [1, +∞) and 0 < α ≤ 1 such that P V ≤ V -cV 1-α + b½ C . Assume in addition that the level sets of V are 1-small. Then there exist a level set D of V , positive constants ε D , c D and a probability measure ν D such that

P (x, •) ≥ ½ D (x) ε D ν D (•) , P V ≤ V -c D V 1-α + b ½ D , and sup D V < +∞, ν D (D) > 0, and c D inf D c V 1-α ≥ b. Proof. For any 0 < γ < 1, P V ≤ V -γ c V 1-α + b ½ Dγ with D γ def = {V 1-α ≤ b[c(1-γ)] -1 }.
Hence, sup Dγ V < +∞; and for γ close to 1, we have γc inf

D c γ V 1-α ≥ b.
Finally, the drift condition (19) implies that the set {V < +∞} is full and absorbing and thus the level sets {V ≤ d} are accessible for any d large enough.

The 1-smallness assumption is usually done for convenience and is not restrictive. In the case the level sets are petite (and thus m-small for some m ≥ 1), the explicit upper bounds get intricate and are never detailed in the literature (at least in the polynomial case). Nevertheless, it is a recognized fact that the bounds derived in the case m = 1 can be extended to the case m > 1.

Appendix B. L p -martingales and the Chow-Birnbaum-Marshall's inequality

We deal with martingales and martingale arrays in the paper using the following two results.

Lemma B.1. Let {(D k , F k ), 1 ≤ k ≥ 1} be a martingale difference sequence and M n = n k=1 D k . For any p > 1, E [|M n | p ] ≤ Cn max(p/2,1)-1 n k=1 E (|D k | p ) , (21) 
where C = 18pq 1/2 p , p -1 + q -1 = 1.

Proof. By Burkholder's inequality [START_REF] Hall | Martingale Limit theory and its application[END_REF], Theorem 2.10) applied to the martingale {(M n , F n ), n ≥ 1}, we get

E (|M n | p ) ≤ CE   k k=1 |D k | 2 p/2   ,
where C = 18pq 1/2 p , p -1 + q -1 = 1. The proof follows by noting that

n k=1 |D k | 2 p/2 ≤ n max(p/2,1)-1 n k=1 |D k | p . (22) 
To prove ( 22), note that if 1 < p ≤ 2, the convexity inequality (a + b) α ≤ a α + b α which hold true for all a, b ≥ 0 and 0 ≤ α ≤ 1 implies that

n n=1 |D k | 2 p/2 ≤ n k=1 |D k | p . If p > 2, Holder's inequality gives n k=1 |D k | 2 p/2 ≤ n p/2-1 ( n k=1 |D k | p ).
Lemma B.2 can be found in [START_REF] Atchade | A strong law of large numbers for martingale arrays[END_REF] 

= k i=1 D n,i , if 1 ≤ k ≤ n and S n,k def = n i=1 D n,i + k j=n+1 D j,j , k > n; R n def = n-1 j=1 (D n,j -D n-1,j ) . For n ≤ m ≤ N , p ≥ 1 and λ > 0 2 -p λ p P max n≤m≤N c m |M m,m | > λ ≤ c p N E (|S n,N | p ) + N -1 j=n c p j -c p j+1 E (|S n,j | p ) + E     N j=n+1 c j |R j |   p   . ( 23 
)
Appendix C. Proofs of Section 3.2

In the proofs, C will denote a generic finite constant whose actual value might change from one appearance to the next. The proofs below differ from earlier works (see e.g. [START_REF] Fort | V -subgeometric ergodicity for a Hastings-Metropolis algorithm[END_REF]; Douc et al. ( 2004)) since q is not assumed to be compactly |∇ ln π(x + tz)∇ ln π(x + tz) T | ≤ |x| 2(m-1) D 2 1 1 -η|x| υ-1 2(m-1) .. which yields the desired result upon noting that |z||x + tz| m-1 ≤ η|x| υ+m-1 (1 -η|x| υ-1 ) is arbitrarily small for x large enough.

We now turn to the proof of Lemma 3.3. For x ∈ X, define R(x) := {y ∈ X : π(y) < π(x)} and R(x) -x def = {y -x : y ∈ R(x)}. We have:

P θ V s (x) -V s (x) = (V s (x + z) -V s (x)) q θ (z) µ Leb (dz) + R(x)-x (V (x + z) -V (x)) π(x + z) π(x)
-1 q θ (z) µ Leb (dz) .

If x remains in a compact set C, using D2(ii) and the continuity of x → V s (x), we have (1 + exp(sD 0 |z| m )) q θ (z) µ Leb (dz) < +∞ .

More generally, let x large enough. Define l(x) def = log π(x), R V (x, z) def = V s (x + z) -V s (x) + sV s (x) z, ∇l(x) , R π (x, z) def = π(x + z)(π(x)) -1 -1 -z, ∇l(x) . Using the fact that the mean of q θ is zero, we can write: P θ V s (x) -V s (x) = I 1 (x, θ, s) + I 2 (x, θ, s) + I 3 (x, θ, s)

where

I 1 (x, θ, s) def = -sV s (x) R(x)-x
z, ∇l(x) 2 q θ (z) µ Leb (dz) , I 2 (x, θ, s)

def = R V (x, z) q θ (z) µ Leb (dz)+ R(x)-x R V (x, z) π(x + z) π(x)
-1 q θ (z) µ Leb (dz) , and

I 3 (x, θ, s) def = -sV s (x) R(x)-x
R π (x, z) z, ∇l(x) q θ (z) µ Leb (dz) .

C.1.1. First term. It follows from (Fort and Moulines, 2000, Lemma B.3. and proof of Proposition 3) that, under D2(i), there exists b > 0, such that for all θ ∈ Θ, This implies that there exists a constant C < +∞ -independent of s for s ≤ s ⋆ -such that |R V (x, z)|q θ (z) µ Leb (dz) ≤ C s V s (x) |x| 2(m-1) (s + ε(x)) |z| 2 q θ (z)µ Leb (dz)

+ V s (x) {z,|z|≥η|x| υ } V s (x + z) V s (x) q θ (z)µ Leb (dz) + C V s (x) |x| m-1 {z,|z|≥η|x| υ }
|z| q θ (z)µ Leb (dz) .

There exists a constant C such that for θ ∈ Θ and s ≤ s ⋆ , the first term in the rhs is upper bounded by C s V s (x) |x| 2(m-1) (s + ε(x)). Under D3, the second term is upper bounded by V s (x) |x| 2(m-1) ε(x) with lim |x|→+∞ ε(x) = 0 uniformly in θ for θ ∈ Θ, and in s for s ≤ s ⋆ . Since q θ is a multivariate Gaussian distribution, there exists λ ⋆ > 0 such that sup θ∈Θ exp(λ ⋆ |z| 2 )q θ (z)µ Leb (dz) < +∞. Under D3, the third term is upper bounded by C V s (x) |x| 2(m-1) exp(-λη 2 |x| 2υ ) for some λ ∈ (0, λ ⋆ ), uniformly in θ for θ ∈ Θ, and in s for s ≤ s ⋆ . Hence, we proved that there exists C ⋆ < ∞ such that for any s ≤ s ⋆ , 

P θ V s (x) ≤ V s (x) -c ⋆ V s (x)|x| 2(m-1) + b ⋆ ½ C (x) (24) ≤ V s (x) -0.5c ⋆ V 1-α s (x) + b ⋆ ½ C (x) (25) 
for a compact set C. This proves A2(ii) and A4. A5 follows from the results of Appendix A.

A2(iii) and A3 follow from Lemma 3.2.

C.2. Proof of Lemma 3.4. An easy modification in the proof of (Andrieu and Moulines, 2006, Proposition 11) (to adjust for the difference in the drift function) shows that D(θ, θ ′ ) ≤ 2 X |q e c Σ (x) -q e c ′ Σ ′ (x)|µ Leb (dx). We then apply (Andrieu and Moulines, 2006, Lemma 12) to obtain that D(θ, θ ′ ) ≤ C |e c Σ -e c ′ Σ ′ | s where C is a finite constant depending upon the compact Θ. Hereafter, C is finite and its value may change upon each appearance. For any l, n ≥ 0, ǫ > 0, x ∈ R p and θ ∈ Θ, we have

P (l)
x,θ (D(θ n , θ n+1 ) ≥ ǫ) ≤ ǫ -1 E (l)

x,θ [D(θ n , θ n+1 )]

≤ C E (l) x,θ [|c n+1 -c n | + |Σ n+1 -Σ n | s ] ≤ C (l + n + 1) -1 1 + E (l) x,θ |X n+1 | 2 + E (l) x,θ [|X n+1 | 2 ] .
D2(ii) implies that we can find C < ∞ such that |x| 2 ≤ C φ(V s (x)) for all x ∈ X where φ(t) = [ln t] 2/m . From the drift condition (Lemma 3.3), Proposition 4.6(i) and the concavity of φ, we deduce that there exists C such that E 

  def= δ x (A) , P n+1 (x, A) def = P (x, dy)P n (y, A) , n ≥ 0 ; δ x (dt) stands for the Dirac mass at {x}. P n is a transition kernel on (T, B(T)) that acts both on bounded measurable functions f on T and on σ-finite measures µ on (T, B(T))via P n f (•) def = P n (•, dy)f (y) and µP n (•) def = µ(dx)P n (x, •). If V : T → [1, +∞) is a function, the V -norm of a function f : T → R is defined as |f | V def = sup T |f |/V . When V = 1, this is the supremum norm. The set of functions with finite V -norm is denoted by L V .

B2

  For any level set D of V and any ǫ > 0

  Lemma 3.4. Assume D1-3. B2 holds and B1 holds for any probability measures ξ 1 ,ξ 2 such that | ln π| 2/m dξ 1 < +∞. The proof of Lemmas 3.3 and 3.4 are in Appendix C. Proposition 3.5. Assume D1-3. Consider the sequence {X n , n ≥ 0} given by the algorithm 3.1.

  Section 4.1.1 gives an approximation of the marginal distribution of the adaptive chain by the distribution of a related Markov chain. In Section 4.1.2, we develop various bounds for modulated moments of the adaptive chain as consequences of the drift conditions. In Section 4.1.3 we bound the expected return times of the adaptive chain to level sets of the drift function V . The culminating result of this subsection is Theorem 4.10 which gives an explicit bound on the resolvent function g (l)

4. 1 . 3 .

 13 Delayed successive visits to an accessible level set of V . Let D ∈ X and two positive integers n ⋆ , N . Define on (Ω, F, P

4. 3 .

 3 Proof of Corollary 2.2. The condition A1(ii) is established in Appendix A. Let a level set D large enough such that ν(D) > 0; then Proposition 4.8 implies that there exists a constant c < ∞ such that for any l ≥ 0, E

  Proof of Lemma 3.3. Lemma C.1. Assume D1-2. For all x large enough and |z| ≤ η|x| υ , t → V s (x + tz) is twice continuously differentiable on [0, 1]. There exist a constant C < +∞ and a positive function ε such that lim |x|→∞ ε(x) = 0, such that for all x large enough, |z| ≤ η|x| υ ands ≤ s ⋆ , sup t∈[0,1] |∇ 2 V s (x + tz)| ≤ C sV s (x)|x| 2(m-1) (s + ε(x)) . Proof. |x + z| ≥ |x| -η|x| υ ≥ (1 -η)|x| υ so that t → V s (x + tz) is twice continuously differentiable on [0, 1] for |x| large enough. We have |∇ 2 V s (x + tz)| ≤ sV s (x) V s (x + tz) V s (x) |∇ ln π(x + tz)∇ ln π(x + tz) T | • • • s + |∇ 2 ln π(x + tz)| |∇ ln π(x + tz)∇ ln π(x +tz) T | Under the stated assumptions, there exists a constant C such that for any x large enough and |z| ≤ η|x| υ sup t∈[0,1] s + |∇ 2 ln π(x + tz)| |∇ ln π(x + tz)∇ ln π(x + tz)

V

  s (x + z) ≤ C(1 + exp(sD 0 |z| m )). It follows that sup θ∈Θ sup x∈C {P θ V s (x) -V s (x)} ≤ C sup θ∈Θ R(x)-x

  (x) 2 q θ (z) µ Leb (dz) ≥ b |∇l(x)| 2 . Hence, sup θ∈Θ I 1 (x, θ, s) ≤ -s V s (x) b d 2 1 |x| 2(m-1) . C.1.2. Second term. For z ∈ R(x) -x, π(x + z) < π(x). Therefore |I 2 (x, θ, s)| ≤ 2 |R V (x, z)|q θ (z) µ Leb (dz). By Lemma C.1, there exists C < +∞ -independent of s for s ≤ s ⋆ -such that for any |z| ≤ η|x| υ ,|R V (x, z)| ≤ C s V s (x)|x| 2(m-1) |z| 2 (s + ε(x)) .

  sup θ∈Θ |I 2 (x, θ, s)| ≤ C ⋆ V s (x) |x| 2(m-1) s 2 + ε(x) ,for a positive function ε independent of s and such that lim |x|→+∞ ε(x) = 0. C.1.3. Third term. Following the same lines as in the control of I 2 (x, θ, s), it may be proved thatI 3 (x, θ, s) ≤ sV s (x)D 1 |x| m-1 {z,|z|≥η|x| υ } |z| 1 + D 1 |z||x| m-1 q θ (z)µ Leb (dz) + C V s (x)|x| 3(m-1) {z,|z|≤η|x| υ } |z| 3 q θ (z)µ Leb (dz) ≤ C V s (x)|x| 2(m-1) ε(x)for a positive function ε independent of s, θ and such that lim |x|→+∞ ε(x) = 0. C.1.4. Conclusion. Let α ∈ (0, 1). By combining the above calculations, we prove that by choosing s small enough such that c ⋆ def = bd 2 1 -C ⋆ s > 0, we have sup θ∈Θ

  |X n | 2 ≤ C [ln V s (x)] 2/m [ln n] 2/m .
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We conclude that for any probability ξ 1 such that ξ

x,θ (D(θ n , θ n+1 ) ≥ ǫ) = 0 .