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BOUNDARIES FOR BANACH SPACES DETERMINE WEAK

COMPACTNESS

HERMANN PFITZNER

Abstract. A boundary for a Banach space is a subset of the dual unit sphere with the
property that each element of the Banach space attains its norm on an element of that
subset. Trivially, the pointwise convergence with respect to such a boundary is coarser
than the weak topology on the Banach space. Godefroy’s Boundary Problem asks whether
nevertheless both topologies have the same bounded compact sets. This paper contains the
answer in the positive.

This paper deals with boundaries for Banach spaces in the sense of

Definition 1. Let X be a real Banach space. A subset B of S(X∗) is called a boundary for
X if for each x ∈ X there is b ∈ B such that b(x) = ‖x‖.

The set of extremal points of the dual unit ball of a Banach space is a well-known example
of a boundary. In 1980 Bourgain and Talagrand [3] showed that a norm bounded subset of
a Banach space is weakly compact if it is compact in the pointwise topology on the set of
extremal points of the dual unit ball. Some years later Godefroy [9] asked whether the result
still holds if the extremal points are replaced by an arbitrary boundary.

Theorem 6 shows that the answer is “yes”. The proof can be described vaguely as an
amalgam of Behrends’ quantitative version of Rosenthal’s l1-Theorem (cf. Lemma 2), Simons’
equality (cf. Lemma 3), a variant of Hagler-Johnson’s construction (cf. Lemma 4) and James’
distortion theorem (everywhere).

Besides the result of Bourgain and Talagrand a positive answer to Godefroy’s question
has been known in the important case when the set in question is convex [10, p. 44]. Bour-
gain’s and Talagrand’s proof relies on the results of [2] which are of topological nature and
do not seem applicable here because general boundaries seem to lack sufficient topological
structures. As a - technically quite different - substitute we use Simons’ equality [15] (or,
if the reader prefers, Simons’ inequality [14], see [8, Th. 3.48]) which has been advocated
at several instances by Godefroy (e. g. [4, 11]). The idea to look for the key Lemma 4 of
the present proof was inspired by the result of Cascales et al. [5, 6] on the existence of an
independent sequence.

Throughout this article X denotes a real Banach space, X∗ its dual, B(X) its unit ball and
S(X) its unit sphere. The norm closed linear span of a subset A of X is written [A]. IN
starts at 1. Our references for unexplained Banach space notions are [12] (for boundaries in
particular see Ch. 15, Infinite Dimensional Convexity by Fonf, Lindenstrauss and Phelps),
[7] and [13].

Acknowledgement It is a pleasure to thank G. Godefroy for having introduced me to the
subject and for encouraging conversations.

To each bounded sequence (xn) in X we associate its James constant

εJ(xn) = sup
m

inf∑

n≥m |αn|=1
‖

∑

n≥m

αnxn‖.
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If a sequence is equivalent to the canonical basis of l1 we call it simply an l1-sequence.
Clearly, εJ ≥ 0 with εJ(xn) > 0 if and only if there is an integer m such that (xn)n≥m is an
l1-sequence.

Two more moduli will be of importance. Let D be a subset of X∗. We define

δD(xn) = sup
x∗∈D

(
lim x∗(xn) − lim x∗(xn)

)
, δHJ, D(xn) = sup

x∗∈D

x∗(xn).

for bounded sequences (xn) and write δ = δB(X∗) and δHJ = δHJ, B(X∗) for short. Clearly
δD ≥ 0 for all D and δHJ ≥ 0 and equality δ(xn) = 0 (respectively δHJ(xn) = 0) holds if
and only if (xn) is weakly Cauchy (respectively converges weakly to zero). Both δD and
δHJ, D are non-increasing and similarly εJ is non-decreasing if one passes to subsequences.
We introduce the notation

δ̃D(xn) = inf
nk

δD(xnk
) and ε̃J(xn) = sup

nk

εJ(xnk
)

and say that (xn) is δD-stable if δ̃D(xn) = δD(xn). Likewise (xn) is εJ -stable if ε̃J(xn) =
εJ(xn).

If one takes a norm preserving Hahn-Banach extension of the functional defined on [xn]n≥m

by xn 7→ (−1)nεJ((xk)k≥m) for all n ≥ m and m big enough then it is completely elementary

but important to deduce that δHJ ≥ εJ and δ ≥ 2εJ , even δ̃ ≥ 2εJ . While in general strict
inequality may occur for δHJ this cannot happen in δ̃ ≥ 2εJ as soon as (xn) is εJ -stable. This
follows from Behrends’ quantitative version of Rosenthal’s l1-Theorem.

Lemma 2. Let X be a Banach space.

(1) Each bounded sequence in X contains an εJ-stable subsequence.
(2) Each bounded sequence in X contains a δ-stable subsequence.
(3) If (xn) is εJ-stable then

δ̃(xn) = 2ε̃J(xn).(1)

If moreover (xn) is δ-stable then

δ̃(zn) = 2ε̃J(xn).(2)

whenever

zn =
1

2

q
∑

l=1

λl(xp2l(n) − xp2l−1(n))

where q ∈ IN,
∑q

l=1 λl = 1, λl ≥ 0 and where ({p1(n), . . . , p2q(n)})n∈IN is a sequence
of pairwise disjoint subsets (of cardinality 2q) of IN.

Proof: (1) The proof consists in a routine diagonal argument. Choose a subsequence (y
(1)
n )

of (xn) such that εJ(y
(1)
n ) ≥ ε̃J(xn) − 2−1. Successiveley, choose a subsequence (y

(k+1)
n ) of

(y
(k)
n ) for each k ∈ IN such that εJ(y

(k+1)
n ) ≥ ε̃J(y

(k)
n ) − 2−(k+1). Let yn = y

(n)
n and let (zn)

be a subsequence of (yn). Then εJ(yn) ≥ εJ(y
(k+1)
n ) ≥ ε̃J(y

(k)
n ) − 2−(k+1) ≥ εJ(zn) − 2−(k+1)

whence εJ(yn) ≥ εJ(zn) and εJ(yn) ≥ ε̃J(yn) that is εJ(yn) = ε̃J(yn). The proof of (2) works
alike.
(3) Before the statement of the lemma we have already noticed that δ̃ ≥ 2εJ whence δ̃ ≥ 2ε̃J

because (xn) is assumed to be εJ -stable. In order to prove the other inequality of (1) we

may suppose that δ̃(xn) > 0 because otherwise δ̃(xn) = 0 and (1) holds trivially. In our

notation Behrends’ main result [1, Th. 3.2] reads: If δ̃(xn) > 0 then, given η > 0, there

is a subsequence whose εJ-value is greater than −η + (δ̃(xn))/2. Now let η run through a
sequence tending to zero and pass successively to according subsequences; the process results



BOUNDARIES FOR BANACH SPACES DETERMINE WEAK COMPACTNESS 3

in a diagonal sequence (xnk
) such that εJ(xnk

) ≥ (δ̃(xn))/2. Hence ε̃J(xn) ≥ (δ̃(xn))/2 which
proves (1).

For “≥” of (2) proceed as before the statement of the lemma by using functionals of the
kind xp2l−i(n) 7→ (−1)iεJ((xk)k≥m), i ∈ {0, 1}, 1 ≤ l ≤ q, with n and m big enough. For the

other inequality of (2) note that δ-stability and (1) reduce it to δ̃(zn) ≤ δ(xn) which in turn
by subadditivity of δ is reduced to δ(xnk

− xmk
) ≤ 2δ(xn) where (xnk

) and (xmk
) are two

disjoint subsequences of (xn). But the latter inequality follows from the fact that for each
x∗ ∈ B(X∗) both lim x∗(xnk

− xmk
) and −lim x∗(xnk

− xmk
) are each the difference of two

cluster points of (x∗(xn)) and hence majorized by δ(xn).

If B is a boundary for X, topological notions that refer to the σ(X, B)-topology are
preceded by “B-“, for example B-closed, B-compact.
The following lemma is a consequence of Simons’ equality [15] which in our notation reads
δHJ,B = δHJ.

Lemma 3. Let B be a boundary for X. Then

δB = δ and δ̃B = δ̃.(3)

Moreover, if (xn) is an εJ -stable bounded sequence and zn is as in Lemma 2 then

δ̃B(zn) = 2ε̃(xn).(4)

Proof: (4) follows from (2) and (3) and the second half of (3) is immediate from the first one
which, in turn, is a routine consequence of (2) and Simons’ equality: Fix x∗ ∈ B(X∗) and
choose subsequences (uk) = (xnk

) and (vk) = (xmk
) such that

lim x∗(xn) − lim x∗(xn)

= lim x∗(uk − vk) ≤ δHJ(uk − vk) = δHJ,B(uk − vk)

≤ sup
b∈B

(
lim b(uk) − lim b(vk)

)
≤ sup

b∈B

(
lim b(xn) − lim b(xn)

)
.

This shows ”≥“ of δB = δ whereas ”≤“ is trivial.

Let S =
⋃

n Sn where Sn = {0, 1}n for each n ∈ IN. If σ ∈ Sn we write σ = (σ1, . . . , σn) (with,
of course, σk ∈ {0, 1}) and for i ∈ {0, 1} we write (σ, i) for the element (σ1, . . . , σn, i) ∈ Sn+1.
Recall that a tree of non empty subsets of IN is a sequence (Ωσ)σ∈S such that Ω(σ,0) and Ω(σ,1)

are two disjoint non empty (hence infinite) subsets of Ωσ ⊂ IN for all σ ∈ S.

Lemma 4. Let B be a boundary for X, (xn) be an l1-sequence and ηk > 0 decrease to zero.
Then there are a sequence (bk) in B, a tree (Ωσ)σ∈S and ε ≥ εJ(xn) such that for all k

bk(xn − xn′) > 2(1 − ηk)ε if n ∈ Ωσ, n
′ ∈ Ωσ′ , σ, σ′ ∈ Sk and σk = 0, σ′

k = 1.(5)

Furthermore, if the set {xn |n ∈ IN} is relatively B-compact in X, there is a sequence (ym)
of B-cluster points of the xn such that

bk(ym − ym′) ≥ 2(1 − ηk)ε if m ≤ k < m′, k, m, m′ ∈ IN.(6)

Proof: Choose Ω∅ ⊂ IN such that the xn with indices in Ω∅ form an εJ -stable and δ-stable
l1-sequence which exists by Lemma 2 and set ε = εJ((xn)n∈Ω∅

). Then ε ≥ εJ(xn).
The bk and Ωσ for σ ∈ Sk will be constructed by induction over k ∈ IN.

For the first induction step k = 1, equalities (3) and (1) allow to find b1 ∈ B and a
subsequence (nl) of Ω∅ such that

b1(xn2l
− xn2l′+1

) > 2(1 − η1)ε

for all l, l′ ∈ IN. It remains to set Ω(i) = {n2l+i |l ∈ IN} for i = 0 and i = 1 in order to settle
the first induction step.
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Suppose that b1, . . . , bk and Ωσ = {ωσ(n) |n ∈ IN} for σ ∈ Sk have been constructed
according to (5). (Of course, we suppose the ωσ : IN → IN to be strictly increasing.) Set
η = ηk+1/2k+1. Apply (4) to

zn = 2−k
∑

σ∈Sk

(−1)σk xωσ(n)

(with q = 2k−1 and λl = 1/q for l ≤ q) in order to get bk+1 ∈ B and a sequence (nl) of
integers such that

bk+1(zn2l
− zn2l+1

) > 2(1 − η)ε for all l ∈ IN.(7)

Note that (by omitting at most finitely many members of the nk) one has furthermore that

bk+1(xωσ(n2l) − xωσ′ (n2l+1)) < 2(1 + η)ε for all l ∈ IN, σ, σ′ ∈ Sk(8)

because by (1) the difference of two cluster points of bk+1(xn) cannot exceed δ(xn) = δ̃(xn) ≤
2ε.
Define, for all σ ∈ Sk,

ω(σ,0)(l) = ωσ(n2l)
ω(σ,1)(l) = ωσ(n2l+1)

}

if σk = 0 and
ω(σ,0)(l) = ωσ(n2l+1)
ω(σ,1)(l) = ωσ(n2l)

}

if σk = 1.

With this notation we have

zn2l
− zn2l+1

= 2−k
∑

σ∈Sk

(−1)σk(xωσ(n2l) − xωσ(n2l+1))

= 2−k
∑

σ∈Sk

(xω(σ,0)(l) − xω(σ,1)(l)).

Consider σ, σ′ ∈ Sk and distinguish the two cases σ = σ′ and σ 6= σ′. In the first case we
have

xω(σ,0)(l) − xω(σ,1)(l) = 2k(zn2l
− zn2l+1

) −
∑

τ∈S,τ 6=σ

(xω(τ,0)(l) − xω(τ,1)(l)),

and in the second case

xω(σ,0)(l) − xω(σ′,1)(l)
= 2k(zn2l

− zn2l+1
) −

[
(xω(σ′,0)(l)

− xω(σ,1)(l)) +
∑′

(xω(τ,0)(l) − xω(τ,1)(l))
]

where the sum
∑′ runs over all τ ∈ Sk such that τ 6= σ and τ 6= σ′. In both cases we obtain

bk+1(xω(σ,0)(l) − xω(σ′,1)(l)
) > 2k+1 (1 − η)ε − 2 (2k − 1) (1 + η)ε = 2(1 − ηk+1 + η)ε

for all l ∈ IN by (7) and (8). Finally, since all bk+1(xn) are contained in a compact subset of
IR there is an infinite set N ⊂ IN such that

bk+1(xω(σ,0)(l) − xω(σ′,1)(l
′)) > 2(1 − ηk+1)ε

for all l, l′ ∈ N . It remains to set Ω(σ,i) = ω(σ,i)(N) for i ∈ {0, 1} and all σ ∈ Sk. This shows
(5) for k + 1 and ends the induction.

For the last part of the lemma fix m, take, for all k ≥ m,

σ(k) = (1, . . . , 1
︸ ︷︷ ︸

m−1

, 0, . . . , 0
︸ ︷︷ ︸

k−m+1

) ∈ Sk,

take nk to be the k-th element of Ωσ(k) and define ym to be a B-cluster point of the xnk
.

Then, whenever 1 ≤ m ≤ k < m′, there are σ, σ′ ∈ Sk with σk = 0, σ′
k = 1 such that

ym(respectivlely ym′) is a B-cluster point of the xn with indices in Ωσ (respectively in Ωσ′))
and (6) follows from (5).
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Theorem 5. In a real Banach space with a boundary B, a bounded relatively B-compact set
cannot contain an l1-sequence.

Proof: Suppose to the contrary that there is a relatively B-compact l1-sequence in a real
Banach space X. By Lemma 2 this l1-sequence contains a δ-stable subsequence which we
denote by (xn). Let (ηk) be a decreasing sequence of positive numbers with limit zero. Take
ε ≥ εJ(xn) > 0 and two sequences (bk) and (ym) that fulfill (6) of Lemma 4 and set

x =
(∑

2−mym

)
− y =

∑

2−m(ym − y)

where y is a B-cluster point of the ym. Inequality (6) extends to y in the sense that bk(ym −
y) ≥ 2(1− ηk)ε for all m ≤ k. Note that y is also a B-cluster point of the xn. Therefore the

difference b(ym)− b(y) is majorized by δ(xn) = δ̃(xn) ≤ 2ε for all b ∈ B hence ‖x‖ ≤ 2ε. But
actually ‖x‖ = 2ε: Let η > 0, let m0 such that ‖

∑∞
m0+1 2−m(ym − y)‖ < η and let k > m0.

Then

bk(x) ≥
(

m0∑

m=1

2−mbk(ym − y)
)
− η

≥
(

m0∑

m=1

2−m 2(1 − ηk)ε)
)
− η

= 2(1 − ηk)(1 − 2−m0)ε − η

which shows that supk bk(x) ≥ 2ε and thus

‖x‖ = sup
k

bk(x) = 2ε.

Since B is a boundary it contains a b0 such that b0(x) = 2ε. So b0(ym − y) = 2ε for all m
and b0(ym) = 2ε + b0(y). But y is a B-cluster point of the ym thus b0(y) = 2ε + b0(y), a
contradiction which ends the proof.

Theorem 6. Let B be a boundary for the real Banach space X. Then a B-compact bounded
subset of X is weakly compact.

Proof: Let A be a bounded B-compact subset of X. By the theorem of Eberlein-Šmulyan,
in order to show that A is weakly compact it is enough to prove that each sequence in A
admits a weakly convergent subsequence. Take a bounded sequence in A and denote by (xn)
the εJ -stable subsequence of it which exists by Lemma 2. Theorem 5 entails that ε̃J(xn) = 0

hence δ̃(xn) = 0 by 1. That is, (xn) is weakly Cauchy hence B-Cauchy. Since moreover A is
B-compact, (xn) B-converges (as a sequence) to a limit, say x ∈ X. Now a final application
of Simons’ equality ends the proof because by

sup
x∗∈B(X∗)

lim x∗(xn − x) = sup
b∈B

lim b(xn − x) = 0

we see that (xn) converges weakly to x.
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