Kim-Anh Lê Cao

Patrick Chabrier

ofw: an R package to select continuous variables for multiclass classification with a stochastic wrapper method

When dealing with high dimensional and low sample size data, feature selection is often needed to help reduce the dimension of the variable space while optimizing the classification task. Few tools exist for selecting variables in such data sets, especially when classes are numerous (> 2). We have developed ofw, an R package that implements, in the context of classification, the meta algorithm "Optimal Feature Weighting" (OFW). We focus on microarray data, although the method can be applied to any p >> n problems with continuous variables. The aim is to select relevant variables and to numerically evaluate the resulting variable selection. Two versions of OFW are proposed with the application of supervised multiclass classifiers such as CART and SVM. Furthermore, a weighted approach can be chosen to deal with unbalanced multiclasses, a common characteristic in microarray data sets.

Introduction

Performing a feature selection algorithm has several important applications in high dimensional data sets. For example with microarray data, it is sensible to use a dimensional reduction technique, either to identify genes that contribute the most for the biological outcome (e.g. cancerous vs. normal cells) and to determine in which way they interact to determine the outcome, or to predict the outcome when a new observation is presented. Such a method would provide practical aspects with machine learning methods: it avoids the "curse of dimensionality" that leads to overfitting when the number of variables is too large. There are two ways of selecting features. Either explicitly (filter methods) or implicitly (wrapper methods). The filter methods measure the relevance of a feature at a time by performing statistical tests (e.g. t-, F-tests) and ordering the p-values. This type of approach is robust against overfitting and is fast to compute. However, it usually disregards the interactions between the features as it tests one variable at a time. [START_REF] Chen | Gene selection for multi-class prediction of microarray data[END_REF] compared four filter methods and reached this conclusion. The wrapper methods measure the usefulness of a feature subset by searching the space of all possible feature subsets. The search can be performed either with heuristic or stochastic search. The main disadvantages of these methods are their tendency to overfit and when dealing with numerous variables, an exhaustive search is computationally impossible. However, the resulting selection takes into account the interactions between variables and might highlight useful information on the experiment. Despite this latter property, wrapper methods are still not widely applied in microarray data. Comparisons of Random Forests [START_REF] Breiman | Random forests[END_REF], Recursive Feature Elimination [START_REF] Guyon | Gene selection for cancer classification using support vector machines[END_REF], L 0 norm SVM [START_REF] Weston | Use of the zero norm with linear models and kernel methods[END_REF] and biological interpretation of the resulting gene selections is given in Lê [START_REF] Lê Cao | Selection of biologically relevant genes with a wrapper stochastic algorithm[END_REF]. In this R package, we implement the wrapper method "Optimal Feature Weighting" (OFW) adapted from [START_REF] Gadat | A stochastic algorithm for feature selection in pattern recognition[END_REF] that numerically quantifies the classification efficiency of each variable with a probability weight, by using stochastic approximations. This meta algorithm can be applied to any classifier. Therefore, the classifiers SVM (Support Vector Machines, Vapnik (1999)) and CART (Classification and Regression Trees, Breiman et al. (1984)) have been implemented so as to select an optimal subset of dicriminative variables. Few wrapper methods have been proposed yet to deal with multiclass data sets [START_REF] Li | A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression[END_REF][START_REF] Chen | Gene selection for multi-class prediction of microarray data[END_REF][START_REF] Yeung | Multi-class classification of microarray data with repeated measurements: application to cancer[END_REF], especially when the classes are unbalanced [START_REF] Chen | Using random forest to learn imbalanced data[END_REF]. Our function ofw() proposes a weighting approach to deal with this common characteristic in microarrays. Furthermore, like any wrapper methods, ofw requires heavy computations, especially when the number of variables is large. In this package, some of the computation time has been reduced by implementing some C functions and by proposing parallel programming during the learning step. Finally, we propose to perform the e.632+ bootstrap method [START_REF] Efron | Improvements on cross-validation: the e.632+ bootstrap method[END_REF] to estimate the classification error rate on bootstrap samples and to evaluate the different variants of OFW and the resulting gene selections. The general principle of the OFW algorithm is first presented. We then detail how to use ofw by applying the main functions on one microarray data set that is available in the package.

1 Optimal Feature Weighting model We assume that the n examples (or cases) are described by p attributes (or variables) and labelled with their target class (e.g. {0, 1} in binary problems). Given a probability weight vector P on all p variables, the key idea of OFW is to learn P such that it fits the classification efficiency of each variable in the given problem. In short, important weights will be given to variables with a high discriminative power, and low or zero weights to non relevant variables in the classification task. For that purpose, the algorithm adopts a wrapper technique, by drawing a small variable subset ω at a time, by measuring the relevance of this subset with the computation of the classification error rate, and then by updating the probability weights P according to the discriminative power of the variable subset ω. As an exhaustive search of the whole variable space is not tractable when p is large (in microarray data p > 5000), stochastic approximations are proposed, see [START_REF] Gadat | A stochastic algorithm for feature selection in pattern recognition[END_REF]; Lê [START_REF] Lê Cao | Selection of biologically relevant genes with a wrapper stochastic algorithm[END_REF] for the detailed theory of the model. At iteration i in the algorithm, the probability weight vector is updated with a gradient descent:

P i+1 = Π S [P i -α i d i]
where Π S is the projection on the simplex of probability map on the set of variables, so that P i+1 remains a probability vector, α i is the step of the gradient, and d i is the stochastic approximation of the gradient (see below).

The whole process is repeated iter.max times and the final output is P iter.max , that indicates the importance of each variable in the data. To obtain a variable selection, the user only needs to rank the variables according to their decreasing weights, and to choose the length of the selection.

General algorithm

Input: a data matrix of size n × p and the class values vector of size n Parameters: number of total iterations iter.max and the size mtry of the variable subset ω Output: P iter.max a weight vector of length p where:

Initialize P 0 = [1/p . .
• d i = C(ω i ,.)ǫ i P i (.)
is the approximated gradient, and C(ω i , k) is the number of occurrences of variable k in the subset ω i , in case this variable is drawn more than one time in ω i .

• Π S is the projection on the simplex, so that p i P i n = 1 and ∀i P i n ≥ 0, i = 1 . . . p. • α i is the step of the gradient descent, and can be set to 1 i+1 .

1.1 OFW is applied with either CART or SVM

We applied OFW with two supervised algorithms: Support Vector Machines (SVM) and Classification And Regression Trees (CART).

Support Vector Machines

SVM SVM [START_REF] Vapnik | The Nature of Statistical Learning Theory (Information Science and Statistics)[END_REF] is a binary classifier that attempts to separate the cases by defining an optimal hyperplane between the 2 classes up to a consistency criterion. Linear kernel SVMs are performed here because of their good generalization ability compared to more complex kernels.

SVM for multiclass data We applied OFW with the one-vs.-one SVM approach that is implemented in the e1071 R package. ofw hence depends on e1071. The user only needs to set the total number of iterations to perform (nsvm) and the size mtry of the subset ω to draw at each iteration (see section 3.2 for tuning).

Classification And Regression Trees

OFW is applied with the multiclass classifier CART (Classification And Regression Trees, [START_REF] Breiman | Classification and Regression Trees[END_REF]) that is well adequate for multiclass problems. Following the example of [START_REF] Breiman | Bagging predictors[END_REF], the trees were aggregated (bagging) to overcome their unstable characteristic. Hence, several classification trees are constructed on different bootstrap samples and with different subsets ω. The approximated gradient is also slightly modified. The modified algorithm is as follows:

Input: data matrix of size n × p and the class values vector of size n Parameters: number of total iterations iter.max, the size mtry of the variable subset ω and the number ntree of trees to aggregate Output: P iter.max a weight vector of length p

Update

P i+1 = Π S [P i -α i D i]
where D i is an averaged time version of the gradient d i (see Lê [START_REF] Lê Cao | Selection of biologically relevant genes with a wrapper stochastic algorithm[END_REF]. Hence, as in Random Forests [START_REF] Breiman | Random forests[END_REF], ntree trees are constructed on ntree bootstrap samples. The only difference lies in the construction of the classification trees: instead of randomly selecting a variable subset to split each node of each tree (Random Forests), the variable subset is drawn with respect to the probability P i to construct each tree. In addition to choose the total number of iterations to perform (nforest) and the size mtry of the subset ω to draw at each iteration, the user needs to choose the number of aggregated trees ntree (see section 3.2 for tuning).

Unbalanced Multiclass

Challenge when data are unbalanced Multiclass problems are often considered as an extension of 2-class problems. However this extension is not always straightforward, especially in microarray data context. Indeed, the data sets are often characterized by unbalanced classes with a small number of cases in at least one of the classes. This imbalance is often due to rare classes (e.g. a rare disease where patients are few) that are biologically interesting. Nevertheless, most algorithms do not perform well for such problems as they aim to minimize the overall error rate instead of focusing on the minority class.

Weighted procedure in OFW: wOFW An efficient way to take into account the unbalanced characteristics of the data set is to weight the error rate ǫ i according to the number samples of each class in the bootstrap sample. This allows for penalizing a classification error made on the minority class and, therefore, put more weight on the variables that help classify this latter class instead of the majority one (Lê Cao et al., 2007a). This weighted approach has been implemented in both versions of the algorithm, called ofw-CART and ofwSVM, and also stands for the evaluation step (step 2 in Fig. 1 and see section 3.4).

Implementation issues

ofw is available from the Comprehensive R Archive Network (CRAN1 or one of its mirrors). Instructions for package installation are given by typing help(INSTALL) or help(install.packages) in R. ofw is a set of R and C functions to perform either ofwCART or ofwSVM and to evaluate the performances of both algorithms. Two classes of functions in R and C are implemented. Figure 1 provides a schematic view of the analysis of a data set with ofw. Each step in Fig. 1 will be detailed in section 3 on a small microarray data set.

The R environment is the only user interface. The R procedure calls a C subroutine, whose results are returned to R. There is no formula interface and the predictors can be specified as a matrix or a data frame via the x argument, with factor responses as a vector via the y argument. Note that ofw performs only classification and does not handle categorical variables. Details of the components of each object from ofwTune, ofw, learn, evaluate and evaluate CARTparallel are provided in the online documentation. Methods provided for the classes ofwTune and ofw include print. The C function classTree.c that constructs classification trees has been borrowed from Step 3: variable selection on the whole data set if n is small and evaluate the performance of the variable selection

Step 2: the Breiman and Cutler's Fortran programs and converted to C language. The function agregTree.c that aggregates trees was then largely inspired from the randomForest package [START_REF] Liaw | Classification and regression by randomforest[END_REF].

Using ofw

We detail the call to functions and R commands (preceded by the prompt symbol >) of ofw, that can be loaded into R by > library(ofw).

Illustrative data set

ofw was previously tested on several published miroarray data sets (Lê Cao et al., 2007b,a) by comparing it with several other wrapper algorithms. We comment on the present paper the results obtained on one data set that is provided as an example in the package. SRBCT [START_REF] Khan | Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[END_REF] is the data set of small round blue cell tumors of childhood.

The training set consists of 63 training samples spanning 4 classes. The data set available in the package includes 2308 genes out of the 6567 after filtering for a minimal level of expression (performed by [START_REF] Khan | Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[END_REF]. Further details about this data set can be found in http://research.nhgri.nih.gov/microarray/Supplement. In order to minimize the computation time in this illustrative example, we have reduced SRBCT to 200 genes by simply randomly selecting these out of the 2308 in the initial data set. We also added a factor class that indicates the class of each microarray sample.

Note that normalization of the data, that is a crucial step in the analysis of microarray data is not dealt with ofw and has to be performed first by the user.

Tuning parameters

In the algorithm OFW, there are mainly 2 to 3 parameters to tune according to the applied classifier to ensure that OFW converges (step 1 in Fig. 1):

1. the size of the gene subset ω (called mtry).

2. the total number of iterations (called nsvm for ofwSVM and nforest for ofwCART).

3. the number of trees ntree to agregate for ofwCART.

The package ofw provides the function ofwTune to tune these parameters. Here is the command to launch ofwTune with ofwCART for different mtry values:

> data(srbct) > attach(srbct) > tune.cart <-ofwTune(srbct, as.factor(class), type="CART", ntree=150, + nforest=3000, mtry.test=seq(5,25,length=5), do.trace=100, nstable=25) > detach(srbct) Note that the only arbitrary parameter that is not tuned and has to be provided by the user is the number of variables nstable one wants to select (see below).

Tuning mtry. The function ofwTune consists in testing OFW (with CART or SVM) with several sizes of the subset ω (mtry.test). Then, for each mtry.test, OFW is performed twice, called ofw1 and ofw2. The first nstable variables with the highest weights in P ofw1 nforest and P ofw2 nforest are extracted. The ofwTune function then outputs the intersection length of these two variable selections. For example, to tune the parameters with ofwCART: > tune.cart$param 1 2 3 4 5 mtry 5 10 15 20 25 length 13 9 9 7 5 This outputs the intersection length of the first nstable variables for each tested mtry.test. The value mtry= 5 gets the best stable results and should be chosen for steps 2 and 3 in Fig. 1 (evaluation and variable selection steps).

Early stopping. Instead of running OFW for all iterations, the user can choose instead to set the number of variables (nstable) to select in the final variable selection step (step 3). This halts the algorithm once it becomes "stable", that is, when the nstable features of highest weights in P i and P i+do.trace are the same for iterations i and i + do.trace. Finally, to choose the total number of iterations in step 3, we simply suggest to take 2 to 3 times the number of iterations that were performed using the early stopping criterion, to ensure the convergence of the algorithm. This command outputs the number of iterations which were performed: > tune.cart$itermax 1 2 3 4 5 ofwCART1 700 500 900 100 100 ofwCART2 800 700 500 800 800

Here the two algorithms ofwCART1 and ofwCART2 stopped at 700 and 800 iterations for mtry=5. During the final learning step, the user should hence set nforest = 3 * 800.

Tuning ntree (ofwCART). The best way to tune ntree would be then to run ofwTune with different values of ntree and choose the one that gets the largest intersection length of the first nstable variables. In our experience, the more numerous the trees, the more stable the results, usually for ntree=100 to 150. The same stands for the weighted (weight=T) or non-weighted (weight=F) versions of OFW.

An example with ofwSVM. With the SVM classifier, the user has to specify type="SVM" and use nsvm instead of nforest to indicate the number of chosen iterations. As SVM are not aggregated, the user should set nsvm >> nforest. > tune.svm <-ofwTune(data, as.factor(class), type="SVM", nsvm=200000, mtry=5, + mtry.test=seq(5,25,length=5), do.trace=2000, nstable=25) > tune.svm$param 1 2 3 4 5 mtry 5 10 15 20 25 length 7 6 6 1 2 > tune.svm$itermax 1 2 3 4 5 ofwSVM1 8000 4000 8000 4000 4000 ofwSVM2 10000 10000 12000 4000 10000

In this case, with ofwSVM, the user should set mtry= 5 and nsvm= 30000 for the learning step if nstable=25.

For both classifiers, we strongly advise to choose the smallest mtry that gives the more stable results. Our experience shows that for ofwCART, mtry will be rather small (5 to 15), as the trees are aggregated. For ofwSVM, mtry will usually be larger (> 15). In both cases, mtry should not be greater than nstable, and, therefore, mtryTest ≤ nstable.

Table 1 illustrates the tuned parameters for several public data sets that were tested in Lê [START_REF] Lê Cao | Selection of biologically relevant genes with a wrapper stochastic algorithm[END_REF]Lê Cao et al. (2007a) for the weighted and non weighted versions of OFW. The number of trees aggregated is 1 ntree = 150 and 2 ntree = 100.

Variable selection and visualization plots

Once the parameters mtry, and ntree for ofwCART, have been chosen, the variable selection step (step 3 Fig. 1) can be performed, preferably on the whole data set if the sample size is too small, i.e. if n is roughly less than 80, or if the number of observations per class is too small. We advise to use the total number of iterations nforest or nsvm, rather than the nstable early stopping criterion to halt the algorithm, as suggested in section 3.2. The classifier to be applied has to be specified by the user. Here is the command for the variable selection step (step 3) for ofwCART and ofwSVM.

> learn.cart <-ofw(srbct, as.factor(class), type="CART", ntree=150, + nforest=2500, mtry=5) > learn.svm <-ofw(srbct, as.factor(class), type="SVM", nsvm=30000, mtry=5)

In the case of ofwCART, the evolution of the internal mean error rate ǭi = 1 ntree ntree k=1 ǫ k i can be plotted for each iteration i, as shown in Figure 2, for i = 1 . . . nforest: > plot(learn.cart$mean.error, type="l")

The monotonic decreasing trend of ǭi indicates if the parameters have been tuned correctly and thus if ofwCART converges. In the case of ofwSVM, the SVM are not aggregated, and the error variance is consequently very large: no decreasing trend can be observed and ǫ i is not provided. Note that the internal error ǭi does not evaluate the performance of OFW (see below section 3.4) and is simply a way to assess the quality of the tuning. One can also visualize the probability weights P nforest or P nsvm for each variable (Figures 3(a > plot(learn.cart$prob, type="h") > plot(learn.svm$prob, type="h")

The selected variables can then be extracted by sorting the heaviest weights in P, here for example for the 10 most discriminative variables: > names(sort(learn.cart$prob, decreasing=TRUE)[1:10])

As P is a weight probability, the more numerous the variables, the smallest the weights on the variables. Hence, these weights are a qualitative rather than a quantitative importance measure of the variables, and the choice of a threshold is not advised. The different computations of the approximated gradient in ofwSVM (d i) and in ofwCART (D i), where D i >> d i , actually lead to an important number of weights in P close to zero in ofwCART. Remark that some of the very discriminative variables get important weights in both methods, but usually, as the classifiers SVM and CART are differently constructed, the resulting variable selections will not be the same.

Evaluation step

Method and implementation

To assess the performance of the variable selection performed by OFW (step 2 in Fig. 1), we propose to perform the e.632+ bootstrap error estimate from [START_REF] Efron | Improvements on cross-validation: the e.632+ bootstrap method[END_REF] that is adequate for small sample size data sets [START_REF] Ambroise | Selection bias in gene extraction in tumour classification on basis of microarray gene expression data[END_REF]. Note that e.632+ does not dictate the optimal number of features to select. The error rate estimates that are computed with respect to the number of selected variables are only a way to compare the performances of different variable selection methods.

Step 2 consists in two functions called learn and evaluate. The learn function simply learns OFW on a fixed number of bootstrap samples (Bsample) with the same tuned parameters defined in step 1. The evaluate function that was inspired from the ipred package, computes and outputs the e.632+ error rate. The learn and evaluate functions > learn.error.cart <-learn(srbct, as.factor(class), type="CART", ntree=150, + nforest=2500, mtry=5, Bsample=10, do.trace=100, nstable=25) > learn.error.svm <-learn(srbct, as.factor(class), type="SVM", nsvm=30000, mtry=5, Bsample=10, do.trace=2000, nstable=25)

As the evaluation will be performed for a small selection size, we strongly advise to reduce the number of total iterations, using for example the early stopping criterion.

In the literature, Bsample often equals to 10-50. On a 1.6 GHz 960 Mo RAM AMD Turion 64 X2 PC, the learning step of one bootstrap sample on a typical microarray data set (p ≃ 5000 and n ≃ 50) can take approximatively 2.5 hours. Hence, depending on the chosen value of Bsample, this evaluation step might be time consuming (see section 4) and one can rather choose to perform parallel computing using the Rmpi library (see appendix).

If the SVM classifier is applied, each SVM is evaluated with the heaviest variables in P b nsvm , which is learnt in the learn function, b = 1 . . . Bsample. If the CART classifier is applied, the evaluate function aggregates ntreeTest trees. Each tree is constructed on a small variable subset that is randomly selected from the heaviest variables in P b nforest , to avoid a too optimistic evaluation (see Lê Cao et al. 2007a). Both functions evaluate the variable selection of size maxvar: > eval.error.cart <-evaluate(learn.error.cart, ntreeTest=100, maxvar=25) > eval.error.svm <-evaluate(learn.error.svm, maxvar=25)

The evalCARTparallelfunction has also been implemented for parallel computing (refer to appendix). The aim of the evaluate function is to compare the performance of several algorithms (e.g. ofwCART and ofwSVM):

> matplot(cbind(eval.error.cart$error, eval.error.svm$error), xlab="number of + selected genes", ylab="error rate e.632+", type="l", col=c(1,4), lty=c(1,4), + lwd=2, cex.lab= 1.3) > legend(18,0.40, c("ofwCART", "ofwSVM"), col=c(1,4), lty=c(1,4), cex=1.2, + lwd=2) Figure 4 displays the e.632+ bootstrap error rate of the selections resulting from either ofw-CART or ofwSVM with respect to the number of selected genes. In this example, where we compare the non-weighted versions of OFW, ofwCART seems to perform the best.

Further analysis

Comparing the weighted and non weighted versions of OFW

The weighting procedure presented in section 3.4 has also been included in the error evaluation function evaluate. To compare the two approaches weighted (OFW) and non weighted (wOFW), we strongly advise to launch the evaluate function with the argument weight=T in both cases to evaluate if the minority classes were misclassified or not. Otherwise, the e.632+ bootstrap error rate will always be lower for OFW than wOFW. This is illustrated in figure 5 where the same gene selection resulting from ofwCART is evaluated either with the non-weighted version of e.632+ (ofwCART1) or with the weighted version of e.632+ (ofwCART2). Even though the same two gene selections are evaluated, the error rate is lower in ofwCART1 as this overall error rate only takes into account the microarrays that are rightly classified in the majoritary classes. In ofwCART2 where misclassified minoritary classes are taken into account, the error rate is consequently higher:

> learn.error.cart=learn(srbct, as.factor(class), type="CART, ntree=150, + nforest=3000, mtry=5, Bsample=10) > eval.error.cart1=evaluate(learn.error.cart, ntreeTest=100, maxvar=25) > eval.error.cart2=evaluate(learn.error.cart, ntreeTest=100, maxvar=25, + weight=T) > matplot(cbind(eval.error.cart1$error, eval.error.cart2$error), xlab= + "number of selected genes", ylab="error rate e.632+", type="l", + col=c(1,1), lty=c(1,2), lwd=2, cex.lab=1.3) > legend(18,0.12, c("ofwCART1", "ofwCART2"), col=c(1,1), lty=c(1,2), + cex=1.2, lwd=2)

Computation time

Optimal Feature Weighting is a stochastic method that might be computationally time consuming if the variable dimension is very high. As the algorithm gets stabler for a large number of iterations, the variable selection step (step 3) might take 1-2 hours. Therefore, using parallel computing with the Rmpi library during the evaluation step (step 2) might be advisable. If the dimension is considerable, we strongly advise to pre-filter the data set so as to remove uninformative variables that slow down the computation. In this paper, on a very small microarray data set (200 genes), the tuning step (step 1) took approximatively 20 min, the evaluation step (step 2) 1.5 hour and the variable selection step (step 3) 7 min.

Conclusion

We have implemented the stochastic algorithm Optimal Feature Weighting to select discriminative features. Although we illustrated this method on microarray data, OFW can be applied on any continuous data set for classification and prediction purposes.

Wrapper methods usually require heavy computation, and so does OFW. Efforts have thus been made to reduce some of the computation time by implementing C functions when applying CART and by proposing parallel programming during the learning step.

With this package, we hope to provide the user a method with a strong theoretical background that is easy to apply and that can bring interesting results in a feature selection framework.

Availability and requirements

The R version ≥ 2.5.0 is needed to load the svm library e1071.

Initialize P 0

 0 = [1/p . . . 1/p] (uniform distribution on all variables) For i = 1 to iter.max 1. For b = 1 to ntree (a) Variables: draw a subset ω b i with respect to P i (b) Cases: draw a bootstrap sample B b i in 1 . . . n, define Bb i the out-of-bag cases (c) Train the classifier on variables in ω b i and cases in B b i (d) Test the classifier on variables in ω b i and cases in Bb i , compute the classification error rate ǫ b i 2. Compute the drift vector D i

Figure 1 :

 1 Figure 1: Schematic view of the data set analysis with ofw. The user only needs to use the R functions (in blue).

Figure 2 :

 2 Figure 2: Internal mean error in ofwCART.

Figure 3 :

 3 Figure 3: Probability weights with ofwCART (a) and ofwSVM (b).

Figure 4

 4 Figure 4: e.632+ error rate of ofwCART and ofwSVM.

Figure 5 :

 5 Figure 5: E.632+ error rate of ofwCART with e.632 not weighted (ofwCART1) and weighted (ofwCART2) .

 Principle Optimal Feature Weighting (OFW, Gadat and Younes 2007) is a meta algorithm that can treat several classification problems with a feature selection task. Any classifier can be applied, and Lê Cao et al. (2007a) implemented OFW with CART and SVM for multiclass classification (see also Lê Cao et al. 2007b for binary case).

Table 1 :

 1 Values of the size of the subset ω.

		#genes #classes #obs. ofwCART w-ofwCART ofwSVM w-ofwSVM
	Lymphoma	4026	3	62	5 1	10 1	5	5
	Leukemia	3000	3	72	5 1	5 1	15	10
	SRBCT	2308	4	63	5 1	10 1	20	20
	Brain	1963	5	42	5 1	25 1	10	10
	Follicle	1564	3	42	10 2	10 2	25	25

http://CRAN.R-project.org/

Acknowledgements

We are grateful to "Projet Calcul en MIdi-Pyrenées" (CALMIP) for the intensive computations.

ofw is freely available as an R package under

Appendix

Parallel computing with ofwCART ## This is an example to perform the learning and the evaluation step of ofwCART # with parallel computing ## A part of this code has been borrowed from Rmpi examples of the Acadia Center # for Mathematical Modelling and Computation ## http://ace.acadiau.ca/math/ACMMaC/Rmpi/examples.html library("Rmpi") library(rlecuyer) library(e1071, lib.loc="MyR/Library")#if the library e1071 is locally installed library(ofw, lib.loc="MyR/Library") #if the library ofw is locally installed mpi.spawn.Rslaves(nslaves=5) #number of slaves to spawn, should be equal to B, #where B = the number of bootstrap samples mpi.setup.rngstream() #generates random numbers ---------FUNCTION --- ---------MAIN --