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Distinguished representations and exceptional

poles of the Asai-L-function

Nadir MATRINGE

July 19, 2008

Abstract

Let K/F be a quadratic extension of p-adic fields. We show that a generic irreducible
representation of GL(n, K) is distinguished if and ony if its Rankin-Selberg Asai L-function
has an exceptional pole at zero. We use this result to compute Asai L-functions of ordinary
irreducible representations of GL(2, K). In the appendix, we describe supercuspidal dihedral
representations of GL(2, K) in terms of Langlands parameter.

1 Introduction

For K/F a quadratic extension of local fields, let σ be the conjugation relative to this extension,
and ηK/F be the character of F ∗ with kernel norms of K∗. The conjugation σ extends naturally
to an automorphism of GL(n,K), and we still note this automorphism σ. If π is a representation
of GL(n,K), we note πσ the representation g 7→ π(σ(g)).
If π is a smooth irreducible representation of GL(n,K), and χ a character of F ∗, the dimension of
the space of linear forms on its space, which transform by χ under GL(n, F ) (with respect to the
action [(L, g) 7→ L ◦ π(g)]), is known to be at most one (Proposition 11, [F1]). One says that π is
χ-distinguished if this dimension is one, and says that π is distinguished if it is 1-distinguished.
Jacquet conjectured two results about distinguished representations of GL(n,K). Let π be a
smooth irreducible representation of GL(n,K) and π∨ its contragredient. The first conjecture
states that it is equivalent for π with central character trivial on F ∗ to be isomorphic to π∨σ

and for π to be distinguished or ηK/F -distinguished. In [K], Kable proved it for discrete series
representations, using Asai L-functions.
The second conjecture, which is proved in [K], states that if π is a discrete series representation,
then it cannot be distinguished and ηK/F -distinguished at the same time.
One of the key points in Kable’s proof is that if a discrete series representation of GL(n,K) is
such that its Asai L-function has a pole at zero, then it is distinguished, Theorem 1.4 of [A-K-T]
shows that it is actually an equivalence. This theorem actually shows that Asai L-functions of
tempered distinguished representations admit a pole at zero.
In this article, using a result of Youngbin Ok which states that for a distinguished representa-
tion, linear forms invariant under the affine subgroup of GL(n, F ) are actually GL(n, F )-invariant
(which generalises Corollary 1.2 of [A-K-T]), we prove in Theorem 3.1 that a generic representa-
tion is distinguished if and only if its Asai L-function admits an exceptional pole at zero. A pole
at zero is always exceptional for Asai L-functions of discrete series representations (see explana-
tion before Proposition 3.4). As a first application, we give in Proposition 3.6 a formula for Asai
L-functions of supercuspidal representations of GL(n,K).
There are actually three different ways to define Asai L-functions: one via the local Langlands
correspondence and in terms of Langlands parameters denoted by LW (π, s), the one we use via
the theory of Rankin-Selberg integrals denoted by LAs(π, s), and the Langlands-Shahidi method
applied to a suitable unitary group, denoted by LAs,2(π, s) (see [A-R]). It is expected that the
above three L-functions are equal.
For a discrete series representation π, it is shown in [He] that LW (π, s) = LAs,2(π, s), and in
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[A-R] that LAs(π, s) = LAs,2(π, s), both proofs using global methods.
As a second application of our principal result, we show (by local methods) in Theorem 4.2 of
section 4 that for an ordinary representation (i.e. corresponding through Langlands correspon-
dance to an imprimitive 2 dimensional representation of the Weil-Deligne group) π of GL(2,K),
we have LW (π, s) = LAs(π, s) . We recall that for odd residual characteristic, every smooth
irreducible infinite dimensional representation of GL(2,K) is ordinary.
In the appendix (section 5), we describe in Theorem 5.4 distinguished dihedral supercuspidal
representations, this description is used in section 4 for the computation of LAs for such repre-
sentations.

2 Preliminaries

Let E1 be a field, and E2 a finite galois extension of E1, we note Gal(E2/E1) the Galois group
of E2 over E1, and we note TrE2/E1

(respectively NE2/E1
) the trace (respectively the norm)

application from E2 to E1. If E2 is quadratic over E1, we note σE2/E1
the non trivial element of

Gal(E2/E1).
In the rest of this paper, the letter F will always designate a non archimedean local field of
characteristic zero in a fixed algebraic closure F̄ , and the letter K a quadratic extension of F in
F̄ . We note qF and qK the cardinality of their residual fields, RK and RF their integer rings,
PK and PF the maximal ideals of RK and RF , and UK and UF their unit groups. We also note
vK and vF the respective normalized valuations, and | |K and | |F the respective absolute values.
We fix an element δ of K − F such that δ2 ∈ F , hence K = F (δ).
Let ψ be a non trivial character of K trivial on F , it is of the form x 7→ ψ′ ◦ TrK/F (δx) for some
non trivial character ψ′ of F .
Whenever G is an algebraic group defined over F , we note G(K) its K-points and G(F ) its
F -points. The group GL(n) is noted Gn, its standard maximal unipotent subgroup is noted Nn.
If π is a representation of a group, we also note π its isomorphism class. Let µ be a character of
F ∗, we say that a representation π of Gn(K) is µ-distinguished if it admits on its space Vπ a linear
form L, which verifies the following: for v in V and h in Gn(K), then L(π(h)v) = µ(det(h))L(v).
If µ = 1, we say that π is distinguished.
We note Kn(F ) the maximal compact subgroup Gn(RF ) of Gn(F ), and for r ≥ 1, we note
Kn,r(F ), the congruence subgroup In +Mn(P r

F ).

The character ψ defines a character ofNn(K) that we still note ψ, given by ψ(n) = ψ(
∑n−1

i=1 ni,i+1).

We now recall standard results from [F2].
Let π be a generic smooth irreducible representation of Gn(K), we note π∨ its smooth contra-
gredient, and cπ its central character.
We note D(Fn) the space of smooth functions with compact support on Fn, and D0(F

n) the
subspace of D(Fn) of functions vanishing at zero. We note ρ the natural action of Gn(F ) on
D(Fn), given by ρ(g)φ(x1, . . . , xn) = φ((x1, . . . , xn)g), and we note η the line vector (0, . . . , 0, 1)
of length n.
If W belongs to the Whittaker model W (π, ψ) of π, and φ belongs to D(Fn), the following integral
converges for s of real part large enough:

∫

Nn(F )\Gn(F )

W (g)φ(ηg)|det(g)|F
s
dg.

This integral as a function of s has a meromorphic extension to C which we note Ψ(W,φ, s).
For s of real part large enough, the function Ψ(W,φ, s) is a rational function in q−s

F , which actually
has a Laurent series development.
The C-vector space generated by these functions is in fact a fractional ideal I(π) of C[q−s

F , qs
F ].

This ideal I(π) is principal, and has a unique generator of the form 1/P (q−s
F ), where P is a

polynomial with P (0) = 1.
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Definition 2.1. We note LAs(π, s) the generator of I(π) defined just above, and call it the Asai
L-function of π.

Remark 2.1. If P belongs to C[X ] and has constant term equal to one, then the function
of the complex variable LP : s 7→ 1/P (q−s

F ) is called an Euler factor. It is a meromorphic
function on C and admits (2iπ/Ln(qF ))Z as a period subgroup. Hence if s0 is a pole of LP , the
elements s0 + (2iπ/Ln(qF ))Z are also poles of LP , with same multiplicities, we identify s0 and
s0 + (2iπ/Ln(qF ))Z when we talk about poles. A pole s0 then corresponds to a root α0 of P by
the formula q−s0 = α0, its multiplicity in LP equal to the multiplicity of α0 in P .

Let wn be the matrix of Gn(Z) with ones on the antidiagonal, and zeroes elsewhere. For W
in W (π, ψ), we note W̃ the function g 7→W (wn

tg−1) which belongs to W (π∨, ψ−1), and we note

φ̂ the Fourier transform (with respect to ψ′ an its associate autodual Haar measure) of φ inD(Fn).

Theorem 2.1. (Functional equation)(Th. of [F2])
There exists an epsilon factor ǫAs(π, s, ψ) which is, up to scalar, a (maybe negative) power of

qs, such that the following functional equation is satisfied for any W in W (π, ψ) and any φ in
D(Fn):

Ψ(W̃ , φ̂, 1 − s)/LAs(π
∨, 1 − s) = cπ(−1)n−1ǫAs(π, s, ψ)Ψ(W,φ, s)/LAs(π, s).

3 Poles of the Asai L-function and distinguishedness

Now suppose LAs(π, s) has a pole at s0, its order d is the highest order pole of the family of
functions of I(π).
Then we have the following Laurent expansion at s0:

Ψ(W,φ, s) = Bs0
(W,φ)/(qs − qs0)d + smaller order terms. (1)

The residue Bs0
(W,φ) defines a non zero bilinear form on W (π, ψ) × D(Fn), satisfying the

quasi-invariance:

Bs0
(π(g)W,ρ(g)φ) = |det(g)|−s0

F Bs0
(W,φ).

Following [C-P] for the split case K = F × F , we state the following definition:

Definition 3.1. A pole of the Asai L-function LAs(π, s) at s0 is called exceptional if the associ-
ated bilinear form Bs0

vanishes on W (π, ψ) ×D0(F
n).

As an immediate consequence, if s0 is an exceptional pole of LAs(π, s), then Bs0
is of the form

Bs0
(W,φ) = λs0

(W )φ(0), where λs0
is a non zero |det( )|−s0

F invariant linear form on W (π, ψ).
Hence we have:

Proposition 3.1. Let π be a generic irreducible representation of Gn(K), and suppose its Asai
L-function has an exceptional pole at zero, then π is distinguished.

We note Pn(F ) the affine subgroup of Gn(F ), given by matrices with last row equal to η.
For more convenience, we introduce a second L-function: for W in W (π, ψ), by standard argu-
ments, the following integral is convergent for Re(s) large, and defines a rational function in q−s,
which has a Laurent series development:

∫

Nn(F )\Pn(F )

W (p)|det(p)|F
sdp.

We note Ψ1(W, s) the corresponding Laurent series. By standard arguments again, the vector
space generated by these functions is a fractional ideal I1(π) of C[q−s

F , qs
F ], which has a unique
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generator of the form 1/Q(q−s), where Q is a polynomial with Q(0) = 1. We note L1(π, s) this
generator.

Lemma 3.1. ([J-P-S] p. 393)
Let W be in W (π, ψ), one can choose φ with support small enough around (0, . . . , 0, 1) such

that Ψ(W,φ, s) = Ψ1(W, s− 1).

Proof. As we gave a reference, we only sketch the proof. We first recall the following integration
formula (cf. proof of the proposition in paragraph 4 of [F]), for Re(s) >> 0:

Ψ(W,φ, s) =

∫

Kn(F )

∫

Nn(F )\Pn(F )

W (pk)|det(p)|s−1
F dp

∫

F∗

φ(ηak)cπ(a)|a|ns
F d∗adk. (2)

Choosing r large enough for W to be right invariant under Kn,r(F ), we take φ a positive
multiple of the characteristic function of ηKn,r(F ), and conclude from equation (2).

Hence we have the inclusion I1(π) ⊂ I(π), which implies that L1(π, s) = LAs(π, s)R(qs, q−s)
for some R in C[q−s

F , qs
F ]. But because L1 and LAs are both Euler factors, R is actually just a

polynomial in q−s, with constant term equal to one. Noting Lrad(ex)(π, s) its inverse (which is an
Euler factor), we have LAs(π, s) = L1(π, s)Lrad(ex)(π, s), we will say that L1 divides LAs. The
explanation for the notation Lrad(ex) is given in Remark 3.1.

We now give a characterisation of exceptional poles:

Proposition 3.2. A pole of LAs(π, s) is exceptional if and only if it is a pole of the function
Lrad(ex)(π, s) defined just above.

Proof. From equation (2), it becomes clear that the vector space generated by the integrals
Ψ(W,φ, s) with W in W (π, ψ) and φ in D0(F

n), is contained in I1(π), but because of Lemma
3.1, those two vector spaces are equal. Hence L1(π, s) is a generator of the ideal generated as a
vector space by the functions Ψ(W,φ, s) with W in W (π, ψ) and φ in D0(F

n).
From equation (1), if s0 is an exceptional pole, a function Ψ(W,φ, s), with φ in D0(F

n), cannot
have a pole of highest order at s0, hence we have one implication.
Now if the order of the pole s0 for LAs(π, s) is stricly greater than the one of L1(π, s), then the
first residual term corresponding to a pole of highest order of the Laurent development of any
function Ψ(W,φ, s) with φ(0) = 0 must be zero, and zero is exceptional.

Lemma 3.1 also implies:

Proposition 3.3. The functional Λπ,s : W 7→ Ψ1(W, s − 1)/LAs(π, s) defines a (maybe null)
linear form on W (π, ψ) which transforms by |det( )|1−s

F under the affine subgroup Pn(F ).
For fixed W in W (π, ψ), then s 7→ Λπ,s(W ) is a polynomial of q−s.

Now we are able to prove the converse of Proposition 3.1:

Theorem 3.1. A generic irreducible representation π of Gn(K) is distinguished if and only if
LAs(s, π) admits an exceptional pole at zero.

Proof. We only need to prove that if π is distinguished, then LAs(s, π) admits an exceptional
pole at zero, so we suppose π distinguished.
From equation (2), for Re(s) << 0, and π distinguished (so that cπ has trivial restriction to F ∗),
one has:

Ψ(W̃ , φ̂, 1 − s) =

∫

Kn(F )

∫

Nn(F )\Pn(F )

W̃ (pk)|det(p)|−s
F dp

∫

F∗

φ̂(ηak)|a|
n(1−s)
F d∗adk. (3)
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This implies that:

Ψ(W̃ , φ̂, 1 − s)/LAs(π
∨, 1 − s) =

∫

Kn(F )

Λπ∨,1−s(π
∨(k)W̃ )

∫

F∗

φ̂(ηak)|a|
n(1−s)
F d∗adk. (4)

The second member of the equality is actually a finite sum:
∑

i λiΛπ∨,1−s(π
∨(ki)W̃ )

∫
F∗ φ̂(ηaki)|a|

n(1−s)
F d∗a,

where the λi’s are positive constants and the ki’s are elements of Kn(F ) independant of s.

Note that there exists a positive constant ǫ, such that forRe(s) < ǫ, the integral
∫

F∗ φ̂(ηaki)|a|
n(1−s)
F d∗a

is absolutely convergent, and defines a holomorphic function. So we have an equality (equality 4)
of analytic functions (actually of polynomials in q−s), hence it is true for all s such that Re(s) < ǫ.
For s = 0, we get:

Ψ(W̃ , φ̂, 1)/LAs(π
∨, 1) =

∫

Kn(F )

Λπ∨,1(π
∨(k)W̃ )

∫

F∗

φ̂(ηak)|a|nFd
∗adk.

But as π is distinguished, so is π∨, and as Λπ∨,1 is a Pn(F )-invariant linear form onW (π∨, ψ−1),
it follows from theorem 3.1.2 of [Ok] that it is actually Gn(F )-invariant.
Finally

Ψ(W̃ , φ̂, 1)/LAs(π
∨, 1) = Λπ∨,1(W̃ )

∫

Kn(F )

∫

F∗

φ̂(ηak)|a|nF d
∗adk

which is equal to:

Λπ∨,1(W̃ )

∫

Pn(F )\Gn(F )

φ̂(ηg)dµg

where dµ is up to scalar the unique |det( )|−1 invariant measure on Pn(F )\Gn(F ). But as

∫

Pn(G)\Gn(F )

φ̂(ηg)dµg =

∫

F n

φ̂(x)dx = φ(0),

we deduce from the functional equation that Ψ(W,φ, 0)/LAs(π, 0) = 0 whenever φ(0) = 0.
As one can choose W , and φ vanishing at zero, such that Ψ(W,φ, s) is the constant function equal
to 1 (see the proof of Theorem 1.4 in [A-K-T]), hence LAs(π, s) has a pole at zero, which must
be exceptional.

For a discrete series representation π, it follows from Lemma 2 of [K], that the integrals of
the form ∫

Nn(F )\Pn(F )

W (p)|det(p)|F
s−1

dp.

converge absolutely for Re(s) > −ǫ for some positive ǫ, hence as functions of s, they cannot have
a pole at zero.
This implies that L1(π, s) has no pole at zero, hence Theorem 3.1 in this case gives:

Proposition 3.4. ([K], Theorem 4)

A discrete series representation π of Gn(K) is distinguished if and only if LAs(s, π) admits a
pole at zero.

Let s0 be in C. We notice that if π is a generic irreducible representation of Gn(K), it is

| |−s0

F -distinguished if and only if π ⊗ | |
s0/2
K is distinguished, but as LAs(s, π ⊗ | |

s0/2
K ) is equal to

LAs(s+ s0, π), Theorem 3.1 becomes:

Theorem 3.2. A generic irreducible representation π of Gn(K) is | |−s0

F -distinguished if and
only if LAs(s, π) admits an exceptional pole at s0.
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Remark 3.1. Let P and Q be two polynomials in C[X ] with constant term 1, we say that
the Euler factor LP (s) = 1/P (q−s

F ) divides LQ(s) = 1/Q(q−s
F ) if and only P divides Q. We note

LP ∨LQ the Euler factor 1/(P∨Q)(q−s
F ), where the l.c.m P ∨Q is chosen such that (P ∨Q)(0) = 1.

We define the g.c.d LP ∧ LQ the same way.
It follows from equation (2) that if cπ |F∗ is ramified, then LAs(π, s) = L1(π, s). It also follows

from the same equation that if cπ |F∗ = | |−s1

F for some s1 in C, then Lrad(ex)(π, s) divides

1/(1 − qs1−ns
F ). Anyway, Lrad(ex)(π, s) has simple poles.

Now we can explain the notation Lrad(ex). We refer to [C-P] where the case K = F ×F is treated.

In fact, in the latter, Lex(π, s) is the function 1/Pex(π, q−s
F ), with Pex(π, q−s

F ) =
∏

si
(1− qsi−s

F )di ,
where the si’s are the exceptional poles of LAs(π, s) and the di’s their order in LAs(π, s). Hence
Lrad(ex)(π, s) = 1/Prad(ex)(π, q

−s
F ), where Prad(ex)(π,X) is the unique generator with constant

term equal to one, of the radical of the ideal generated by Pex(π,X) in C[X ].

We proved:

Proposition 3.5. Let π be an irreducible generic representation of Gn(K), the Euler factor
Lrad(ex)(π, s) has simple poles, it is therefore equal to

∏
1/(1− qs0−s

F ) where the product is taken

over the qs0

F ’s such that π is | |−s0

F -distinguished.

Suppose now that π is supercuspidal, then the restriction to Pn(K) of any W in W (π, ψ) has
compact support modulo Nn(K), hence Ψ1(W, s−1) is a polynomial in q−s, and L1(π, s) is equal
to 1. Hence Proposition 3.5 becomes:

Proposition 3.6. Let π be an irreducible supercuspidal representation of Gn(K), then LAs(π, s) =∏
1/(1 − qs0−s) where the product is taken over the qs0 ’s such that π is | |−s0

F -distinguished.

4 Asai L-functions of GL(2)

4.1 Asai L-functions for imprimitive Weil-Deligne representations of

dimension 2

The aim of this paragraph is to compute LW (ρ, s) (see the introduction) when ρ is an imprimitive
two dimensional representation of the Weil-Deligne group of K.

We note WK (resp. WF ) the Weil group of K (resp. F ), IK (resp. IF ) the inertia subgroup
of WK (resp. WF ), W ′

K (resp. W ′
F ) the group WK × SL(2,C) (resp. WF × SL(2,C)) and I ′K

(resp. I ′F ) the group IK × SL(2,C) (resp. IF × SL(2,C)). We note φF a Froebenius element of
WF , and we also note φ′F the element (φF , I2) of W ′

F .
We note sp(n) the unique (up to isomorphism) complex irreducible representation of SL(2,C) of
dimension n.
If ρ is a finite dimensional representation of W ′

K , we note M
W ′

F

W ′

K
(ρ) the representation of W ′

F

induced multiplicatively from ρ. We recall its definition:

If V is the space of ρ, then the space of M
W ′

F

W ′

K
(ρ) is V ⊗ V . Noting τ an element of WF −WK ,

and σ the element (τ, I) of W ′
F , we have:

M
W ′

F

W ′

K
(ρ)(h)(v1 ⊗ v2) = ρ(h)v1 ⊗ ρσ(h)v2

for h in W ′
K , v1 and v2 in V .

M
W ′

F

W ′

K
(ρ)(σ)(v1 ⊗ v2) = ρ(σ2)v2 ⊗ v1

for v1 and v2 in V .

We refer to paragraph 7 of [P] for definition and basic propositionerties of multiplicative
induction in the general case.
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Definition 4.1. The function LW (ρ, s) is by definition the usual L-function of the representation

M
W ′

F

W ′

K
(ρ), i.e. LW (ρ, s) = L(M

W ′

F

W ′

K
(ρ), s).

i) If ρ is of the form Ind
W ′

K

W ′

B
(ω) for some multiplicative character ω of a biquadratic extension

B of F , we note K ′ and K ′′ the two other extensions between F and B. If we call σ1 an
element of W ′

K which is not in W ′
K′ ∪ W ′

K′′ and σ3 an element of W ′
K′′ which is not in

W ′
K ∪W ′

K′ , then σ2 = σ3σ1 is an element of W ′
K′ which is not in W ′

K ∪W ′
K′′ .

The elements (1, σ1, σ2, σ3) are representatives of W ′
F /W

′
B, and 1 and σ3 are representatives

of W ′
F /W

′
K .

If one identifies ω with a character (still called ω) of B∗, then ωσ1 identifies with ω ◦ σB/K ,
ωσ2 with ω ◦σB/K′ and ωσ3 with ω ◦σB/K′′ . One then verifies that if a belongs to WB, one
has:
• Tr[M

W ′

F

W ′

K
(ρ)(a)] = Tr[Ind

W ′

F

W ′

K′

(M
W ′

K′

W ′

B
(ω))(a)] + Tr[Ind

W ′

F

W ′

K′′

(M
W ′

K′′

W ′

B
(ω))(a)] = ωωσ2 +

ωωσ3 + ωσ1ωσ2 + ωσ1ωσ3 .

• Tr[M
W ′

F

W ′

K
(ρ)(σ1a)] = Tr[Ind

W ′

F

W ′

K′

(M
W ′

K′

W ′

B
(ω))(σ1a)] + Tr[Ind

W ′

F

W ′

K′′

(M
W ′

K′′

W ′

B
(ω))(σ1a)] = 0.

• Tr[M
W ′

F

W ′

K
(ρ)(σ2a)] = Tr[Ind

W ′

F

W ′

K′

(M
W ′

K′

W ′

B
(ω))(σ2a)]+Tr[Ind

W ′

F

W ′

K′′

(M
W ′

K′′

W ′

B
(ω))(σ2a)] = ω(σ2aσ2a)+

ωσ1(σ2aσ2a).

• Tr[M
W ′

F

W ′

K
(ρ)(σ3a)] = Tr[Ind

W ′

F

W ′

K′

(M
W ′

K′

W ′

B
(ω))(σ3a)]+Tr[Ind

W ′

F

W ′

K′′

(M
W ′

K′′

W ′

B
(ω))(σ3a)] = ω(σ3aσ3a)+

ωσ1(σ3aσ3a).
Hence we have the isomorphism

M
W ′

F

W ′

K
(ρ) ≃ Ind

W ′

F

W ′

K′

(M
W ′

K′

W ′

B
(ω)) ⊕ Ind

W ′

F

W ′

K′′

(M
W ′

K′′

W ′

B
(ω)).

From this we deduce that

L(M
W ′

F

W ′

K
(ρ), s) = L(ω|K′∗ , s)L(ω|K′′∗ , s).

ii) Let L be a quadratic extension of F , such that ρ = Ind
W ′

K

W ′

L
(χ), with χ regular, is not isomorphic

to a representation of the form Ind
W ′

K

W ′

B
(ω) as in i), then

L(M
W ′

F

W ′

K
(ρ), s) = 1.

Indeed, we show thatM
W ′

F

W ′

K
(ρ)I′

F = {0}. If it wasn’t the case, the representation (M
W ′

F

W ′

K
(ρ), V )

would admit a I ′F -fixed vector, and so would its contragredient V ∗. Now in the subspace

of I ′F -fixed vectors of V ∗, choosing an eigenvector of M
W ′

F

W ′

K
(ρ)(φF ), we would deduce the

existence of a linear form L on (M
W ′

F

W ′

K
(ρ), V ) which transforms under W ′

F by an unramified

character µ of W ′
F . If we identify µ with a character µ′ of F ∗, the restriction of µ to W ′

K

corresponds to µ′ ◦ NK/F of K∗, so we can write it as θθσ, where θ is a character of W ′
K

corresponding to an extension of µ′ to K∗. As the restriction of M
W ′

F

W ′

K
to W ′

K is isomorphic

to ρ ⊗ ρσ, we deduce that θ−1ρ ⊗ (θ−1ρ)σ is W ′
K distinguished, that is θρvee ≃ (θ−1ρ)

σ
.

But from the proof of Theorem 5.2, this would imply that θ−1ρ hence ρ, could be induced
from a character of a biquadratic extension of F , which we supposed is not the case.

iii) Suppose ρ = sp(2) acts on the space C
2 with canonical basis (e1, e2) by the natural action

ρ [h,M ] (v) = M(v) for h in WK , M in SL(2,C) and v in C2. Then the space of M
W ′

F

W ′

K
(ρ) is

V⊗V and SL(2,C) acts on it as sp(2)⊗sp(2). Decomposing V ⊗V as the direct sumAlt(V )⊕
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Sym(V ), we see that SL(2,C) acts as 1 on Alt(V ), and M
W ′

F

W ′

K
(ρ)

[
1,

(
x 0
0 x−1

)]
(e1 ⊗

e1) = x2e1 ⊗ e1. Hence the representation of SL(2,C) on Sym(V ) must be sp(3). The Weil

groupWF acts as ηK/F on Alt(V ) and trivially on Sym(V ), finally M
W ′

F

W ′

K
(ρ) is isomorphic to

sp(3) ⊕ ηK/F . Tensoring with a character χ, we have M
W ′

F

W ′

K
(χsp(2)) = χ|F∗M

W ′

F

W ′

K
(sp(2)) =

χ|F∗ηK/F ⊕ χ|F∗sp(3). Hence one has the following equality:

L(M
W ′

F

W ′

K
(χsp(2)), s) = L(χ|F∗ηK/F , s)L(χ|F∗ , s+ 1).

iv) If ρ = λ ⊕ µ, with λ and µ two characters of W ′
K , then from [P], Lemma 7.1, we have

M
W ′

F

W ′

K
(ρ) = λ|F∗ ⊕ µ|F∗ ⊕ Ind

W ′

F

W ′

K
(λµσ). Hence we have

L(M
W ′

F

W ′

K
(ρ)) = L(λ|F∗ , s)L(µ|F∗ , s)L(λµσ, s).

4.2 Asai L-functions for ordinary representations of GL(2)

In this subsection, we compute Asai L-functions for ordinary (i.e. non exceptional) representa-
tions of G2(K), and prove (Theorem 4.2) that they are equal to the corresponding functions LW

of imprimitive representations of W ′
K .

In order to compute LAs, we first compute L1, but this latter computation is easy because
Kirillov models of infinite dimensional irreducible representations of G2(K) are well-known (see
[B], Th. 4.7.2 and 4.7.3).
Let π be an irreducible infinite dimensional (hence generic) representation of G2(K), we have the
following situations for the computation of L1(π, s).

i) and ii) If π is supercuspidal, its Kirillov model consists of functions with compact support on
K∗, hence

L1(π, s) = 1.

iii) If π = σ(χ) (σ(χ| |K
1/2
, χ| |K

−1/2
) in [B]) is a special series representation of G2(K), twist

of the Steinberg representation by the character χ of K∗, the Kirillov model of π consists of
functions of D(K) multiplied by χ| |K . Hence their restrictions to F are functions of D(F )

multiplied by χ| |F
2
, and the ideal I1(π) is generated by functions of s of the form

∫

F∗

φ(t)χ(t)|t|F
s−1

|t|F
2
d∗t =

∫

F∗

φ(t)χ(t)|t|F
s+1

d∗t,

for φ in D(F ), hence we have

L1(π, s) = L(χ|F∗ , s+ 1).

iv) If π = π(λ, µ) is the principal series representation (λ and µ being two characters of K∗, with
λµ−1 different from | | and | |−1) corresponding to the representation λ⊕ µ of W ′

K .

If λ 6= µ, the Kirillov model of π is given by functions of the form | |K
1/2
χφ1 + | |K

1/2
µφ2,

for φ1 and φ2 in D(K), and

L1(π, s) = L(λ|F∗ , s) ∨ L(µ|F∗ , s).

If λ = µ, the Kirillov model of π is given by functions of the form | |K
1/2
λφ1+| |K

1/2
λvK(t)φ2,

for φ1 and φ2 in D(K), and
L1(π, s) = L(λ|F∗ , s)2.
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In order to compute Lrad(ex) for ordinary representations, we need to know when they are

distinguished by a character | |−s0

F for some s0 in C, we will then use Theorem 3.2. The answer
is given by the following, which is a mix of Theorem 5.4 and proposition B.17 of [F-H]:

Theorem 4.1. a) A dihedral supercuspidal representation π of G2(K) is | |−s0

F -distinguished if
and only if there exists a quadratic extension B of K, biquadratic over F (hence there are
two other extensions between F and B that we call K ′ and K ′′), and a character of B∗

regular with respect to NB/K which restricts either to K ′ as | |−s0

K′ or to K ′′ as | |−s0

K′′ , such
that π is equal to π(ω).

b) Let µ be a character of K∗, then the sepcial series representation σ(µ) is | |−s0

F -distinguished
if and only if µ restricts to F ∗ as ηK/F | |

−s0

F .

c) Let λ and µ be two characters of K∗, with λµ−1 and λ−1µ different from | |K , then the
principal series representation π(λ, µ) is | |−s0

F -distinguished if and only if either λ and µ
restrict as | |−s0

F to F ∗ or λµσ is equal to | |−s0

K .

Proof. Let π be a representation, it is | |−s0

F -distinguished if and only if π⊗| |
s0/2
K is distinguished

because | |
−s0/2
K extends | |−s0

F , it then suffices to apply Theorem 5.4 and proposition B.17 of

[F-H]. We give the full proof for case a). Suppose π is dihedral supercuspidal and π ⊗ | |
s0/2
K is

distinguished. From Theorem 5.4, the representation π ⊗ | |
s0/2
K must be of the form π(ω), for ω

a character of quadratic extension B of K, biquadratic over F , such that if we call K ′ and K ′′

two other extensions between F and B, ω doesn’t factorize through NB/K and restricts either

trivially on K ′∗, or trivially on K ′′∗. But π is equal to π(ω) ⊗ | |
−s0/2
K = π(ω| |

−s0/2
B ) because

| |B = | |K ◦ NB/K . As | |
−s0/2
B restricts to K ′ (resp. K ′′) as | |−s0

K′ (resp. | |−s0

K′′ ), case a)
follows.

We are now able to compute Lrad(ex), hence LAs for ordinary representations.

i) Suppose that π = π(Ind
W ′

K

W ′

B
(ω)) = π(ω) is supercuspidal, with Langlands parameter Ind

W ′

K

W ′

B
(ω),

where ω is a multiplicative character of a biquadratic extension B over F that doesn’t fac-
torize through NB/K .
We note K ′ and K ′′ the two other extensions between B and F . Here L1(π, s) is equal to
one.
We have the following series of equivalences:

s0 is a pole of LAs(π(ω), s) ⇐⇒ π(ω) is | |−s0

F − distinguished

⇐⇒ ω|K′∗ = | |−s0

K′ or ω|K′′∗ = | |−s0

K′′

⇐⇒ s0 is a pole of L(ω|K′∗ , s) or of L(ω|K′′∗ , s)

⇐⇒ s0 is a pole of L(ω|K′∗ , s) ∨ L(ω|K′′∗ , s)

As both functions LAs(π(ω), s) and L(ω|K′∗ , s)∨L(ω|K′′∗ , s) have simple poles and are Euler
factors, they are equal. Now suppose that L(ω|K′∗ , s) and L(ω|K′′∗ , s) have a common pole

s0, this would imply that ω|K′∗ = | |−s0

K′ and ω|K′′∗ = | |−s0

K′′ , which would mean that ω| |
s0/2
B is

trivial on K ′∗K ′′∗. According to Lemma 5.2, this would contradict the fact that ω does not
factorize through NB/K , hence L(ω|K′∗ , s) ∨ L(ω|K′′∗ , s) = L(ω|K′∗ , s)L(ω|K′′∗ , s). Finally
we proved:

LAs(π(ω), s) = L(ω|K′∗ , s)L(ω|K′′∗ , s).

ii) Suppose that π is a supercuspidal representation, corresponding to an imprimitive repre-
sentation of W ′

K that cannot be induced from a character of the Weil-Deligne group of
a biquadratic extension of F . Then necessarily π cannot be | |−s0

F -distinguished, for any
complex number s0 of C.
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If it was the case, from Theorem 4.1, it would correspond to a Weil representation π(ω)
for some multiplicative character of a biquadratic extension of F , which cannot be. Hence
Lrad(ex)(π, s) has no pole and is equal to one because it is an Euler factor, so we proved
that:

LAs(π, s) = 1.

iii) If π is equal to σ(χ), then L1(π, s) = L(χ|F∗ , s+ 1). We want to compute Lrad(ex)(π, s), we
have the following series of equivalences:

s0 is an exceptional pole of LAs(σ(χ), s) ⇐⇒ σ(χ) is | |−s0

F − distinguished

⇐⇒ χ|F∗ = ηK/F | |
−s0

F

⇐⇒ s0 is a pole of L(χ|F∗ηK/F , s)

As both functions Lrad(ex)(π, s) and L(χ|F∗ηK/F , s) have simple poles and are Euler factors,
they are equal, we thus have:

LAs(σ(χ) = L(χ|F∗ , s+ 1)L(χ|F∗ηK/F , s).

iv) If π = π(λ, µ), we first compute Lrad(ex)(π, s). We have the following series of equivalences:

s0 is an exceptional pole of LAs(π(λ, µ), s) ⇐⇒ π(λ, µ) is | |−s0

F − distinguished

⇐⇒ λµσ = | |−s0

K or, λ|F∗ = | |−s0

F and µ|F∗ = | |−s0

F

⇐⇒ s0 is a pole of L(λµσ, s) or of L(λ|F∗ , s) ∧ L(µ|F∗ , s)

⇐⇒ s0 is a pole of L(λµσ, s) ∨ [L(λ|F∗ , s) ∧ L(µ|F∗ , s)]

As both functions Lrad(ex)(π(λ, µ), s) and L(λµσ, s) ∨ [L(λ|F∗ , s) ∧ L(µ|F∗ , s)] have simple
poles and are Euler factors, they are equal.

If λ 6= µ, then L1(π, s) = L(λ|F∗ , s) ∨ L(µ|F∗ , s). But L(λµσ, s) and L(λ|F∗ , s) ∧ L(µ|F∗ , s)

have no common pole. If there was a common pole s0, one would have λµσ = | |−s0

K ,
λ|F∗ = | |−s0

F and µ|F∗ = | |−s0

F . From µ|F∗ = | |−s0

F , we would deduce that µ ◦ NK/F =

| |−s0

K , i.e. µσ = | |−s0

K µ−1, and λµσ = | |−s0

K would imply λ = µ, which is absurd.
Hence Lrad(ex)(π, s) = L(λµσ, s)[L(λ|F∗ , s) ∧ L(µ|F∗ , s)], and finally we have LAs(π, s) =
L1(π, s)Lrad(ex)(π, s) = L(λ|F∗ , s)L(µ|F∗ , s)L(λµσ, s).
If λ is equal to µ, then L1(π, s) = L(λ|F∗ , s)2, and Lrad(ex)(π(λ, µ), s) = L(λ ◦ NK/F , s) ∨
L(λ|F∗ , s). As L(λ ◦ NK/F , s) = L(λ|F∗ , s)L(ηK/Fλ|F∗ , s), we have Lrad(ex)(π(λ, µ), s) =
L(λ ◦NK/F , s). Again we have LAs(π, s) = L(λ|F∗ , s)L(µ|F∗ , s)L(λµσ, s).
In both cases, we have

LAs(π(λ, µ), s) = L(λ|F∗ , s)L(µ|F∗ , s)L(λµσ, s).

Eventually, comparing with equalities of subsection 4.1, we proved the following:

Theorem 4.2. Let ρ 7→ π(ρ) be the Langlands correspondence from two dimensional representa-
tions of W ′

K to smooth irreducible infinite dimensional representations of G2(K), then if ρ is not
primitive, π(ρ) is ordinary and we have the following equality of L-functions:

LAs(π(ρ), s) = L(M
W ′

F

W ′

K
(ρ), s)

As said in the introduction, combining Theorem 1.6 of [A-R] and Theorem of pargraph 1.5 in

[He], one gets that L(M
W ′

F

W ′

K
(ρ), s) = LAs(π(ρ), s) for π(ρ) a discrete series representation, so that

we have actually the following:
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Theorem 4.3. Let ρ 7→ π(ρ) be the Langlands correspondence from two dimensional represen-
tations of W ′

K to smooth irreducible infinite dimensional representations of G2(K), we have the
following equality of L-functions:

LAs(π(ρ), s) = L(M
W ′

F

W ′

K
(ρ), s)

5 Appendix. Dihedral supercuspidal distinguished repre-

sentations

The aim of this section is to give a description of dihedral supercuspidal distinguished represen-
tations of G2(K) in terms of Langlads parameter, it is done in Theorem 5.4.

5.1 Preliminary results

Let E be a local field, E′ be a quadratic extension of E, χ a character of E∗, π be a smooth
irreducible infinite dimensional representation of G2(E), and ψ a non trivial character of E.
We note L(χ, s) and ǫ(χ, s, ψ) the functions of the complex variable s defined before proposition
3.5 in [J-L].We note γ(χ, s, ψ) the ratio ǫ(χ, s, ψ)L(χ, s)/L(χ−1, 1 − s).
We note L(π, s) and ǫ(π, s, ψ) the functions of the complex variable s defined in Theorem 2.18 of
[J-L]. We note γ(π, s, ψ) the ratio ǫ(π, s, ψ)L(π, s)/L(π∨, 1 − s).
We note λ(E′/E, ψ) the Langlands-Deligne factor defined before proposition 1.3 in [J-L], it is
equal to ǫ(ηE′/E , 1/2, ψ). As ηE′/E is equal to η−1

E′/E , the factor λ(E′/E, ψ) is also equal to

γ(ηE′/E , 1/2, ψ).
From theorem 4.7 of [J-L], if ω is a character of E′∗, then L(π(ω), s) is equal to L(ω, s), and
ǫ(π, s, ψ) is equal to λ(E′/E, ψ)ǫ(π, s, ψ), hence γ(π, s, ψ) is equal to λ(E′/E, ψ)γ(π, s, ψ).

We will need four results. The first is due to Frhlich and Queyrut, see [D] theorem 3.2 for a
quick proof using a Poisson formula:

Proposition 5.1. Let E be a local field, E′ be a quadratic extension of E, χ′ a character of E′∗

trivial on E∗, and ψ′ a non trivial character of E′ trivial on E, then γ(χ′, 1/2, ψ′) = 1.

The second is a criterion of Hakim:

Theorem 5.1. ([Ha], Theorem 4.1) Let π be an irreducible supercuspidal representation of G2(K)
with central character trivial on F ∗, and ψ a nontrivial character of K trivial on F . Then π is
distinguished if and only if γ(π ⊗ χ, 1/2, ψ) = 1 for every character χ of K∗ trivial on F ∗.

The third is due to Flicker:

Theorem 5.2. ([F1], proposition 12) Let π be a smooth irreducible distinguished representation
of Gn(K), then πσ is isomorphic to π∨.

The fourth is due to Kable in the case of Gn(K), see [A-T] for a local proof in the case of
G2(K):

Theorem 5.3. ([A-T], Proposition 3.1 There exists no supercuspidal representation of G2(K)
which is distinguished and ηK/F -distinguished at the same time.

5.2 Distinction criterion for dihedral supercuspidal representations

As a dihedral representation’s parameter is a multiplicative character of a quadratic extension L
of K, we first look at the propositionerties of the tower F ⊂ K ⊂ L. Three cases arise:
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B

F

K K’                   K’’          

Figure 1:

1. L/F is biquadratic (hence Galois), it contains K and two other quadratic extensions F , K ′

and K ′′.

Its Galois group is isomorphic with Z/2Z ×Z/2Z, its non trivial elements are σL/K , σL/K′

and σL/K′′ . The conjugation σL/K extend σK′/F and σK′′/F .

2. L/F is cyclic with Galois group isomorphic with Z/4Z, in this case we fix fix an element σ̃
in G(L/F ) extending σ, it is of order 4.

3. L/F non Galois. Then its Galois Closure M is quadratic over L and the Galois group of
M over F is dihedral with order 8. To see this, we consider a morphism θ̃ from L to F̄
which extends θ. Then if L′ = θ̃(L), L and L′ are distinct, quadratic over K and generate
M biquadratic over K. M is the Galois closure of L because any morphism from L into F̄ ,
either extends θ, or the identity map of K, so that its image is either L or L′, so it is always
included in M . Finally the Galois group M over F cannot be abelian (for L is not Galois
over F ), it is of order 8, and it’s not the quaternion group which only has one element of
order 2, whereas here σM/L and σM/L′ are of order 2. Hence it is the dihedral group of
order 8 and we have the folowing lattice, where M/K ′ is cyclic of degree 4, M/K and B/F
are biquadratic.

L’ B N’

K K’ K’’

F

L

M

N

Figure 2:

We now prove the following proposition:

Proposition 5.2. If a supercuspidal dihedral representation π of G2(K) verifies π∨ = πσ, there
exists a biquadratic extension B of F , containing K, such that if we call K ′ and K ′′ the two
other extensions between F and B, there is a character ω of B trivial either on NB/K′(B∗) or
on NB/K′′(B∗), such that π = π(ω).

Proof. Let L be a quadratic extension ofK and ω a regular multiplicative of L such that π = π(ω),
we note σ the conjugation of L over K, three cases show up:

1. L/F is biquadratic. The conjugations σL/K′ and σL/K′′ both extend σ, hence from Theorem
1 of [G-L], we have π(ω)σ = π(ωσL/K′ ). The condition π∨ = πσ which one can also read
π(ω−1) = π(ωσL/K′ ), is then equivalent from Appendix B, (2)b)1) of [G-L], to ωσL/K′ = ω−1

or ωσL/K′′ = ω−1. This is equivalent to ω trivial on NL/K′(L∗) or on NL/K′′(L∗).

12



2. L/F is cyclic, the regularity of ω makes the condition π(ω−1) = π(ω)σ impossible. Indeed
one would have from Theorem 1 of [G-L] π(ωσ̃) = π(ω−1), which from Appendix B, (2)b)1)

of [G-L] would imply ωσ̃ = ω or ωσ̃−1

= ω. As σ̃2 = σ̃−2 = σ, this would in turn imply
ωσ = ω, and ω would be trivial on the kernel of NL/K according to Hilbert’s theorem 90.
πvee can therefore not be isomorphic to πσ.

3. L/K is not Galois (which implies q ≡ 3[4] in the case p odd). Let πB/K be the representation
of G2(B) which is the base change lift of π to B. As πB/K = π(ω ◦NM/L), if ω ◦NM/L =
µ ◦ NM/B for a character µ of B∗, then π(ω) = π(µ) (cf.[G-L], (3) of Appendix B) and
we are brought back to case 1. Otherwise ω ◦ NM/L is regular with respect to NM/B. If

πσ = π∨, we would have π
σB/K′

B/K = π∨
B/K from Theorem 1 of [G-L]. That would contradict

case 2 because M/K ′ is cyclic.

We described in the previous proposition representations π of G2(K) verifying π∨ = πσ, now
we characterize those who are G2(F )-distinguished among them (from Theorem 5.2, a distin-
guished representation always satisfies the previous condition).

Theorem 5.4. A dihedral supercuspidal representation π of G2(K) is G2(F )-distinguished if and
only if there exists a quadratic extension B of K biquadratic over F such that if we call K ′ and
K ′′ the two other extensions between B and F , there is character ω of B∗ that does not factorize
through NB/K and trivial either on K ′∗ or on K ′′∗, such that π = π(ω).

Proof. From Theorem 5.2 and Proposition 5.2, we can suppose that π = π(ω), for ω a regular
multiplicative character of a quadratic extension B of K biquadratic over F , with ω trivial on
NL/K′(K ′∗) or on NB/K′′(K ′′∗). We will need the following:

Lemma 5.1. Let B be a quadratic extension of K biquadratic over F , then F ∗ is a subset of
NB/K(B∗)

Proof of Lemma 5.1. The groupNB/K(B∗) contains the two groupsNB/K(K ′∗) andNB/K(K ′′∗),
which, as σB/K extends σK′/F and σK′′/F , are respectively equal toNK′/F (K ′∗) andNK′′/F (K ′′∗).
But these two groups are distinct of index 2 in F ∗ from local cassfield theory, thus they generate
F ∗, which is therefore contained in NB/K(B∗).

We now choose ψ a non trivial character of K/F and note ψB the character ψ ◦ TrB/K , it is
trivial on K ′ and K ′′.
Suppose ω trivial on K ′ or K ′′, then the restriction of the central character ηB/Kω of π(ω) is
trivial on F ∗ according to Lemma 5.1.
As we have γ(π(ω), 1/2, ψ) = λ(B/K,ψ)γ(ω, 1/2, ψB) = γ(ηB/K , 1/2, ψ)γ(ω, 1/2, ψB), we deduce
from Lemma 5.1 and Proposition 5.1 that γ(π(ω), 1/2, ψ) is equal to one, hence from Theorem
5.1, the representation π(ω) is distinguished.
Now suppose ω|K′ = ηB/K′ or ω|K′′ = ηB/K′′ , let χ be a character of K∗ extending ηK/F ,
then π(ω) ⊗ χ = π(ωχ ◦ NB/K). As NB/K |K′

= NK′/F and NB/K |K′′
= NK′′/F , we have

χ ◦NB/K |K′
= ηB/K′ and χ ◦NB/K |K′′

= ηB/K′′ , hence from what we’ve just seen, π(ω) ⊗ χ is

distinguished, i.e. π(ω) is ηK/F -distinguished.
From Theorem 5.3, π cannot be distinguished and ηK/F -distinguished at the same time, and the
theorem follows.

We end with the following lemma:

Lemma 5.2. Let B be a quadratic extension of K which is biquadratic over F . Call K ′ and K ′′

the two other extensions between F and B, then the kernel of NB/K is a subgroup of the group
NB/K′(B∗)NB/K′′(B∗).
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Proof. If u belongs to Ker(NB/K), it can be written x/σB/K(x) for some x in B∗ according to
Hilbert’s Theorem 90. Hence we have u = (xσB/K′ (x))/(σB/K (x)σB/K′ (x)) = NB/K′(x)/NB/K′′(σB/K(x)),
and u belongs to NB/K′(B∗)NB/K′′(B∗).

Corollary 5.1. The (either/or) in Proposition 5.2 and Theorem 5.4 is exclusive

Proof. In fact, in the situation of Lemma 5.2, a character ω that is trivial on NB/K′(B∗) and
NB/K′′(B∗) factorizes through NB/K , and π(ω) is not supercuspidal.
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