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1 Introduction

For K/F a quadratic extension of local fields, let o be the conjugation relative to this extension,
and ng/r be the character of F* with kernel norms of K*.

If 7 is a smooth irreducible representation of GL(n, K), and x a character of F*, the dimension of
the space of linear forms on its space, which transform by x under GL(n, F') (with respect to the
action [(L,g) — Lom(g)]) , is known to be at most one (Proposition 11, [ET]). One says that = is
x-distinguished if this dimension is one, and says that 7 is distinguished if it is 1-distinguished.
Jacquet conjectured two results about distinguished representations of GL(n, K). Let 7 be a smooth
irreducible representation of GL(n, K) and 7" its contragredient.

The first conjecture states that it is equivalent for m with central character trivial on F* to be
isomorphic to 77 and for 7 to be distinguished or nx s p-distinguished.

In [K], Kable proved it for discrete series representations, using Asai L-functions.

The second conjecture, which is proved in [K], states that if 7 is a discrete series representation,
then it cannot be distinguished and 7y, p-distinguished at the same time.

One of the key points in Kable’s proof is that if a discrete series representation of GL(n, K) is such
that its Asai L-function has a pole at zero, then it is distinguished, Theorem 1.4 of [A-K=T] shows
that it is actually an equivalence.

This theorem actually shows that Asai L-functions of tempered distinguished representations admit
a pole at zero.

In this article, using a result of Youngbin Ok which states that for a distinguished representation,
linear forms invariant under the affine subgroup of GL(n, F') are actually GL(n, F)-invariant (which
generalises Corollary 1.2 of [A-K-TY), we prove in theorem Bl that a generic representation is dis-
tinguished if and only if its Asai L-function admits an exceptional pole at zero. A pole at zero
is always exceptional for Asai L-functions of discrete series representations (see explanation before
Proposition B4l). As a first application, we give in Proposition Bl a formula for Asai L-functions
of supercuspidal representations of GL(n, K).

There are actually three different ways to define Asai L-functions: one via the local Langlands
correspondence and in terms of Langlands parameters denoted by Ly (7, s), the one we use via
the theory of Rankin-Selberg integrals denoted by La4(m,s), and the Langlands-Shahidi method
(applied to a suitable unitary group) denoted by Las2(m,s) (see [A=R]). It is expected that the
above three L-functions are equal.

For a discrete series representation =, it is shown in [He|] that Ly (7, s) = Las,2(m, s), and in [A=R]



that Las(m,s) = Las2(m,s), both proofs using global methods.

As a second application of our principal result, we show (by local methods) in section Hl that for an
ordinary representation (i.e. corresponding through Langlands correspondance to an imprimitive 2
dimensional representation of the Weil-Deligne group) 7 of GL(2, K), we have Ly (m,s) = Las(,s)
(Theorem B2). We recall that for odd residual characteristic, every smooth irreducible infinite rep-
resentation of GL(2, K) is ordinary.

In the appendix (section H), we describe distinguished dihedral supercuspidal representations (The-
orem [B4)), this description is used in section l for the computation of L 44 for such representations.

2 Preliminaries

Let E; be a field, and E» a finite galois extension of Ey, we note Gal(FEz/E1) the Galois group of Fs
over Fy, and we note Trg, g, (respectively Ng, g, ) the trace (respectively the norm) application
from E, to Ey. If Ey is quadratic over Ey, we note o, g, the non trivial element of Gal(F2/Er).
In the rest of this paper, the letter F' will always designate a non archimedean local field of charac-
teristic zero in a fixed algebraic closure F, and the letter K a quadratic extension of F' in F. We
note qr and gx the cardinality of their residual fields, Rx and Rp their integer rings, Px and Pp
the maximal ideals of R and Rp, and Uk and Up their unit groups. We also note vi and vp
the respective normalized valuations, and | |k and | |F the respective absolute values. We fix an
element 6 of K — F such that 62 € F', hence K = F(9).

Let ¢ be a non trivial character of K trivial on F, it is of the form x +— %' o T'r,p(dx) for some
non trivial character ¢’ of F.

Whenever G is an algebraic group defined over F, we note G(K) its K-points and G(F) its F-
points. The group GL(n) is noted G, its standard maximal unipotent subgroup is noted N,,.

If 7 is a representation of a group, we also note 7 its isomorphism class. Let p be a character of
F*, we say that a representation 7 of G, (K) is pu-distinguished if it admits on its space V; a linear
form L, which verifies the following: for v in V and h in G,,(K), then L(w(h)v) = p(det(h))L(v).
If 4 =1, we say that = is distinguished.

We note K, (F) the maximal compact subgroup G, (Rr) of G,,(F'), and for r > 1, we note K,, ,(F),
the congruence subgroup I,, + M, (Pp).

The character v defines a character of N,,(K) that we still note v, given by ¢(n) = 1/)(2?:_11 Mg it1)-

We now recall standard results from [E2].
Let 7 be a generic smooth irreducible representation of G, (K), we note 7
dient, and ¢, its central character.
We note D(F™) the space of smooth functions with compact support on F", and Dy(F") the sub-
space of D(F™) of functions vanishing at zero.
We note p the natural action of G,,(F) on D(F™), given by p(g)d(x1,...,zn) = ¢((z1,.-.,2n)9),
and we note 7 the line vector (0,...,0,1) of length n.
If W belongs to the Whittaker model W (mr,4) of w, and ¢ belongs to D(F™), the following integral
converges for s of real part large enough:

V' its smooth contragre-

/ W (9)(ng)ldet(9)] 7" dg.
Np(F)\Gn(F)

This integral as a function of s has a meromorphic extension to C which we note U(W, ¢, s).



For s of real part large enough, the function W(W, ¢, s) is a rational function in ¢5*, which actually
has a Laurent series development.

The C vector space generated by these functions is in fact a fractional ideal I(7) of Clgz*, ¢}].
This ideal I(m) is principal, and has a unique generator of the form 1/P(¢z*), where P is a poly-
nomial with P(0) = 1.

Definition 2.1. We note Las(m,s) the generator of I(n) defined just above, and call it the Asai
L-function of 7.

Remark 2.1. If P belongs to C[X] and has constant term equal to one, then the function of the
complex variable Lp : s — 1/P(qr") is called an Euler factor. It is a meromorphic function on C
and admits (2i7/Ln(qr))Z as a period subgroup. Hence if s is a pole of Lp, the elements sg +
(2im/Ln(qr))Z are also poles of Lp, with same multiplicities, we identify sg and so+ (2i7/Ln(qr))Z
when we talk about poles. A pole sy then corresponds to a root ag of P by the formula ¢~%° = qyp,
its multiplicity in Lp equal to the multiplicity of g in P.

Let w, be the matrix of G, (Z) with ones on the antidiagonal, and zeroes elsewhere. For W in
W (m, 1), we note W the function g — W (w,'g~!) which belongs to W(x",1~1), and we note ¢
the Fourier transform (with respect to ¢’ an its associate autodual Haar measure) of ¢ in D(F™).

Theorem 2.1. (Functional equation)(Th. of [FZ])
There exists an epsilon factor e as(m, s,1) which is, up to scalar, a (maybe negative) power of ¢°,
such that the following functional equation is satisfied for any W in W (w,¢) and any ¢ in D(F™):

U(W,h,1—5)/Las(7¥,1—8) = cn(—1)"Leas(m, s,0)U(W, $,5)/Las(r,s).

3 Poles of the Asai L-function and distinguishedness

Now suppose L 44(7, s) has a pole at sg, its order d is the highest order pole of the family of functions
of I(m).
Then we have the following Laurent expansion at sg:
U(W, ¢, 8) = Bsy (W, 0)/(¢° — ¢°°)? + smaller order terms. (1)
The residue B, (W, $) defines a non zero bilinear form on W(m,¢) x D(F™), satisfying the

quasi-invariance:

Bso (m(9)W; p(9)9) = |det(g)[ ™ Bso (W, ¢)-
Following [C-P] for the split case K = F' x F', we state the following definition:

Definition 3.1. A pole of the Asai L-function Las(m,s) at so is called exceptional if the associated
bilinear form Bs, vanishes on W (m, 1) x Do(F™).



As an immediate consequence, if sq is an exceptional pole of L44(7, s), then Bs, is of the form
By, (W, ¢) = Xsy (W)0(0), where Ay, is a non zero |det( )|z invariant linear form on W (w, ).

Hence we have the:

Proposition 3.1. Let m be a generic irreducible representation of G, (K), and suppose its Asai
L-function has an exceptional pole at zero, then m is distinguished.

We note P, (F) the affine subgroup of G,,(F), given by matrices with last row equal to 7.
For more convenience, we introduce a second L-function:
For W in W (mr, ), by standard arguments, the following integral is convergent for Re(s) large, and
defines a rational function in ¢~°, which has a Laurent series development:

/ W p)ldet (o)l dp,
N (F)\ P (F)

We note ¥y (W, s) the corresponding Laurent series.
By standard arguments again, the vector space generated by these functions is a fractional ideal
I (m) of Clgr®, ¢3], which has a unique generator of the form 1/Q(¢~*), where @ is a polynomial
with Q(0) = 1.
We note Ly (m, s) this generator.

Lemma 3.1. ([[ZP-5] p. 393)
Let W be in W(m, 1), one can choose ¢ with support small enough around (0,...,0,1) such that
U(W,p,8) =T (W,s—1).

Proof. As we gave a reference, we only sketch the proof. We first recall the following integration
formula (cf. proof of the proposition in paragraph 4 of [E]), for Re(s) >> 0:

U(W, 6, 5) = / / W (pk)|det (p) |3 dp / d(nak)es (@)al¥d adk. (2
Kn(F) J Np(F)\Pn(F) F

Choosing r large enough for W to be right invariant under K, ,.(F), we take ¢ a positive multiple
of the characteristic function of 9k, (F'), and conclude from equation & O

Hence we have the inclusion I;(w) C I(n), which implies that Li(m,s) = Las(m, s)R(¢%, ¢ %)
for some R in Clgzr*,q%]. But because L and L, are both Euler factors, R is actually just a
polynomial in ¢~*, with constant term equal to one. Noting L,qq(es) (7, 5) its inverse (which is an
Euler factor), we have Las(m,s) = Li(m, 8)Lyqd(es) (7, s), we will say that L; divides L4,. The
explanation for the notation L,qq(ey) is given in Remark Bl

We now give a characterisation of exceptional poles:

Proposition 3.2. A pole of Las(w,s) is exceptional if and only if it is a pole of the function
Lyad(e)(, ) defined just above.

Proof. From equationBl it becomes clear that the vector space generated by the integrals ¥(W, ¢, s)
with W in W(m,¢) and ¢ in Do(F™), is contained in I; (), but because of Lemma Bl those two
vector spaces are equal.



Hence Li(m,s) is a generator of the ideal generated as a vector space by the functions ¥(W, ¢, s)
with W in W (m,v) and ¢ in Do(F™).

From equation [ if s is an exceptional pole, a function W(W, ¢, s), with ¢ in Do(F™), cannot have
a pole of highest order at sy, hence we have one implication.

Now if the order of the pole sg for La4(m, s) is stricly greater than the one of L1 (m, s), then the first
residual term of the Laurent development of any function ¥(W, ¢, s) with ¢(0) = 0 must be zero,
and zero is exceptional. O

Lemma BTl also implies:

Proposition 3.3. The functional A s : W — Uy(W,s—1)/Las(m, s) defines a (maybe null) linear
form on W (m,v) which transforms by |det( )| * under the affine subgroup P, (F).
For fized W in W (m,v), then s — Ar s(W) is a polynomial of g~*.

Now we are able to prove the converse of Proposition BTk

Theorem 3.1. A generic irreducible representation m of G,(K) is distinguished if and only if
Las(s,m) admits an exceptional pole at zero.

Proof. We only need to prove that if 7 is distinguished, then L 44(s,7) admits an exceptional pole
at zero, so we suppose 7 distinguished.

From equation B for Re(s) << 0, and 7 distinguished (so that ¢, has trivial restriction to F™*), one
has:

WOV, 9,1 5) = / / W (pk) | det (p) 7 dp / Bnak)la[i ) d*adk.  (3)
n F) nF)\Pn

This implies that:

\IJ(W,(E,1_S)/LAS(7TV,1_S):/ Apva_o(m (W) [ d(mak)|at > d*adk.  (4)

The second member of the equality is actually a finite sum:
SNy 1-s( fF* (nak;) |a|"(1_s)d*a, where the \;’s are positive constants and the k;’s
are elements of K (F ) independant of s.

Note that there exists a positive constant €, such that for Re(s) < e, the integral fF* (nak; )|a|F (179 g+q

is absolutely convergent, and defines a holomorphic function.

We have an equality (equality Hl) of analytic functions (actually of polynomials in ¢~¢), hence it is
true for all s such that Re(s) < ¢

For s = 0, we get:

U(W,4,1)/Las(r",1) = /K (F)Aﬁv,l(wv(k)ﬁ/) . b(nak)|a|td*adk.

But as 7 is distinguished, so is 7V, and as Av ; is a P, (F)-invariant linear form on W (7", ™1),
it follows from theorem 3.1.2 of [OK| that it is actually G,,(F')-invariant.



Finally
U(W, 8, 1)/Las(r, 1) = Agv 1 (W) / (nak)|al-d* adk
Ko (F) JF~

which is equal to:

va,l(W)/ é(1g)d,.g

P (F)\Gn (F)

where d,, is up to scalar the unique |det( )|~! invariant measure on P, (F)\G,(F). But as

/ $(ng)dug = / d(x)dz = $(0),
Pp(G)\Gn(F) Fn

we deduce from the functional equation that ¥ (W, ¢,0)/Las(w,0) = 0 whenever ¢(0) = 0.

As one can choose W, and ¢ vanishing at zero, such that U(W, ¢, s) is the constant function equal
to 1 (see the proof of Theorem 1.4 in [A-K-T)), hence Las(m, s) has a pole at zero, which must be
exceptional. O

For a discrete series representation 7, it follows Lemma 2 of [K], that the integrals of the form

/ W (p)det(p)|*dp.
Np(F)\Pn(F)

converge absolutely for Re(s) > —e for some positive €, hence as functions of s, they cannot have
a pole at zero.
This implies that L; (7, s) has no pole at zero, hence Theorem Bl in this case gives:

Proposition 3.4. ([K|/, Theorem 4)

A discrete series representation w of G, (K) is distinguished if and only if Las(s,7) admits a
pole at zero.

Let so be in C. We notice that if 7 is a generic irreducible representation of G, (K), it is

| |z°-distinguished if and only if 7 ® | [32/? is distinguished, but as Ly (s,7 ® | [3/?) is equal to

L 45(s + 59, m), Theorem Bl becomes:

Theorem 3.2. A generic irreducible representation m of G, (K) is | | -distinguished if and only
if Las(s,m) admits an exceptional pole at s.

Remark 3.1. Let P and @ be two polynomials in C[X] with constant term 1, we say that the Euler
factor Lp(s) = 1/P(qz") divides Lg(s) = 1/Q(qz") if and only P divides Q. We note Lp V Lq the
Euler factor 1/(P V Q)(gr"), where the l.c.m PV @ is chosen such that (P V Q)(0) = 1. We define
the g.c.d Lp A Lg the same way.

It follows from equation B that if ¢, p« is ramified, then Las(7,s) = Li(m, s). It also follows from
the same equation that if ¢x|p- = | |** for some s in C, then L, 4q(eq) (7, 5) divides 1/(1—qz ™ "*).
Anyway, L;qq(ez)(T, 8) has simple poles.

Now we can explain the notation L;qq(c,). We refer to [C-P] where the case K = F x F is treated.
In fact, in the latter, Le,(,s) is the function 1/P.. (7, q5°), with Pey(m,¢z°) = [1, (1 — ¢%~%)¢

S; PR



where the s;’s are the exceptional poles of L4s(m,s) and the d;’s their order in L44(m, s). Hence
Lyad(es) (7, 8) = 1/ Prad(es) (7, q5°), where Prqg(ez)(m, X) is the unique generator with constant term
equal to one, of the radical of the ideal generated by Py (mw, X) in C[X].

We proved:

Proposition 3.5. Let m be an irreducible generic representation of G,(K), the Euler factor
Lyqd(es)(m, 8) has simple poles, it is therefore equal to [[1/(1 — ¢*°~*) where the product is taken

S0 7,

over the ¢ ’s such that m is | |°°-distinguished.

Suppose now that 7 is supercuspidal, then the restriction to P,(K) of any W in W (r, ) has
compact support modulo N,,(K), hence ¥;(W,s — 1) is a polynomial in ¢~*%, and L1 (7, s) is equal
to 1. Hence Proposition BH becomes:

Proposition 3.6. Let 7 be an irreducible supercuspidal representation of Gy (K), then Las(m,s) =
[11/(1 —¢®°~*°) where the product is taken over the ¢*°’s such that 7 is | | " -distinguished.

4 Asai L-functions of GL(2)

4.1 Asai L-functions for imprimitive Weil-Deligne representations of di-
mension 2

The aim of this paragraph is to compute Ly (p, s) (see the introduction) when p is an imprimitive
two dimensional representation of the Weil-Deligne group of K.

We note Wy (resp. Wr) the Weil group of K (resp. F'), Ix (resp. Ir) the inertia subgroup of
Wik (resp. Wg), Wi, (resp. W}) the group Wi x SL(2,C) (resp. Wr x SL(2,C)) and I} (resp.
I}) the group Ix x SL(2,C) (resp. Ir x SL(2,C)). We note ¢ a Froebenius element of Wr, and
we also note ¢ the element (¢p,I>) of SL(2,C).

We note sp(n) the unique (up to isomorphism) complex irreducible representation of SL(2,C) of
dimension n. ,

If p is a finite dimensional representation of W, we note MVVI‘//; (p) the representation of W, induced
multiplicatively from p.

We recall its definition: ,

If V is the space of p, then the space of MWZ (p)isVV.

Noting 7 an element of Wr — Wi, and o the element (7,I) of W, we have:

My () () (01 © v2) = p(h)vr ® p° (hvs

for hin Wi, v; and vy in V.

MyF (p)(0) (01 ® v2) = plo®)v2 ® 0y

for v1 and ve in V.

We refer to paragraph 7 of [P] for definition and basic properties of multiplicative induction in
the general case.



Definition 4.1. The function Ly (p, s) is by definition the usual L-function of the representation

i

W , W
MW;’Z (p), i.e. Lw(p,s) = L(MWEZ (p),s).

i) If p is of the form I ndgff (w) for some multiplicative character w of a biquadratic extension B
B

of F, we note K’ and K" the two other extensions between F and B.

If we call o1 an element of W}, which is not in W}, UW}.,, and o3 an element of W, which
is not in Wi, U W, then o2 = o307 is an element of Wy, which is not in Wy U Wj.,,. The
elements (1,01,09,03) are representatives of Wi /Wy, and 1 and o3 are representatives of
If one identifies w with a character (still called w) of B*, then w?* identifies with w o o/,
w?? with woop, K and W with wo op K~ One then verifies that if a belongs to Wg, one
has: , , ,

o Tr[My 7 (p)(a)] = Tr[IndVWVf( (M (w))(a)]—i—Tr[Ind%: (M (w))(@)] = ww? w4

Wg
wtw?2 + WwotwWs,
!

! W/ , ! Wl ,
o Tr{Myf (p)(o10)] = Trilndy? (My ' (@))(010)] + Tr(Indy? (My" (@))(o1a)] = 0.
4 4 W/ ! 4 W/ "
o Tr[My?! (p)(020)] = Tr[lnd%(, (M (w))(oga)]—i—Tr[Ind%iN (M (@) (020)] = w(o2a050)+
wt(o2a02a).
4 4 W/ ! 4 W/ "
o Tr[My! (p)(o30)] = Tr[lnd%(, (M (w))(a3a)]+Tr[Ind$Z” (M (@) (o30)] = w(osa030)+
w(o3a03a).
Hence we have the isomorphism
W Wi Wi Wi Wien
M7 (p) ~ IndWI,F{/ (MW},I; (w)) ® Indw;, (MW},I; (w)).

From this we deduce that

L(MYF (p), s) = Lwjgre, ) L{wircne, 5)-

ii) Let L be a quadratic extension of F', such that p = I nd%i‘ (x), with x regular, is not isomorphic
L

to a representation of the form Ind%ff (w) as in i), then
B

L(My? (p),s) = 1.

Indeed, we show that MIYVVI,,Z (p)'r = {0}.

’

If it wasn’t the case, the representation (MVV:,/F (p),V) would admit a I-fixed vector, and so
K

would its contragredient V*.
Now in (V*)!F, choosing an eigenvector of MyF (p)(¢r), we would deduce the existence of a
K

linear form L on (MVVI‘,/I,’/: (p), V) which transforms under Wy by an unramified character u of



If we identify 1 with a character x of F*, the restriction of u to Wy corresponds to p'o Ng/p
of K*, so we can write it as 007, where 6 is a character of W} corresponding to an extension
of p' to K*.

As the restriction of MJVV;/Z to W}, is isomorphic to p ® p7, we deduce that 67 1p @ (671 p)7 is
W} distinguished, that is 0pv¢¢ ~ (0=1p)”.

But from the proof of Theorem 3, this would imply that 8~'p hence p, could be induced
from a character of a biquadratic extension of F', which we supposed is not the case.

iii) Suppose p = sp(2) acts on the space C? with canonical basis (e, es) by the natural action
plh, M] (v) = M(v) for h in Wg, M in SL(2,C) and v in C2. Then the space of MYr (p) is
V@V and SL(2,C) acts on it as sp(2) ® sp(2). "
Decomposing V @ V' as the direct sum Alt(V) & Sym(V), we see that SL(2,C) acts as 1 on

Alt(V), and MJVV;{: (p) {1, < z 0 (e1 ®e1) = x2e; ®ey.

0 z7!
Hence the representation of SL(2,C) on Sym(V) must be sp(3).

The Weil group Wr acts as ng/p on Alt(V) and trivially on Sym(V), finally MW},/i (p) is
isomorphic to sp(3) © Nk k-

Tensoring with a character x, we have Mvvgi(xsp@)) = X|F*Mwi(sp(2)) = X|pNK/F ®
X|F+5p(3)-

Hence one has the following equality:

W/
L(My7 (xsp(2)),8) = L(x|p+ /5 ) L(X =5 8 + 1)

iv) If p = A®u, with A and p two characters of W, then from [P], Lemma 7.1, we have MVV[Y,lF (p) =
K
Wh o\ o
Hence we have

L(My# () = L\ g, 5) L 5) LOWE , 5).

4.2 Asai L-functions for ordinary representations of G'L(2)

In this subsection, we compute Asai L-functions for ordinary (i.e. non exceptional) representations
of G3(K), and prove (Theorem EE2) that they are equal to the corresponding functions Ly of im-
primitive representations of W.

In order to compute L 45, we first compute L1, but this latter computation is easy because Kir-
illov models of infinite dimensional irreducible representations of Ga(K) are well-known (see [B],
Th. 4.7.2 and 4.7.3).

Let 7w be an irreducible infinite dimensional (hence generic) representation of Go(K), we have the
following situations for the computation of L;(m, s).



i) and ii) If 7 is supercuspidal, its Kirillov model consists of functions with compact support on
K*, hence
Li(m,s) =1.

iii) If 7 = o(x) (o(x] |K1/27X| |K71/2) in [B]) is a special series representation of G2 (K), twist
of the Steinberg representation by the character x of K*, the Kirillov model of 7 consists of
functions of D(K) multiplied by x| |k.

Hence their restrictions to F are functions of D(F) multiplied by x| |»°, and the ideal I ()
is generated by functions of s of the form

/F ¢(t)X(t)|t|FS_1|f|F2d*t:/F¢(f)x(f)|t|Fs+ld*t,
for ¢ in D(F'), hence we have

Ly(m, s) = L(x|p=, s +1).

iv) If # = w(\, p) is the principal series representation (A and p being two characters of K*, with
At different from | | and | |~1) corresponding to the representation A & u of Wi

If A\ # p, the Kirillov model of 7 is given by functions of the form | |K1/2X¢1 + |K1/2u¢2,
for ¢1 and ¢ in D(K), and

Ly(m,s) = L(/\‘F*,s) Vv L(,LL|F*,S).

If A = y1, the Kirillov model of 7 is given by functions of the form | | /*Ap1+| |5 "/ *Avg (£)¢2,
for ¢1 and ¢ in D(K), and
L1(7T, 8) = L()‘\F* s 8)2.

In order to compute L,,g(es) for ordinary representations, we need to know when they are
distinguished by a character | |z* for some s¢ in C, we will then use Theorem The answer is
given by the following, which is a mix of Theorem B4 and proposition B.17 of [F-H]:

Theorem 4.1. a) A dihedral supercuspidal representation m of Go(K) is | |z -distinguished if
and only if there exists a quadratic extension B of K, biquadratic over F' (hence there are two
other extensions between F and B that we call K’ and K" ), and a character of B* regular
with respect to N, which restricts either to K' as | |)° or to K" as | |77, such that 7 is
equal to m(w).

b) Let p be a character of K*, then the sepcial series representation o(ju) is | | -distinguished if
and only if p restricts to F* as ng/p| |-

10



c) Let A and p be two characters of K*, with A\u=' and A\~ different from | |k, then the principal
series representation w(\, ) is | |7*0-distinguished if and only if either X and p restrict as
| |27 to F* or Au? is equal to | | ™.

Proof. Let 7 be a representation, it is | |-*°-distinguished if and only if 7 ® | |SK°/ ? is distinguished

because | |;<S°/2 extends | |, it then suffices to apply Theorem B4l and proposition B.17 of [F=HJ.

We give the full proof for case a). Suppose 7 is dihedral supercuspidal and 7®| |?/ % is distinguished.

From Theorem Bl the representation 7 ® | |SK°/2 must be of the form m(w), for w a character of
quadratic extension B of K, biquadratic over F', such that if we call K’ and K" two other extensions
between F' and B, w doesn’t factorize through Np,x and restricts either trivially on K "*_or trivially

—80/2 —50/2 —50/2
K l5""") 5

on K"*. But 7 is equal to 7(w) ® | = (W] because | [p = | [k © Np/k. As |

restricts to K’ (resp. K”) as | [7° (vesp. | |¥77), case a) follows. O

We are now able to compute L,4q(ex), hence Las for ordinary representations.

i) Suppose that 7 = (1 nd%’% (w)) = 7(w) is supercuspidal, with Langlands parameter I nd%’% (W),
where w is a multiplicatfve character of a biquadratic extension B over F' that doesn’t facforize
through Np,x. We note K’ and K" the two other extensions between B and F, then L;(, s)
is equal to one.

We have the following series of equivalences:

50 is a pole of Las(m(w),s) <= m(w) is | | — distinguished

<~ W‘K'* = | |I_(§0 or W‘K”* = | |I_(§’0

<= 50 is a pole of L(wjgr,s) or of L(wjgr=,s)
<= 50 is a pole of L(wgr,8)V L(wgr-,s)

As both functions L 4,(m(w), s) and L(wg+,s) V L(w| g+, s) have simple poles and are Euler
factors, they are equal. Now suppose that L(w)g,s) and L(w|gw=,s) have a common pole
50, this would imply that wjg~ = | |7° and wjgr- = | |7, which would mean that w| |§’/2 is
trivial on K"*K"*. According to Lemma B2 this would contradict the fact that w does not
factorize through Np,, hence L(w|g,s) V L(w|gr=,s) = L(w|g=, ) L(w|gr=, s). Finally we
proved:

Las(m(w),s) = L(wg, s)L(w| k=, 5) |

ii) Suppose that 7 is a supercuspidal representation, corresponding to an imprimitive representation
of Wy, that cannot be induced from a character of the Weil-Deligne group of a biquadratic
extension of F'. Then necessarily m cannot be | |z*°-distinguished, for any complex number
sg of C.

If it was the case, from Theorem EZIl it would correspond to a Weil representation m(w)
for some multiplicative character of a biquadratic extension of F', which cannot be. Hence
Ly qd(ex)(m, 5) has no pole and is equal to one because it is an Euler factor, so we proved that:

Lys(m,s) =1.
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iii) If 7 is equal to o(x), then Ly(m,s) = L(x|r+,s +1). We want to compute L, qq(eq) (7, s), we
have the following series of equivalences:
s0 is an exceptional pole of Las(o(x),s) <= o(x) is | |p*° — distinguished

<= X|F* = Nk/F| |5
<= 50 s a pole of L(X|rp+NK/F,5)

As both functions Lyqq(eq) (7, s) and L(x|r+1k/F,s) have simple poles and are Euler factors,
they are equal, we thus have:

| Las(o00) = Llxires s + DL0qr- 1/ 9):

iv) If 7 = m(\, p), we first compute L;qq(eq) (7, 5). We have the following series of equivalences:

50 is an exceptional pole of Las(m(A\, p),s) <= w(A\,p) is | |p°° — distinguished
= M7 = |7 or, Np- = | and pyp- = | |5
<= 50 is a pole of L(Au?,s) or of L(Ap-,s) A L(pp+,s)
<= 50 is a pole of L(Au?,8)V [L(\p~,8) AN L(pp-, )]

As both functions Lyqq(eqs)(m(A, 1), s) and L(Au®,s) V [L(Ajp+,5) A L(pp-,s)] have simple
poles and are Euler factors, they are equal.

If X # p, then Ly (7, s) = L(\ -, s)VL(pp+, 8). But L(Au?, s) and L(Ap+, s)AL(p -, s) have

no common pole. If there was a common pole sg, one would have Au” = | |, \jp = | |5
and pp- = | [z, From pp- = | [z*, we would deduce that po Ng/p = | |, ie.
pe = 1x°p !, and A = | | would imply A = , which is absurd. Hence Lyqd(ex)(m,8) =

L(Au?, s)[L(Ajp=,5) N L(pp+,s)], and finally we have Las(m,s) = Li(7,s)Lyqd(es) (T, s) =
L(X =, 8)L(pp=, 8) LA, s).

If A is equal to p, then Li(7,s) = L()\|F*,3)27 and Ly qq(ex)(m(A 1), 8) = L(Ao Ng/p,s) V
L(\p+,8). As L(Ao Ng/p,s) = L(A\p+,8)L(nk/pAp=,s), we have Lygq(ez)(T(A, 1), 8) =
L(Ao Nk/p,s). Again we have Las(m,s) = L(\ g+, 8)L(ip=,s)L(Au?, s).

In both cases, we have

| Las(x(A\ 1), 8) = L\pe, $)L(yee, )L 5). |

Eventually, comparing with equalities of subsection Bl we proved the following:

Theorem 4.2. Let p — 7(p) be the Langlands correspondence from two dimensional representa-
tions of Wi, to smooth irreducible infinite dimensional representations of Go(K), then if p is not
primitive, 7(p) is ordinary and we have the following equality of L-functions:

Las(w(p),s) = LML (p), 5)

12



As said in the introduction, combining Theorem 1.6 of [A-R] and Theorem of pargraph 1.5 in
[He], one gets that L(MVV:,/,F (p),s) = Las(n(p),s) for m(p) a discrete series representation, so that
K
we have actually the following:

Theorem 4.3. Let p — w(p) be the Langlands correspondence from two dimensional representations
of Wi to smooth irreducible infinite dimensional representations of G2(K), we have the following
equality of L-functions:

Las(m(p),s) = LMy £ (p), s)

5 Appendix. Dihedral supercuspidal distinguished repre-
sentations

5.1 Preliminary results

Let E be a local field, E' be a quadratic extension of F, x a character of E*, m be a smooth
irreducible infinite dimensional representation of Go(FE), and % a non trivial character of E.

We note L(x,s) and €(x, s, %) the functions of the complex variable s defined before proposition
3.5 in [I-I].We note (X, s,%) the ratio e(x, s, ¥)L(x,s)/L(x~ !, 1—s).

We note L(m, s) and e(mr, s,) the functions of the complex variable s defined in Theorem 2.18 of
[1=1J.

We note A(E'/E,1) the Langlands-Deligne factor defined before proposition 1.3 in [:=1J, it is
equal to €(ng//g,1/2,7). As ng g is equal to nE,l/E, the factor \(E'/E,4) is also equal to
Y /E:1/2,9).

From theorem 4.7 of [J=I], if w is a character of E’*, then L(mw(w), s) is equal to L(w, s), and €(m, s, )
is equal to A\(E'/E,¢)e(m, s,1), hence v(mw, s,v) is equal to A(E'/E, ¢¥)y(w, s, ).

We will need the four results. The first is due to Frhlich and Queyrut, see [D] theorem 3.2 for
a quick proof using a Poisson formula:

Proposition 5.1. Let E be a local field, E' be a quadratic extension of E, X' a character of E™
trivial on E*, and v’ a non trivial character of E' trivial on E, then v(x',¢") = 1.

The second is a criterion of Hakim:

Theorem 5.1. ([Hd], Theorem 4.1) Let  be an irreducible supercuspidal representation of Go(K)
with central character trivial on F*, and ¢ a nontrivial character of K trivial on F. Then m is
distinguished if and only if v(m ® x,v¥) = 1 for every character x of K* trivial on F*.

The third is due to Flicker:

Theorem 5.2. ([ET], proposition 12) Let w be a smooth irreducible distinguished representation of
Gn(K), then w° is isomorphic to w".

The fourth is due to Kable in the case of G, (K), see [A-T] for a local proof in the case of G5 (K):

Theorem 5.3. ([A-)], Proposition 3.1 There exists no supercuspidal representation of Ga(K)
which is distinguished and ngp-distinguished at the same time.
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5.2 Distinction criterion for dihedral supercuspidal representations

As a dihedral representation’s parameter is a multiplicative character of a quadratic extension L of
K, we first look at the properties of the tower F' C K C L. Three cases arise:

1. L/F is biquadratic (hence Galois), it contains K and two other quadratic extensions F', K’
and K".

K K’ K
\ F/
Figure 1:

Its Galois group is isomorphic with Z/27Z x 7Z/27Z, its non trivial elements are oy, /x, or /K
and o,/ g. The conjugation oy, extend o/ /p and ogr/p.

2. L/F is cyclic with Galois group isomorphic with Z/47Z, in this case we fix fix an element & in
G(L/F) extending o, it is of order 4.

3. L/F non Galois. Then its Galois Closure M is quadratic over L and the Galois group of
M over F' is dihedral with order 8. To see this, we consider a morphism 6 from L to F
which extends 6. Then if L' = A(L), L and L' are distinct, quadratic over K and generate
M biquadratic over K. M is the Galois closure of L because any morphism from L into F),
either extends 6, or the identity map of K, so that its image is either L or L/, so it is always
included in M. Finally the Galois group M over F' cannot be abelian (for L is not Galois over
F), it is of order 8, and it’s not the quaternion group which only has one element of order 2,
whereas here ops/1, and o7/, are of order 2. Hence it is the dihedral group of order 8 and we
have the folowing lattice, where M /K’ is cyclic of degree 4, M/K and B/F are biquadratic.

/

L//
|

M
L B N N’
K K’ K’
F

\/

—
G

Figure 2:

We now prove the following proposition:
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Proposition 5.2. If a supercuspidal dihedral representation m of Go(K) verifies m¥ = 7%, there
exists a biquadratic extension B of F, containing K, such that if we call K' and K" the two
other extensions between F' and B, there is a character w of B trivial either on N,k (B*) or on
Np, g (B*), such that m = 7(w).

Proof. Let L be a quadratic extension of K and w a regular multiplicative of L such that 7 = w(w),
we note o the conjugation of L over K, three cases show up:

1. L/F is biquadratic. The conjugations o7,/ and o, /x» both extend o, hence from Theorem
1 of [G:IJ], we have 7(w)? = w(w?t/k"). The condition 7 = m° which one can also read
m(w™!) = w(w7t/K"), is then equivalent from Appendix B, (2)b)1) of [G=I], to wt/x" = w1
or w7E/K" ==t This is equivalent to w trivial on Ny x/(L*) or on Ny /xn(L*).

2. L/F is cyclic, the regularity of w makes the condition 7(w™!) = 7(w)? impossible.
Indeed one would have from Theorem 1 of [G=I] 7(w?) = 7(w™!), which from Appendix B,
(2)b)1) of [G=I] would imply w® = w or w® = w. As 62 = 52 = o, this would in turn
imply w? = w, and w would be trivial on the kernel of Ny i according to Hilbert’s theorem
90. 7 can therefore not be isomorphic to 7.

3. L/K is not Galois (which implies ¢ = 3[4] in the case p odd). Let g,k be the representation
of GLy(B) which is the base change lift of 7 to B. As mp/x = m(wo Nay/r), if wo Ny =
po Nygyp for a character p of B*, then m(w) = m(u) (cf.[G=I1, (3) of Appendix B) and we are
brought back to case 1. Otherwise wo Ny, is regular with respect to Ny /p. If 77 = v, we

oB/K!
would have Tp/K

M/K' is cyclic.

=7y /i from Theorem 1 of [G-I]]. That would contradict case 2 because

O

We described in the previous proposition representations 7 of Go(K) verifying 7¥ = 77, now we
characterize those who are Gy (F)-distinguished among them (from Theorem B2 a distinguished
representation always satisfies the previous condition).

Theorem 5.4. A dihedral supercuspidal representation 11 of Go(K) is Go(F)-distinguished if and
only if there exists a quadratic extension B of K biquadratic over F such that if we call K' and
K" the two other extensions between B and F, there is character w of B* that does not factorize
through Np, and trivial either on K'* or on K"*, such that 1 = m(w).

Proof. From Theorem and Proposition 22 we can suppose that 7 = 7(w), for w a regular
multiplicative character of a quadratic extension B of K biquadratic over F, with w trivial on
Npx/(K'™) or on N, gn(K""). We will need the following:

Lemma 5.1. Let B be a quadratic extension of K biquadratic over F, then F* is a subset of

Np/k(B*)

Proof of Lemma[idl The group Np,g(B*) contains the two groups Np/x(K"™) and Np,x(K"),
which, as o,k extends ox//p and ok p, are respectively equal to N /p(K"*) and Ngrjp(K"™).
But these two groups are distinct of index 2 in F* from local cassfield theory, thus they generate
F*, which is therefore contained in Np,x(B*). O
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We now choose ¢ a non trivial character of K/F' and note ¢p the character ¢ o Trg/k, it is
trivial on K’ and K”.
Suppose w trivial on K’ or K, then the restriction of the central character ng,gw of 7(w) is trivial
on F* according to Lemma Bl
As we have y(m(w),¥) = A(B/K,¥)y(w,¥B) = v(nB/K,¥)7(w,¥B), we deduce from Lemma BTI
and Proposition BTl that (7 (w), ) is equal to one, hence from Theorem Bl the representation
7(w) is distinguished.
Now suppose w|x’ = np/k’ or w|x» = np/k, let x be a character of K* extending 7, r, then
mT(w)®x = m(wxoNp/k). As NB/K‘K, = Ng//p and NB/K‘K,, = Ng/p, we have XONB/K‘K/ =
np/Kk' and x o NB/K|K” =np/K", hence from what we’ve just seen, m(w) ® x is distinguished, i.e.
m(w) is N/ p-distinguished.
From Theorem B3 7 cannot be distinguished and 7/ p-distinguished at the same time, and the
theorem follows. O

We end with the following lemma:

Lemma 5.2. Let B be a quadratic extension of K which is biquadratic over F. Call K' and K"
the two other extensions between F and B, then the kernel of Np i is a subgroup of the group

Proof. 1f u belongs to Ker(Np/k), it can be written x/op/x(x) for some z in B* according to
Hilbert’s Theorem 90. Hence we have u = (zop/x/(7))/(0p/k (¥)0p k' () = Np k' (2)/Np /K" (0B /K (7)),
and u belongs to N/ g/ (B*)Np/k(B*). O

Corollary 5.1. The (either/or) in Proposition 22 and Theorem [0 is exclusive

Proof. In fact, in the situation of Lemma B2 a character w that is trivial on Np,g/(B*) and
N,k (B*) factorizes through Np/k, and 7(w) is not supercuspidal. O
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