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Abstract. Earthfill dams are man-made geostructures which
may be especially damaged by seismic loadings, because the
soil skeleton they are made of suffers remarkable modifica-
tions in its mechanical properties, as well as changes of pore
water pressure and flow of this water inside their pores, when
subjected to vibrations. The most extreme situation is the
dam failure due to soil liquefaction. Coupled finite element
numerical codes are a useful tool to assess the safety of these
dams. In this paper the application of a fully coupled numer-
ical model, previously developed and validated by the au-
thors, to a set of theoretical cross sections of earthfill dams
with impervious core, is presented. All these dams are same
height and have the same volume of impervious material at
the core. The influence of the core location inside the dam on
its response against seismic loading is numerically explored.
The dams are designed as strictly stable under static loads.
As a result of this research, a design recommendation on the
location of the impervious core is obtained for this type of
earth dams, on the basis of the criteria of minor liquefaction
risk, minor soil degradation during the earthquake and minor
crest settlement.

1 Introduction

Earth dams are geo-structures usually analysed very care-
fully from the seismic point of view, because of the risk for
the human lives that their failure may imply. During the last
century, earth dam engineers have mainly focused their at-
tention on the knowledge of empirical standards of design of
these structures against earthquakes, guided by past experi-
ences (Sherard, 1967). The characteristics of the materials
to be used in each zone of the dam have been widely inves-
tigated as well. A significant event in the design of earthfill
dams was the failure of the lower San Fernando dam (Los
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Angeles area), in the earthquake of the same name, which
took place in 1971. Some laboratory and field researches
after this event demonstrated that the flow failure of the liq-
uefied upstream sand fill happened few minutes after the end
of the earthquake (Fig. 1) (Seed et al., 1973, 1989; Bardet
and Davis, 1996; Zienkiewicz et al., 1999; Wu, 2001; Ming
and Li, 2003; Bĺazquez and Ĺopez-Querol, 2007). Due of the
great amount of reported data about this dam, it has become
the main case study used for validating a lot of constitutive
laws for saturated soils under vibrations developed after that
year. Nevertheless, although it is the most famous case of liq-
uefaction failure of an earth dam, it is not the only one taken
place in the past (Seed, 1979; Wylie et al., 1975; Davis and
Bardet, 1996; Olson, 2001; Olson and Stark, 2002).

Since 1971, a lot of analyses of possible liquefaction in al-
ready constructed earth dams located at seismic sites have
been made, in order to upgrade the most dangerous ones
against human casualties (Mejia et al., 2005). There is not
too much research about the design of new earth dams at
those sites, especially in what concerns to geometry and lo-
cation of the impervious core. Nevertheless, it is sanctioned
by the practice that, if the seismic risk is high, the location of
the impervious core close to the upstream slope is better than
a central core (Finn and Khanna, 1966; Vallarino, 2001), and
this kind of cross sections is frequently used at sites where
the seismic risk ranges from medium to high (Wieland and
Malla, 2002). But this issue is again more an experience
knowledge than a scientifically analysed phenomenon.

Usually, the constitutive laws for modelling the soil be-
haviour under static loads are not applicable to vibrations.
Several constitutive laws are specifically suitable for dy-
namic loadings (Martin et al., 1975; Dafalias and Popov,
1976; Bĺazquez et al., 1980; Prevost, 1985; Pastor et al.,
1990; Bardet, 1995; Manzari and Dafalias, 1997; Gajo and
Wood, 1999; Papadimitriou et al., 2001). Some approaches
have been carried out in order to model the dynamic sand be-
haviour by means of densification based models, in which the
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Fig. 1. Geometry of the lower San Fernando Dam after and before the failure in 1971. Distances given in meters (after Seed et al., 1989).

rate of pore water pressure increase is related to the changes
of volumetric strain of the sand when it is dry or totally
drained. This type of modelling realistically represents the
physical process of the loss of effective stress for loose sand,
in which the behaviour is mainly contractive, but the dila-
tive trend of dense sand can not be taken into account in
some of them. In this paper, a model based on a densification
law, with a flow rule for predicting the dilative behaviour and
soil collapse, has been used. In addition, the microstructural
changes of the soil after phase transformation and collapse
are modelled as well (Ishihara et al., 1975; Alarcón-Guzḿan
et al., 1988).

This constitutive model has been implemented in a cou-
pled 2-D finite element code newly developed by the au-
thors, which has been deterministically applied to several
ideal cross sections of earth dams with impervious core. All
of these dams have been designed as 100 m height, and have
the same volume of impervious material in the core, but the
main difference between them is the location of this core in-
side of the dam, which ranges from totally centered to to-
tally leaned to the upstream slope. Both upstream and down-
stream slope angles have been previously calculated in or-
der to make the dams strictly stable under static loadings.
Two different earthquakes have been applied at the base of
all these dams, in order to explore their risk against failure
due to liquefaction and crest settlements. On the basis of this
analysis, a design recommendation of the impervious core
location for the studied case at seismic sites is numerically
obtained.

In this paper the governing equations used in the numerical
model are firstly provided. After that, the applied constitutive
law is briefly described. The applied dynamic loadings, ge-
ometry, material characteristics and boundary conditions of
the analysed dams are presented, and the numerical results
are evaluated, in order to determine the optimal location of
the impervious core inside the dam against liquefaction be-
tween all the analysed cases.

2 Governing equations

The mechanical behaviours of both solid and fluid phases
subjected to dynamic loading, as well as the coupling be-
tween them, are given by Biot’s equations, in which the trans-
mission of waves in saturated porous media is accounted for
(Biot, 1956; Zienkiewicz et al., 1999). Theu−w formula-
tion is employed herein (u andw denote, respectively, the
absolute displacement of the solid phase and the relative dis-
placement of the fluid phase). If linear approximation func-
tions are used in the finite element scheme, compared to
the more conventionalu−pw formulation (pw denotes the
pore water pressure), theu−w formulation gives stable solu-
tions even for extremely low values of the soil permeability
(López-Querol and Blázquez, 2006), and no stabilization al-
gorithms are needed (Mira et al., 2003). In addition, while in
u−pw formulation the relative flow acceleration is neglected,
in u−w it is not, and therefore, more accurate solutions are
obtained if the frequency of the input motion and/or the soil
permeability are high (Zienkiewicz et al., 1980). The incre-
mental governing equations, in each time step, are finally re-
arranged as follows, using matrix notation:

(STDeS−STDeDpS)du+Md∇(∇
T du)+

+Md∇(∇
T dw)−ρdü−ρf dẅ+ρdb=0 (1)

Md∇(∇
T du)+Md∇(∇

T dw)−k−1dẇ−

−ρf dü−
ρf

n
dẅ+ρf db=0 (2)

Equation (1) stands for the equilibrium of the saturated
two-phase medium (solid and fluid phases of the soil),
and Eq. (2), only for the fluid phase. In these equa-
tions,Md is the tangent constrained modulus of the drained
sand in unloading;ρ and ρf are the densities of the
two-phase medium and the fluid, respectively;n is the
porosity of the soil; k is the soil permeability tensor
(expressed in units of[lenght]3 · [time]/[mass]), db is the

Nat. Hazards Earth Syst. Sci., 8, 9–18, 2008 www.nat-hazards-earth-syst-sci.net/8/9/2008/
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Fig. 2. Cyclic shear stress test on loose saturated undrained sand:
experimental data vs. constitutive model numerical results.(a)
Stress path, failure and phase transformation lines.(b) Liquefac-
tion degree (1pw/σ ′

v0) (after Wijewickreme et al., 2005).

vector of incremental external acceleration due to the earth-
quake;S is an operator which in 2-D is given by:

S=





∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x



 (3)

Dp is the tensor which defines the constitutive law of the ma-
terial; De is the elastic tensor, which, in plane strain, and for
the constitutive law used herein, is defined as follows:

De=
λ

ν





1−ν ν 0
ν 1−ν 0
0 0 1−2ν

2
G∗

G



 (4)

ν is the Poisson’s coefficient,G∗ is a function defined by
means of the constitutive law, andλ is the Laḿe constant:

λ=
2Gν

1−2ν
(5)

andG is given by:

G=
Gmax

T
(6)
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Fig. 3. Cyclic shear stress test on dense saturated undrained sand.
Stress path: experimental data vs. constitutive model numerical re-
sults (after Wijewickreme et al., 2005).

whereGmax is the maximum tangent shear elastic modulus,
depending on the void ratio,e, and the effective overburden
pressure,p′, and can be computed as:

Gmax=
Bg · pa

0.3+0.7 · e2
·

(

p′

pa

)2

(7)

Bg is a sand dependent model parameter,pa is the atmo-
spheric pressure (in the same units asp′), andT is a function
which quantifies the degree of non-linearity of the soil be-
havior, in the following manner:

– First loading:

T=1+2 · Ct · |η−η0| (8)

– Unloading and reloading:

T=1+Ct · |η−ηsr | (9)

In Eqs. (8) and (9),Ct is a material constant, andη, η0 and
ηsr represent, respectively, the current, initial and last rever-
sal values of the stress ratio,τ/σ ′

v.
In Eq. (2), the termk−1dẇ stands for the viscous coupling

between solid and fluid phases, on the basis of the assump-
tion of the porous media flow Darcy’s law.

3 Constitutive law for dynamic loadings

The constitutive law applied in the numerical model (Eq. 1)
was derived by Ĺopez-Querol and Blázquez (2006). It is
based on the calculation of the plastic volumetric strains of
dry sandy soil under vibrations (densification), which are re-
lated to the changes in the effective stress of the saturated
soil. This law is briefly described herein.

Figure 2 shows a typical result obtained from a saturated
undrained sand subjected to cyclic shear stress test (Wijew-
ickreme et al., 2005). In Fig. 2a the stress path is shown.
The initial effective stress,σ ′

v0, is depicted as point 1. Cycle

www.nat-hazards-earth-syst-sci.net/8/9/2008/ Nat. Hazards Earth Syst. Sci., 8, 9–18, 2008
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Fig. 4. Geometry of the studied earth dams. Saturation line, types of material and boundary conditions.
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Fig. 5. Recording at the Pacoima dam (CDMG Station 279), San
Fernando earthquake (9 February 1971), scaled to a maximum hor-
izontal acceleration,|ahmax| = 0.6 g. (a) Horizonal accelerogram
(254). (b) Vertical accelerogram. (http://nisee.berkeley.edu/).

by cycle, the effective stress,σ ′
v, decreases until the stress

path reaches the phase transformation line (point 2): until
this point, the sand behaves in contractive manner. From this
point until unloading (point 3), the sand dilates, recovering
some of the effective stress. Figure 2b shows the evolution
of the liquefaction degree (1pw/σ ′

v0, where1pw is the ex-
cess pore water pressure generated during the earthquake)
in the same test. It is worth to point out that, as the lique-
faction degree approaches to 1,1pw is more similar toσ ′

v0,
which means that the current effective stress,σ ′

v, approaches
to zero, if Terzaghi’s stress decomposition law is assumed:
σ ′
v=σ

′
v0−1pw. At the beginning of the loading, the water

pressure gradually increases, and during the last cycles of
loading, it decreases and increases in each cycle, because at
these stages, dilation and contraction take place in an alter-
native manner.

In Fig. 2a, the failure lines in both positive and negative
shear stress planes (with slopeMp) are sketched. These lines
are never crossed by the stress path. The looser the sand, the
closer the failure and phase transformation lines (the sand
behaviour is mainly contractive). In dense sand, the slope of
the phase transformation lines,Mtf , is quite different from
the slope of the failure lines, and the sand behaviour is mainly
dilative since the beginning of the loading. An example of a
stress path in a saturated dense sand under cyclic shear stress
conditions is given in Fig. 3. This mainly dilative behaviour
is known as cyclic mobility.

For the constitutive law used in this research, for both con-
tractive and dilative behaviours, the constitutive law tensor,
Dp, can be written as follows:

Dp=





0 0 0
0 0Qq

0 0Kq



 (10)

Kq is determined by applying the following equation:

Kq=
τ · sign(dγ )

G · τD

(

1+α′

β
ξ
) (11)

whereτ is the current shear stress,dγ is the increment of
shear strain, both in the current time step;τD, α′ andβ are
model constants; andξ is a function determined incremen-
tally:

dξ=|dγ | (12)

If, at the beginning of the current time step, the stress path is
in the contractive zone:

G∗=G (13)

andQq is obtained from the following equation:

Qq= − Is

(n

4

) |100γ |n−1 sign(dγ )

1 + α · ζ
(14)

wheren, α are generalized for different quartzitic sands and
non harmonic loadings, and computed as follows, in each
time step (Bĺazquez and Ĺopez-Querol, 2006):

n=C ·N−D (15)

Nat. Hazards Earth Syst. Sci., 8, 9–18, 2008 www.nat-hazards-earth-syst-sci.net/8/9/2008/
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Table 1. Values of the upstream (ml) and downstream (mr) slopes
for equilibrium under static loads, as a function of the angle of the
impervious core,δ (horizontal distance per one unit of vertical dis-
tance).

δ(degree) ml mr

0.0 3.5 1.8
20.0 3.6 1.7
40.0 3.9 1.6
60.0 4.2 1.6
76.2 4.2 1.5

α=A · ln(N)+B (16)

N is the number of cycles of harmonic strain amplitude, and:

A=
1

2
·

(

e2
max−e

2
min

1+emax−Dr0 · (emax−emin)

)

(17)

B=
1

2
·

(

e2
max−e

2
min

)

+1 (18)

D=
1

2
·

(

e2
max−e

2
min

)

(19)

whereemax and emin are the maximum and minimum void
ratios. Proceeding in this way, the total number of parame-
ters to be calibrated for the densification law becomes only
one, namelyC, which varies linearly with the initial relative
density,Dr0, for some analysed sands.
Is depends on the type of sand, initial relative density and

degradation suffered since the beginning of the vibrations.
It is equal to 1 before phase transformation and/or collapse,
and bigger than one after some of those situations have taken
place.ζ is incrementally determined as follows:

dζ=
n

4
|100γ |(n−1)|dγ | (20)

On the other hand, if sand behaves in dilative manner,G∗

andQq must be calculated as:

G∗=
sign(τ )ψMpMdQq

1−Kq
(21)

Qq=sign(τ )ψ(1+αp)Kq (22)

whereαp is a soil parameter,ψ is a degradation parameter:

ψ=
G0

G0−G
(23)

andG0 is the initial tangent elastic modulus.
Finally, for quartzitic sands,Md can be obtained from the

next equation:

Md=
Kd · σ ′0.5

v

σ
′m∗
v0

(24)

Table 2. Parameters used for the materials in the numerical model
(López-Querol and Blázquez, 2006), and for the slope stability anal-
ysis under static loadings.

Parameter Sand Impervious soil

C 10 0
Kd 12000 1
m∗ 0.372 0.372
αp −0.99 −0.99
Is (before phase tr. and/or collapse) 1 1
Is (after phase tr. and/or collapse) 2 2
Bg 220 170
Ct 1.6 1.0
emin 0.68 0.50
emax 1.00 1.00
Dr0 0.60 0.64
Mp 0.65 1.20
Mtf 0.17 0.28
k(m/s) 4.3×10−4 0.5×10−8

γs(KN/m3) 26.56 26.17
c′(KN/m2) 5 30
ϕ′(degree) 35 20

whereKd andm∗ are sand dependent parameters, andσ ′
v0

and σ ′
v denote initial and current effective stress, respec-

tively. It has been assessed that this constitutive law is
suitable for reproducing both free field and laboratory (cen-
trifuge tests) soil profiles under dynamic loadings (López-
Querol and Bĺazquez, 2007; Blázquez and Ĺopez-Querol,
2007). Figures 2 and 3 also show numerical results compared
to experimental measurements after calibration. This consti-
tutive model has been proved to be accurate enough for de-
termining the pore water pressure changes, and the computed
strains and displacements are in reasonable good agreement
with the observations.

4 Application of the model

4.1 Geometry and materials of the analysed dams

Figure 4 shows a sketch of the analysed earth dam cross sec-
tions. All of them are 100 m height. The angle between
the axis of the impervious core and they axis (vertical),δ,
has been made variable from zero to the angle of the up-
stream slope (core totally leaned to this slope). The volume
of the impervious core is the same in all the dams. Five earth
dam cross sections have been analysed. Both upstream and
downstream slopes have been determined in order to make
the dams strictly stable under static loadings (without earth-
quake), by applying the Bishop’s method, and considering
the materials of the dam as isotropic and Mohr-Coulomb
type. The calculation of the downstream slope has been made
on the basis of the assumption that the maximum water eleva-
tion is five meters under the crest of the dam. For determining
the upstream slope, the fast drainage of the reservoir has been

www.nat-hazards-earth-syst-sci.net/8/9/2008/ Nat. Hazards Earth Syst. Sci., 8, 9–18, 2008
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Fig. 6. Computed liquefaction degreeru=1pw/σ ′
v0 in the analysed

dams at the end of the San Fernando earthquake (subjected only to
its horizontal component).

assumed, and the water table has been considered remaining
at the top of the slope surface. The results of these slopes
are provided in Table 1 (horizontal distance per one unit of
vertical distance). The parameters of the soils for the static
stability analysis (cohesion,c′, internal friction angle,ϕ′, and
specific weight of the solid skeleton,γs , which, knowing the
inicial void ratio and saturation conditions, allows us to cal-
culate the apparent density) as well as the values of the pa-
rameters in the constitutive model described in Sect. 3, can
be checked in Table 2. The used values are typical for both
granular and impervious soils, respectively.

Although the described constitutive model is strictly valid
only for granular soil, it can be also employed for more im-
pervious soils in a simplified manner, by taking an extremely
low value of the parameterKd . By so doing, the rate of
evolution of excess pore water pressure is very low in these
soils, circumstance that correctly fits the experimental results
(López Querol, 2005). The permeability of this material is a
typical value for this type of soil.

4.2 Numerical results

The numerical model described in Sect. 2 has been applied to
the five earth dam cross sections with different angleδ. Since
most of the soil volume in the dam consists of sandy material,
above the saturation line the soil is assumed to be completely
dry, and below it, totally saturated. The dams are supposed to
rest over a 20 m thick soil layer, which is over rigid rock. The
horizontal accelerogram recorded at the Pacoima dam in the
San Fernando earthquake in 1971 (Los Angeles area, 254,
CDMG Station 279), scaled to the maximum horizontal ac-
celeration of 0.6 g, is the one firstly applied to the base rock
of all the dams (Fig. 5a). This accelerogram is very similar to
the ones usually employed in the studies of the failure of the
lower San Fernando dam (Seed, 1979). After using only this
horizontal input motion, a new computation has been carried
out, in which the vertical accelerogram of the same earth-
quake, recorded at the same station, and scaled by the same
factor than the horizontal component, has been also applied
(Fig. 5b). Since the constitutive model used herein is based
on the excess pore water pressure evolution due to the accu-
mulation of shear strains in the soil, mainly caused by shear
stresses, the vertical acceleration is expected to modify the
dam response in terms of vertical coupling of fluid and solid
phases, modifiying the consolidation conditions.

Figure 6 displays the liquefaction degrees (ru=1pw/σ
′
v0)

at the end of the San Fernando earthquake, only applying its
horizontal accelerogram to the five studied dams. The geom-
etry of the dams and the core inside them are also sketched.
It is worth to point out that values ofru equal to 1 mean that
liquefaction has occurred. Therefore, on the basis of this fig-
ure, the five dams reach liquefaction at the end of the earth-
quake. The critical points (where the maximum values ofru
are reached) in the first three dams are located at the higher
elevation of the boundary between impervious and granular
materials. In the fourth dam (δ=60 degree), the most critical
point against liquefaction is located slightly at a lower eleva-
tion, but also close to the surface of the upstream slope of the
dam. The fifth dam, in which the core is located at the up-
stream slope, liquefaction takes place in a less concentrated
zone of the dam, at the top of the contact between earthfill
and impervious material.

In Fig. 7, the deformed shapes of the dams (amplified by
50) at t=8.52 s (which is the time when the maximum ac-
celeration is applied at the base rock, Fig. 5a) can be seen.
The arrows represent the velocity of the water flow inside

Nat. Hazards Earth Syst. Sci., 8, 9–18, 2008 www.nat-hazards-earth-syst-sci.net/8/9/2008/
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the dams. In these graphics, the location of the impervious
core in each dam is again depicted. At the most superfi-
cial locations the vectors show the exit of the water towards
the reservoir, because consolidation is taking place. How-
ever, in the last dam the core works as an impervious bar-
rier against the water flow to the reservoir, and water only
moves inside the dam. In this case, the consolidation is a
slower process which takes place after the end of the earth-
quake, and the water does not flow to the reservoir unless
the core is broken. Therefore, if the resistance of the core
is assessed, this consolidation process gives more stability to
this dam if compared to the others, because it is well known
that in the above mentioned lower San Fernando dam, the up-
stream slope failed few minutes after the earthquake, during
the consolidation stages, because of the instability produced
by the porous media flow of the water towards the reservoir
(Seed et al., 1973; Zienkiewicz and Xie, 1991; Blázquez and
López-Querol, 2007). In Fig. 8 the degradation of the mate-
rials of the dam at the end of the San Fernando earthquake
against the angle of the impervious core,δ, is pointed out.
Results for only horizontal accelerations and both horizontal
and vertical input motions applied together are provided. The
percentages of the volume of the dam material over the liq-
uefaction degreesru=0.2,0.6 and 0.9 are depicted for both
loading cases. The most important results are those related to
ru≥0.9, because if the soil reaches this value, it is very close
to the onset of liquefaction. Curves forru≥0.2 andru≥0.6
are drawn as well, in order to point out the degradation state
of the material in each whole dam.

Figure 9 represents the vertical displacement computed at
the crest of the dams at the end of the San Fernando earth-
quake, also for both loading situations (only horizontal and
both horizontal and vertical recordings). The negative sign
means settlement.

Just for not to base the conclusions of this research in a sin-
gle input motion, one more accelerogram has been used. In
this case, the loading is a recording reported by Byrne (2005),
which has a 2% probability of being exceded in 50 years in
the Vancouver area (Fig. 10). In the previous case of the San
Fernando earthquake, if only horizontal or both horizontal
and vertical accelerations are taken into account, the selec-
tion of the optimal cross section is the same, as it will be
justified within the next section (although some differences
arise in the computation of liquefaction degrees and crest set-
tlements). Therefore, in this second case, only the horizon-
tal component of the earthquake is considered. Percentages
of the material in the dams over three liquefaction degrees
(again, 0.2, 0.6 and 0.9), and crest settlements, are respec-
tively given in Figs. 11 and 12 for this new input motion.

5 Optimal cross section

In order to obtain the optimal cross section of earth dams
with impervious core against liquefaction at seismic sites

 200  100 0 100 200 300 400 500
0

50

100

150

200

E
le

v
a

ti
o

n
 (

m
)

Horizontal distance (m)

δ = 0º 

 200  100 0 100 200 300 400
0

50

100

150

200

E
le

v
a

ti
o

n
 (

m
)

Horizontal distance (m)

δ = 20º 

 200  100 0 100 200 300 400
0

50

100

150

200

E
le

v
a

ti
o

n
 (

m
)

Horizontal distance (m)

δ = 40º 

 200  100 0 100 200 300 400
0

50

100

150

200

E
le

v
a

ti
o

n
 (

m
)

Horizontal distance (m)

δ = 60º 

 200  100 0 100 200 300 400
0

50

100

150

200

E
le

v
a

ti
o

n
 (

m
)

Horizontal distance (m)

δ = 76.2º 

Fig. 7. Deformed shapes (amplification factor = 50) of the analysed
dams at time t=8.52 s of the San Fernando earthquake (subjected
only to its horizontal component). The vectors show the directions
of the water flow inside the dams.

between all the analysed cases, the next criteria are to be
taken into consideration:

– Maximum liquefaction degree reached in the dam dur-
ing the earthquake: the greater it, the greater the risk of
failure.

– Volume of the liquefied soil in the dam: as the percent-
age of liquefied volume in the dam increases, the col-
lapse of the whole structure is more likely to occur.
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16 S. Ĺopez-Querol and P. J. M. Moreta: Performance of heterogeneous earth dams under earthquakes

0

10

20

30

40

0 20 40 60 80δ(º)

%
 o

f 
m

a
te

ri
a
l

horizontal acceleration horizontal and vertical acceleration

ru>=0.2

ru>=0.6

ru>=0.9

Fig. 8. Percentage of dam material over the depicted liquefaction
degrees,ru, against the angle of the impervious core,δ, at the end
of the San Fernando earthquake. Results for only horizontal and
both horizontal and vertical accelerations are provided.
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Fig. 9. Settlement of the crest dam at the end of the San Fernando
earthquake, against the angle of the impervious core,δ. Results for
only horizontal and both horizontal and vertical accelerations are
provided.

– Crest settlement: the greater it, the more likely the flow
of water over the dam, which may imply the whole dam
collapse.

From the numerical results introduced in Sect. 4, at the end
of the first considered horizontal input motion (San Fernando
earthquake), liquefaction is reached in all the analysed dams,
and this is the reason why, in this case, the maximum liq-
uefaction degree is not a criterium to determine the optimal
cross section.

It is noticeable that the cross section with the minimum
percentage of soil overru=0.9 (Fig. 8) (for both cases of only
horizontal and both horizontal and vertical input motions in
the same earthquake) is the one corresponding to the most
inclined core, (i.e. the core at the upstream slope), which is
8.77% and 3.08%, respectively. By analyzing the other two
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Fig. 10. Horizonal accelerogram reported by Byrne (2005), which
has a 2% probability of being exceeded in 50 y in the Vancouver
area.

sets of graphs in this figure, corresponding to the other values
of ru, it is worth to point out that the minimum values of
the percentages are always reached for the highestδ, which
means that, for this angle of the core, the degradation state of
the soil is minimum.

The biggest settlement for the case of the application
of only horizontal acceleration (Fig. 9) is calculated for
δ =20 degree, and it amounts 88 cm. For the case of appli-
cation of both input motions together, the biggest settlement
occurs for the core at the centre of the dam (140 cm). How-
ever, in both cases, the best cross section is again the one with
the maximumδ, for which the numerical computation yields
a value of 43 cm and 86 cm, respectively. Therefore, from the
numerical calculations of this deterministic analysis, the op-
timal cross section of earthfill dams against liquefaction at a
seismic site, with the soils involved in this particular case and
the applied dynamic loading, seems to be the one in which
the impervious core is totally leaned to the upstream slope.

By analysing the results derived from the second computa-
tion (using the Vancouver horizontal input motion – Fig. 10),
the comparative results yield the same optimal cross section:
although liquefaction is reached in all the analysed geome-
tries, the less degradated dam is again the one with the core
at the upper slope (Fig. 11: percentage of dam withru≥0.9
equal to 6.28). From the inspection of Fig. 12, the smallest
settlement is not obtained for the same cross section but for
the one withδ=60 degree (74 cm). However, for the most
inclined core the settlement is almost the same (86 cm).

From the criterium of the behaviour of dams against liq-
uefaction, the optimal cross section obtained herein is equiv-
alent to earth dams with upstream impervious membranes,
like concrete or asphalt. These membranes work as barri-
ers preventing the flow of liquefied material through the dam
towards the reservoir. However, in order to avoid the dam
collapse in an earthquake, the resistance of the membrane
itself against seismic loading is to be assessed, to avoid as
much as possible the development of cracks and leaks which
the liquefied soil may pass through. On this sense, the use
of asphalt may be more adequate than concrete, which is a
more rigid material.
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Fig. 11. Percentage of dam material over the depicted liquefaction
degrees,ru, against the angle of the impervious core,δ, at the end
of the Vancouver horizontal accelerogram.

6 Conclusions

In this paper the application of a recently developed coupled
numerical model to the dynamic analysis of earth dams un-
der earthquakes has been described, in order to explore the
influence of the impervious core location inside the dams on
their failure risk due to liquefaction. After a brief descrip-
tion of the model, the geometry of the five analysed dams
has been defined. All dams are 100 m height, and the core
location ranges from totally centered to totally leaned to the
upstream slope. The five analysed dams are strictly stable
under static loadings, and all of them are subjected to a cou-
ple of earthquakes at the rigid base. The main findings show
that:

– Liquefaction is reached in all these dams under the se-
lected accelerograms.

– The optimal cross section against soil degradation (in
terms of liquefaction degree) is the one with the core
located at the upstream slope for both earthquakes.

– The dam which suffers the minor crest settlement is
again the one with the most inclined core in one of the
cases, and in the second one, this settlement is on the
range of the minimum computed value.

In addition, it has been justified that, in this optimal cross
section, consolidation does not take place during the earth-
quake, but after it, and the excess pore water pressure is
slowly dissipated through the downstream earthfill, which
ensures the safety of this type of dams.

Therefore, the location of the impervious core at the up-
stream slope may be a design criteria in seismic sites, al-
though in every particular situation, an analysis similar to the
one developed in this paper should be done, following the
same guidelines pointed out by considering the exact dam
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Fig. 12. Settlement of the crest dam at the end of the Vancouver
horizontal accelerogram, against the angle of the impervious core,
δ.

height, material properties and seismic loadings. In addi-
tion, the breakage of the core must be prevented, because
the maximum generated pressures during the earthquake ap-
pear at the boundary between impervious and granular mate-
rials. The optimal location of the core being at the upstream
slope, its slenderness should be prevented in order to ensure
the safety of the dam, because the failure of the core may
cause a located flow of liquefied soil, with the result of the
whole dam collapse. Another kind of dams, i.e. earth dams
with impervious membranes, could be better from this point
of view.
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de Caminos, Canales y Puertos, Universidad de Castilla-La Man-
cha, Ciudad Real (Spain), Ph.D. thesis, 2005 in Spanish.
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