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Abstract. This study anatomized algorithm effects of spe-
cific contributing area (SCA) on soil wetness estimation,
consequently landslide prediction, in SHALSTAB. A sub-
tropical mountainous catchment during three typhoon inva-
sions is targeted. The peak 2-day rainfall intensity of the
three typhoons: Haitang, Mindulle and Herb are 144, 248
and 327 mm/day, respectively. We use modified success rate
(MSR) to retrieve the most satisfying mean condition for
model parameters in SHALSTAB at three rainfall intensities
and respective pre-typhoon NDVI themes. Simulation indi-
cates that algorithm affects the prediction of landslide sus-
ceptibility (i.e. FS, Factor of Safety) significantly.

Based on fixed NDVI and the mean condition, we simulate
by using full scale rainfall intensity from 0 to 1200 mm/day.
Simulations show that predicted unstable area coverage in-
creases non-linearly as rainfall intensity increases for all al-
gorithms yet with different increasing trends. Compared to
Dinf, D8 always gives lower coverage of predicted unstable
area during three typhoons. By contrast, FD8 gives higher
coverage areas. The absolute difference (compared to Dinf)
in predicted unstable area ranges from∼−3% to +4% (per-
cent watershed area). The relative difference (compared to
Dinf) ranges from−15% to as high as +40%. The maximum
absolute and relative differences in unstable area prediction
occur around the condition of 100–300 mm/day, which is
common in subtropical mountainous region.

Theoretical relationship among slope, rainfall intensity,
SCA and FS value was derived in which FS values are very
sensitive to algorithms in the field of slope from 37 to 52de-
gree. Results imply any comparison among SCA-related
landslide models or engineering application of rainfall return
period analysis must base on the same algorithm to obtain
comparable results. This study clarifies the SCA algorithm
effect on FS prediction and deepens our understanding on
landslide modeling.

Correspondence to: S.-J. Kao
(sjkao@gate.sinica.edu.tw)

1 Introduction

Among hydro-geomorphic processes, rainfall-induced shal-
low landslide is a threatening hazard in many mountain-
ous watersheds around the world. Deterministic landslide
models are widely applied to construct landslide suscepti-
bility maps for management and hazard mitigation (Mont-
gomery and Dietrich, 1994; Wu and Sidle, 1995; Burton and
Bathurst, 1998; Borga et al., 1998; Pack et al., 1998). Pre-
vious studies have proven that soil wetness caused by rain
storms plays a crucial role in triggering landslides. However,
it is difficult to obtain accurate measurements of soil wet-
ness during storm periods within the entire watershed. Ac-
cordingly, estimation of soil wetness by hydrologic models is
widely applied, which is then coupled into landslide models.
Soil wetness is usually obtained through calculation of slope
and specific contributing area (hereafter SCA) which being
retrieved from grid-based digital elevation models (DEMs)
by flow direction algorithms and then applied to most land-
slide models (e.g., Barling et al., 1994; Dietrich et al., 1995;
Casadei et al., 2003).

SCA is defined as the contributing area (also called up-
slope area or upslope contributing area) per unit width of
contour. The contributing area represents the catchment area
at any given point in space. The unit flow width in grid-
based DEM is approximately the length of grid cell (Gallant
and Wilson, 2000). This parameter representing the accumu-
lated catchment area is preferably applied to various model-
ings about hydro-geomorphic processes (such as runoff, soil
erosion and solute transport in subsurface) for considering
stream power. Obviously, SCA is not only conceptually fun-
damental but also practical in model operation. Differences
in algorithm-derived SCA have well been compared on ideal
surface (e.g. Zhou and Liu, 2002; Florinsky, 1998; Wilson
et al., 2000) or on hydrological simulation (Holmgren 1994;
Quinn et al., 1995). However effects of algorithm-derived
SCA on predicting slope failure have yet to be examined,
particularly in subtropical mountainous watersheds with high
rainfall and steep slope.
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For quantifying the performance of FS prediction, a per-
formance measure is required for calibration. Traditionally,
success rate (SR), the ratio of rightly predicted landslide over
the number of actual landslide, is up to now often used (Duan
and Grant, 2000). However, traditional SR estimation ig-
nores the component of stable cell prediction. This defi-
ciency implies high SR can be achieved with the success
in stable cell prediction being sacrificed. Huang and Kao
(2006) proposed MSR (Modified Success Rate) which keeps
SR while taking the predicted stable area into account and
thus avoids over-prediction. Similarly, Rosso et al. (2006)
also proposed a cell-based index by considering 4 combina-
tions in error matrix, which is similar to kappa method. The
two indexes are used in this study.

Taiwan, an island full of mountainous watersheds, is fea-
tured by steep slope and torrential rainfall brought by fre-
quent typhoons (3–4 typhoons/year). Landslides often occur
during or after typhoons. A small catchment, Erbu, which
locates in central Taiwan, is studied. In order to calibrate
a mean condition (see in 2.3), we collected 10-m DEMs,
pre-typhoon NDVI (Normalized Difference Vegetation In-
dex) themes from SPOT-5 imagery and post-typhoon land-
slide maps of the three typhoons with different rainfall in-
tensities. Since all algorithms share the mean condition, the
differences in FS prediction are mainly derived from algo-
rithms.

This study aims to identify the differences of algorithm-
induced SCA values on the predictions of FS patterns and FS
values by using SHALSTAB model, which is similar to SIN-
MAP, proposed by Pack et al. (1998). Three algorithms: D8,
Dinf, and FD8 holding different degrees of divergence are
generated by using TAS (Terrain Analysis System, a pow-
erful package designed for hydro-geomorphic applications
by Lindsay, 2005). Results indicate SCA algorithm affects
the landslide prediction significantly, especially for the slope
gradient within 37–52 degree in our study.

2 Materials and methods

2.1 SHALSTAB, soil wetness and flow algorithm:

Hammond et al. (1992) proposed an infinite slope model.
The original function of susceptibility of slope failure (factor
of safety, FS) is implemented by:

FS=
C + (Zρs − hρw)g cos2 θ · tanϕ

ρsgZ sinθ · cosθ
. (1)

The FS equation is well accepted in analyzing stability of
shallow soils. The slope failure occurs when FS<1, that is,
the shear resistance is smaller than downslope shear stress.
In the function,C [N/m2] is the effective cohesion (the sum
of soil and root cohesion),g [9.81 m/s2] is the gravitational
acceleration;ρs andρw [kg/m3] are the densities of soil and
water, respectively.θ stands for the slope gradient andφ

is the internal friction angle.Z [m] represents soil depth
andh [m] is the water table height above the slip surface.
In the model,h represents porewater pressure, which dimin-
ishes shear resistance with increasing rainfall. Estimatingh

in different rainfall events turns out to be an important issue
in many hydro-geomorphic applications.

In hydrological modeling, Beven and Kirkby (1979) and
O’Loughlin (1986) assume that (1) lateral subsurface dis-
charge at each point is in equilibrium with a steady state
recharge (rainfall); (2) shallow lateral subsurface flow fol-
lows topographic gradients. Under the assumptions, the
amount of subsurface runoff that flows through a cell should
equal its respective SCA times the effective precipitation (R)

based on Darcy’s law:

R · SCA = Ks · h · cosθ · sinθ , (2)

whereKs is the saturated hydraulic conductivity. In any
given point (cell), if the soil mantle is fully saturated (h=Z),
the maximum shallow subsurface flow will equal the trans-
missivity (T , vertical integration of the saturated conductiv-
ity) times the gradient and the width of the outflow boundary
(here the unit cell width, i.e. 1.0).

T · sinθ = Ks · Z · cosθ · sinθ (3)

According to Eq. (2) and Eq. (3) the degree of soil wetness
(w=h/Z) can be obtained:

w =
h

Z
= min

(

R

T

SCA

sinθ
, 1.0

)

. (4)

The soil wetness for a given storm, therefore, is determined
by the hydrologic term (R/T ) and the topographic term
(SCA/sinθ ). When soil wetness exceeds 1.0, saturated over-
land flow occurs. Besides, we simply remove the excess sur-
face runoff instantaneously from the catchment and ignore it
in further computations when soil is fully saturated as soil
wetness>1.0 (Pack et al., 1998; Casadei et al., 2003). Thus
the soil wetness is limited by 1.0 and can be incorporated into
Eq. (1) as proposed by Montgomery and Dietrich (1994):

FS=
C + (1 − w ·

ρw

ρs
)ρsgZ cos2 θ · tanϕ·

ρsgZ sinθ · cosθ
. (5)

This slope failure equation is named SHALSTAB later (Diet-
rich and Montgomery, 1998). Incorporation of soil wetness
into the original model allows calculation of FS at a given
point (i.e. given topographic term) in any given hydrological
term. The topographic term is affected by SCA algorithm.

In our literature review, more than eight algorithms have
been proposed to determine flow directions and then calcu-
late SCA. Three often-used flow direction algorithms are ap-
plied in this study, namely, D8, Dinf, and FD8. The D8
algorithm is developed by O’Callaghan and Mark (1984).
This method designs water flow from a cell to the one with
the lowest elevation among the eight nearest neighbor cells
(Fig. 1a). Since water flow from several upslope cells may
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accumulate into a cell but only drains out to a single cell,
this method can model convergent flow in valleys. How-
ever, it fails to model the flow divergence near ridge or hill-
slope areas (Zhou and Liu, 2002). To accommodate flow
divergence, multiple flow directions (FD8) is then proposed
by Freeman et al. (1991). However, FD8 often encounters
over-dispersion (Fig. 1b). To reduce over-dispersion in FD8
and grid-bias, due to fixed grid orientation in D8, Tarboton
(1997) proposes the infinite flow direction method (Dinf).
This method is partly inspired by the aspect-driven algorithm
(Lea, 1992). Only the two neighboring cells within the steep-
est facet can receive upslope flows, and the fractional flow is
dependent on the slope angle on the facet (Fig. 1c). Among
the three methods discussed above, the degree of divergence
is FD8> Dinf > D8 according to the number of receptor cell.
The three SCA patterns are generated by TAS and introduced
into SHALSTAB.

2.2 Performance measure for landslide models

Performance measure is crucial for any modeling work. Pre-
vious landslide susceptibility studies (Montgomery and Di-
etrich, 1994; Dietrich et al., 1995; Borga et al., 1998; Borga
et al., 2002; Duan and Grant, 2000) used success rate (SR),
defined as a ratio of how many actual landslide sites are
rightly predicted, to evaluate the model performance. It is
reasonable the SR adopted site-based unit to maintain the co-
herence of landslide although most model predictions using
grid-based DEM provide cell-based results. However, SR
does not include the success (or failure) in stable cell pre-
diction which inherits in the model; thus, it precludes the
detection of over-prediction of slope failure. To avoid over-
prediction, Rosso et al. (2006) develop the index by consid-
ering 4 combinations in error matrix (Rosso-Rulli-Vannucchi
index = rightly simulated unstable cells/observed unstable
cells + rightly simulated unstable cells/simulated unstable
cells + rightly simulated stable cells/observed stable cells
+ rightly simulated stable cells/simulated stable cells). The
cell-based index is somewhat similar to kappa method and
value higher than 50% are regarded as satisfying simulations.

On the other hand, Huang and Kao (2006) proposed an in-
dex, MSR, to evaluate the similarity between FS prediction
and observed landslide map. MSR avoids over-prediction
and maintains the coherence of landslide.

MSR = 0.5
PL

AL
+ 0.5 ·

PSC

ASC
, (6)

whereAL is total number of actual landslides,PL is the num-
ber of rightly predicted landslides,ASC is total number of
actual stable cells andPSC is rightly predicted stable cells.

In this equation landslide number instead of cell is used in
performance calculation (a landslide usually contains more
than one cell) for maintaining the coherence of landslide.
However, cell is used for performance of stable area predic-
tion. In this study, we use MSR to retrieve model parameters;

Fig. 1. The routing scheme of(a) single flow direction algorithm,
D8; (b) multiple flow direction, FD8; and(c) Infinite flow direction,
Dinf. The number in each cell indicates the elevation and the letters
represent the flow fraction.

yet, we have comparisons by using both in quantifying the
model performance (see Table 2).

2.3 Parameter calibration

Six essential parameters – soil depth, soil density, internal
fraction angle, soil transmissivity, rainfall intensity and ef-
fective cohesion – are calibrated in SHALSTAB. Since the
soil depth in Taiwan is usually shallow owing to the pre-
cipitous landscapes caused by torrential rainfall and signif-
icant tectonic uplift (Chen and Wu, 2006), we assume that
soil depth and transmissivity are constant and spatially uni-
form as previously (Pack et al., 1998 and Huang et al., 2006).
For determining hydrologic term, both rainfall intensity and
duration are favorably considered for shallow landslide oc-
currence (Borga et al., 2002; Rosso et al., 2006). As us-
ing steady state approach, Montgomery and Dietrich (1994)
suggest 24-h duration to yield FS predictions. However, in
Taiwan most typhoons have rainfall durations for 36–60 h,
thus, the peak 2-day rainfall intensity is taken (Huang et al.,
2007). As effective cohesion, the sum of soil and root cohe-
sion, is concerned, the colluvial soil is cohesionless that the
soil cohesion is much less than root cohesion, which means
effective cohesion is mainly determined by root cohesion
or vegetation. Therefore, spatial effective cohesion due to
seasonal variability (Duan and Grant, 2000) was suggested
to obtain by using SPOT imagery (Rompaey et al., 2005).
We followed similar approach; NDVI values retrieved from
SPOT-5 (provided by Center for Space and Remote Sensing
Research, National Central University) are used to config-
ure the spatial pattern of effective cohesion. We define min-
imum and maximum effective cohesions (Cmin andCmin +
Cinterval, respectively) to transfer the full spectrum of NDVI
value (−1.0∼1.0) into effective cohesion for each cell. On
considering seasonality, individual pre-typhoon NDVI theme
was applied (details in Huang et al., 2006).

Below we show the process of calibration to obtain the
most satisfying parameter combination to represent the mean
condition. Firstly, we set parameter ranges based on the
previous studies and generate 1000 parameter combinations

www.nat-hazards-earth-syst-sci.net/7/781/2007/ Nat. Hazards Earth Syst. Sci., 7, 781–792, 2007
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Fig. 2. The location and topography of Erbu watershed.(a) The lo-
cation of Chenyulan catchment in Taiwan;(b) The stream networks
and rainfall stations in Chenyulan catchment;(c) The topography,
river networks and spatial pattern of landslides in Erbu watershed;
all landslides triggered by the three typhoons: Herb, Mindulle, and
Haitang are shown, and(d) The slope histogram in Erbu watershed.

by using uniform random number (Duan and Grant, 2000;
Heuvelink, 1993). Three SCA themes are calculated based
on the 10-m DEM (from Soil Water Conservation Bureau in
Taiwan) in TAS. Secondly, the pre-typhoon NDVI themes are
transferred into effective cohesion by the specificCmin and
Cinterval. Thirdly, we run SHALSTAB by using respective
typhoon rainfall intensity. The peak 2-day rainfall intensities
are 144.0, 248.0, and 327 mm/day, respectively, for typhoon
Haitang, Mindulle, and Herb. Finally, these generated FS
maps and their corresponding post-typhoon actual landslide
maps are compared and evaluated by using MSR. This pro-
cedure gives us 9 MSR values for each combination run. We
summarize the nine values as overall success rate and then
rank to single out the most satisfying combination (i.e., the
mean condition) with the highest overall success rate from
1000 simulations. This combination was used as a base to
examine differences in soil wetness and susceptibility maps
(FS maps) which result purely from algorithms.

2.4 Study site

Erbu is a subcatchment of Chenyulan River in central Taiwan
(Fig. 2a). The Chenyulan Catchment is well-known for land-
slides and debris flows. The basin area is 443.6 km2 with
elevations from 310 to 3952 m and a mean annual rainfall
around 3000 mm. The main stream of Chenyulan River sep-
arates the basin into two major geological zones, namely, the
Western Foothills and the Hsuehshan Range (Fig. 2b). Erbu
catchment locates in the Hsuehshan Range zone (Fig. 2c)
which comprises lightly metamorphic rocks being full of
fractured zones, and the reported values of the friction an-
gle there varies from 35–40 degree (Lin and Lu, 2000; Lin

and Jeng, 2000). The colluvial soil over the whole area is
silty sand with roughly 0.5–2.5 m in thickness. Over 27% of
the area is steeper than 40 degree and about 80% of it steeper
than 20 degree, which indicates a precipitous landscape in
this area (Fig. 2d). Forest occupies in the upper stream and
steep slopes while arecas and bamboos are planted in the
down stream and lower elevation areas. Two rainfall sta-
tions, Xi-Luan and Long-Shen-Qiao (data from Water Re-
source Agency), nearby the catchment recorded the rainfall
intensity during the three typhoons.

Three typhoons, Herb (30 July to 7 August, 1996), Min-
dulle (1 July to 9 July, 2004) and Haitang (17 July to 25
July, 2005) are selected for case study. All three typhoons
brought torrential rains triggering a number of landslides
in the catchment (Fig. 2c). The paired aerial-photos (pre-
typhoon and post-typhoon) of the three typhoons are used to
develop an inventory of landslide sites. Those aerial-pootos
rectified and calibrated by the DEMs are used to delineate
the landslide sites. The landslide sites in pre-typhoon pho-
tos are regarded as the remains of the historical landslides or
outcrops. Meanwhile landslide sites in post-typhoon aerial-
photos which are not shown in pre-typhoon aerial-photos are
attributed to that typhoon and then are digitized. Through the
subtraction, the outcrops and remains of historical landslides
can be precluded. As a result, the landslide areas induced by
Haitang, Mindulle, and Herb are 0.11, 0.12, and 0.22 km2,
respectively. Most landslides induced by Mindulle and Hai-
tang were checked in the field (Chung, 2005). Apparently,
most landslide sites occur in steep slopes or near the initia-
tion of channels. The fact that landslides often re-occur in
similar locations strongly indicates that those areas are un-
stable at all times and deserve close attention.

3 Results

After calibration, the most satisfying combination holds
parameter values: soil depth = 1.93 m; bulk density =
2.5 g/cm3; internal fraction angle = 38.3 degree;Cmin =
8.70 kpa andCinterval = 3.2 kpa; transmissivity = 4.28 m2/day.
As mentioned above, soil wetness is R/T (hydrological term)
times SCA/sinθ (topographic term). In a given event, the hy-
drological term is fixed and soil wetness at a certain point is
controlled by the SCA and slope gradient, consequently the
FS value. Below, the frequency distributions of SCA values
derived from algorithms are presented first and then followed
by the spatial patterns of soil wetness and FS values.

3.1 The frequency distributions of SCA derived from algo-
rithms

The frequency distributions of all SCA values derived from
the three algorithms are illustrated in Fig. 3a. Total cell num-
ber in the watershed is 26 345. Seven categories from 0 to 70
degree at 10 degree interval are classified (Fig. 3b) to reveal

Nat. Hazards Earth Syst. Sci., 7, 781–792, 2007 www.nat-hazards-earth-syst-sci.net/7/781/2007/
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Table 1. Soil wetness distributions derived from algorithms during different rainfalls.

Area (%) Haitang Mindulle Herb
144 (mm/day) 248 (mm/day) 327 (mm/day)

Soil D8 Dinf FD8 D8 Dinf FD8 D8 Dinf FD8
wetness

<0.2 1.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2–0.4 17.3 9.6 1.3 6.0 1.8 0.0 0.2 0.0 0.0
0.4–0.6 13.2 11.0 4.4 10.5 6.1 0.7 7.5 2.5 0.0
0.6–0.8 9.0 9.1 5.5 9.1 6.9 1.9 7.3 4.4 0.5
>0.8 58.6 69.9 88.8 74.4 85.2 97.3 84.9 93.1 99.5

Table 2. Simulation results and model performances for the three algorithms.

Scenario PL1 Predicted ASC2 MSR Rosso-Rulli-
unstable cell (%) Vannucchi index (%)

Haitang (24, 1116)*
D8 18 2465 23086 78.3 57.5

Dinf 18 2949 22657 78.3 58.3
FD8 20 4032 21695 86.9 60.0

Mindulle (39, 1245)
D8 31 3600 22108 81.6 62.8

Dinf 32 4188 51587 84.2 63.4
FD8 33 5186 20656 86.8 63.5

Herb (20, 2203)
D8 18 5457 19810 94.7 62.1

Dinf 18 6133 19226 94.7 62.5
FD8 18 6964 18476 94.7 62.4

∗ (x, y): x means the landslide number,y is the landslide in unit of cell (total cell in catchment: 26 345).
1 PL is the number of rightly predicted landslide.
2 ASC is the number of rightly predicted stable cells.

the difference among the three algorithms within each cate-
gory (Fig. 3c).

Figure 3a shows most cells hold low Ln(SCA) values.
Consistency among methods appears at high Ln(SCA) con-
dition while inconsistency occurs when Ln(SCA) values are
lower than 8. Apparently, algorithms project SCA differ-
ences particularly for cells on hillslopes and areas near the
ridge, which is prone to landslide occurrence.

For the entire watershed, peak occurrence of Ln(SCA)
value in frequency distribution (Fig. 3a) falls in Ln(SCA)
category of 2.5, 3.5 and 4.5 for D8, Dinf and FD8, respec-
tively. The mean of Ln(SCA) for the entire watershed for
D8, Dinf and FD8 are 3.95, 4.23 and 4.86, respectively. The
most convergent algorithm gives the lowest mean Ln (SCA)
for the entire watershed. Similar patterns can be found in dif-
ferent slope categories (Fig. 3c) that frequency distributions
of Ln(SCA) skew toward higher value as algorithm diver-
gence increases. Shifts in SCA frequency distribution, from
lower to higher SCA values, obviously, lead to changes of es-

timated soil wetness in watershed scale. On the other hand,
standard deviations for D8, Dinf and FD8 are 1.76, 1.69 and
1.60, respectively. The most divergent algorithm gives the
lowest standard deviation. This smaller standard deviation is
due to FD8 distributes water more divergently and thus pro-
duces more cells with moderate values of SCA at the cost of
both small and large SCA values. This statistic description
derived from DEM at watershed scale gives us an overall pic-
ture about the magnitude of potential difference in SCA.

Algorithm-derived SCA values are presented in scatter
plots in Fig. 4 for comparison at cell to cell basis. Values
from Dinf are used as reference. Since the D8 method al-
ways yields a “full” cell that flows to another, the SCA value
obtained using the D8 method is an integer multiple of the
cell number, which causes discontinuous scattering along the
y-axis (Fig. 4a). About 15% of the SCA values derived from
D8 fall out of the reference field defined as over±1.0 on a
natural log scale, particularly, those values at lower side. D8
tends to give lower values compared to Dinf on hill slopes

www.nat-hazards-earth-syst-sci.net/7/781/2007/ Nat. Hazards Earth Syst. Sci., 7, 781–792, 2007
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Fig. 3. The frequency distributions of Ln(SCA) driven from D8,
Dinf, and FD8(a). The histogram of slope in Erbu catchment(b)
and the frequency distributions of the three algorithms in each slope
category(c).

Fig. 4. (a)a scatter plot represents the Ln(SCA) from Dinf in x-axis
and Ln(SCA) from D8 in y-axis; dash lines mean the difference
larger or lower than 1.0 in Ln scale. The fractions of “ln(D8)>

ln(Dinf) + 1” and “ln(D8) < ln(Dinf) – 1” are shown;(b) a scatter
plot represents the Ln(SCA) from Dinf in x-axis and FD8 in y-axis
and the fractions are also shown.

(around 14% in total). By contrary, approximately 22% of
SCA values from FD8 fall beyond the reference field. Pooled
Fig. 4a and Fig. 4b together, Ln(SCA) values derived from
different algorithms may vary from 2.3 to 11.0 when we take
the cells with Ln(SCA) of 4.0 by Dinf as references.

3.2 Watershed scale soil wetness derived from different al-
gorithms

Area percentages categorized by different degree of soil
wetness are shown in Table 1. Among the three typhoon
cases, saturated area (defined as>0.8 soil wetness) grad-
ually expands as rainfall intensifies. Under the rainfall of
327 mm/day, the proportions of saturated area surge to 84.9%
for D8, 93.1% for Dinf, and 99.5% for FD8, respectively. It
means that the watershed is almost fully saturated. Among
the algorithms, the more divergent algorithm causes the
larger saturated area. For example, the proportions of sat-
urated area are 58.6, 69.9 and 88.8%, respectively, for D8,
Dinf and FD8 in the case of 144 mm/day. The differences in
saturated area between D8 and FD8 are as high as 30.2% and
14.4%, respectively, at 144 mm/day and at 327 mm/day. This
range of rainfall intensity is usual as typhoon strikes Taiwan
(Huang et al., 2007) indicating soil wetness estimation in the
range deserve attentions when considering rainfall intensity
in landslide susceptibility models.

3.3 The simulated FS maps and model performance

The nine FS predictions produced by three algorithms for
the three typhoons (different rainfall intensity and effective
cohesion) are presented in Fig. 5 and quantitative simulated
results are shown in Table 2. Those FS spatial patterns are
also overlaid with post-typhoon landslide maps for compari-
son in Fig. 5. Landslides triggered by Haitang, Mindulle and
Herb were 24, 39 and 20, while those landslides occupied
1116, 1245, and 2203 cells, respectively (Table 2). Appar-
ently, individual landslide is much larger in scale in Herb
case.

Model results show consistency between landslide cell
numbers and peak 2-day rainfall intensity, particularly, be-
tween Haitang and Herb, revealing that unstable cell number
is a function of rainfall intensity. Note that Haitang and Min-
dulle have similar numbers of predicted unstable cell under
different rainfall intensity (Table 2). This is due to higher val-
ues of effective cohesion derived from pre-Mindulle NDVI
map. On the other hand, numbers of predicted unstable cell
are significantly different among three algorithms. Unstable
cell number increases as algorithm divergence and rainfall
intensity increase. In unit of landslide (rather than unsta-
ble cell), the number of rightly predicted landslides is almost
the same among algorithms in individual case (Table 2). In
terms of landslide site simulation, model performance is sat-
isfying regardless SCA algorithms. The model performances
measured by MSR and Rosso-Rulli-Vannucchi index index
are satisfying and shown for comparison (Table 2). Both
measures indicate SHALSTAB performs promising. Appar-
ently, both MSR and Rosso-Rulli-Vannucchi index index can
not discriminate specific differences in unstable cell predic-
tion caused by three algorithms. This is due to the fractional
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Fig. 5. FS spatial patterns derived from the three algorithms in the three typhoons and actual landslides induced by the three typhoons are
also marked.

occupation of stable cell is much higher than that of unstable
cell in the studied watershed (see Sect. 2.2).

3.4 Cell-based differences in FS value among algorithms

The identification of unstable cell is based on FS=1.0, which
has a clear definition and physical meaning, thus, FS=1.0
is regarded as the only criterion of identifying unstable cell
though various criterion (e.g. FS=0.9 or 1.1) and fuzzy vari-
able had been applied (Freer et al., 2004).

The compositions of unstable areas obtained by using var-
ious algorithms are examined in pairs (Fig. 6). Paired Fig. 6a
and b; Fig. 6c and d; Fig. 6e and Fig. 6f, display the Haitang,
Mindulle and Herb cases, respectively. The relative differ-
ence ratio (relative to Dinf) in each cell is defined as (FS by
Amethod– FS by Dinf)/(FS by Dinf). Based on this calcula-
tion, the horizontal line indicates identical values between al-
gorithms. Above the horizontal line will be cells with higher
FS values byAmethod and vice versa. To elucidate inter-
differences between algorithms we draw demarcation lines
to differentiate inconsistent values. The vertical solid line
(red line in Fig. 6) refers to cells with FS=1.0 by Dinf, thus,
cells on the left are unstable. The dashed curve (green curve
in Fig. 6) represents cells with FS=1.0 byAmethod. Similarly,
on the left of green curve will be unstable cells. Therefore,
four classes of outcome are identified: I: cell by Dinf is un-
stable, but stable byAmethod; II: unstable by both methods;

III: cell by Dinf is stable, but unstable byAmethod; IV: stable
by both methods. In between the red line and green curve
(i.e., Zone I and III) are cells with inconsistent FS values.

FS values derived by D8 commonly exceed those by Dinf
except cells with concentrated flow paths by D8 (Fig. 6a, c
and e). Therefore, most cells have positive relative difference
ratios. By contrast, FD8 generally give lower FS values com-
pared to Dinf (Fig. 6b, d and f). Although the unstable area
occupies a small part of the whole watershed, this small part
represents a major concern in hazard management. Mean-
while, predicted unstable cells by Dinf are the sum of zone
I and II which is set to 100% for comparison. Figures 7a, c
and e show that the unstable area by D8 shrink−16.4,−14.0,
and−11.0% of the reference area in Haitang, Mindulle and
Herb, respectively. In contrast, the unstable areas obtained
by FD8 are 36.7, 23.8 and 13.5% larger than the reference
area in Haitang, Mindulle and Herb, respectively (Fig. 6b, d
and f). The inconsistency among the predictions of unstable
area derived from the D8 and FD8 may vary from−16.4 to
36.7% in relation to the unstable area derived from Dinf.

In the three typhoon cases, we also found the inconsistency
in the relative difference ratio increases as the rainfall inten-
sity increases. The relative difference ratio between D8 and
Dinf may vary from−0.17 to +0.34, from−0.15 to +0.24
and from−0.09 to +0.19 in Herb, Mindulle and Haitang,
respectively, when FS=1.0 by Dinf. The relative difference
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Fig. 6. The scatter plots of FS values derived from different algo-
rithms. Relative difference ratio is defined as (FS byAmethod– FS
by Dinf)/ (FS by Dinf). Zone I:Amethodis stable, but Dinf is unsta-
ble; Zone II: both two methods are unstable; Zone III: Dinf is stable
but Amethodis unstable; Zone IV: both of the two methods are sta-
ble. Zone I and II is the total predicted unstable cells by Dinf and
set to 100.0% for comparison.(a) the FS values by D8 and Dinf in
Haitang case(b) the FS values by FD8 and Dinf in Haitang case(c)
the FS values by D8 and Dinf in Mindulle case(d) the FS values by
FD8 and Dinf in Mindulle case(e) the FS values by D8 and Dinf in
Herb case(f) the FS values by FD8 and Dinf in Herb case.

ratios between FD8 and Dinf possibly fluctuate from−0.25
to +0.12, from−0.19 to +0.06 and from−0.16 to +0.06,
respectively, when FS=1.0 in Dinf. Pool together, FS val-
ues based on different algorithms in three events fluctuate
from −0.25 to 0.34 at FS=1.0 by Dinf. In other words, the
variation that FS values may vary from 0.75 to 1.34 actu-
ally confuses the judgment when we obtain the predictions
by different algorithms.

4 Discussion

Since the slope gradient, SCA, and rainfall intensity are the
most important factors in determining landslide potential, be-
low we discuss in details the correlations among the three
variables.

4.1 Rainfall intensity and unstable area in watershed

In Results, we present differences in SCA calculation among
algorithms and their effects on soil wetness and unstable area
predictions in the three typhoons. Both saturated area and the
percent cover of unstable cell show positive correlation with
rainfall intensity. However, rainfall effect on landslide pre-
diction is not linear and NDVI-themes in the three cases may
obscure SCA effects. Based on the mean condition and re-
spective NDVI-theme, we simulate proportional occupation
of unstable cell over a full range of rainfall intensity from 0
to 1200 mm/day at an interval of 50 mm/day (Fig. 7). Those
simulations provide a complete picture about effects from
NDVI and rainfall intensity.

Among the three methods, FD8 creates the highest per-
centage of unstable area over full scale rainfall inten-
sity, meanwhile, the percentage of unstable area from FD8
reaches plateau (∼20% coverage in Haitang and Mindulle;
∼25% coverage in Herb) more rapidly compared to the other
two methods (upper panels in Fig. 7). The relative size of
predicted unstable area is consistent with the degree of algo-
rithm divergence. Rapid saturation of the entire watershed
is obviously due to higher SCA values derived from FD8.
The difference in upper bound of unstable area coverage is
resulted from NDVI-theme, that is, effective cohesion.

In the three typhoon cases, algorithm-generated difference
in absolute unstable area coverage (percent watershed area)
is around 6% (upper panels in Fig. 7). Compared to Dinf,
FD8 always gives higher coverage of predicted unstable area.
By contrast, D8 gives lower coverage areas. The absolute dif-
ference in predicted unstable area with respect to Dinf (mid-
dle panels in Fig. 7) ranges from∼−3% to +4% (percent
watershed area). The maximum absolute difference appears
around rainfall intensity of∼200 mm/day. On the other hand,
the relative difference (compared to Dinf) ranges from -15%
to as high as +40% (lower panels in Fig. 7). The overall rel-
ative deviation among methods is as high as 60%. Toward
higher and lower rainfall intensities, algorithm-induced rel-
ative deviation decreases significantly. The maximum abso-
lute and/or relative differences in landslide prediction occurs
around the condition of 100–300 mm/day regardless NDVI-
theme. This rainfall intensity range is very common in sub-
tropical mountainous region revealing the significance of al-
gorithm effect on landslide prediction.

Note that∼2.6% (NDVI affects little on this value) of the
catchment area (upper panels in Fig. 7) is predicted to be
unstable even rainfall intensity is zero no matter which al-
gorithm is applied. Such rainfall independent unstable areas
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Fig. 7. Curves of simulation over full scale rainfall intensities based upon different NDVI-themes from(a, d, g)Haitang,(b, e, h)Mindulle
and(c, f, i) Herb. Upper panels (a, b and c) are for unstable area coverage (in % watershed). Middle panels (d, e and f) are for absolute
difference (compared to Dinf) in unstable area coverage (in % watershed). Lower panels (g, h and i) are for relative difference (compared to
Dinf). Arrows indicate event rainfall and numbers mark the range of deviation between FD8- and D8-derived simulations.

are almost determined by topographic term. However, when
rainfall intensity approaches 600 mm/day, algorithm-induced
relative difference reduces to∼10% since the entire water-
shed is nearly saturated. In Taiwan and many subtropical re-
gions, 100–300 mm/day brought by single typhoon is usual;
unfortunately, within this range of rainfall intensity algorithm
effect is most significant.

4.2 Algorithm effect on FS prediction in mountainous ter-
rain

The theoretical diagram among slope, Ln(SCA), rainfall in-
tensity (see Eq. 5) and model-derived FS values of 1 (criteria
for landslide) are shown in Fig. 8. In this diagram, we iden-
tify the field of rainfall-sensitive zone based on the mean of
pre-Mindulle NDVI theme. Cells locate in this zone are af-
fected by hydrologic term. Outside this zone will be uncon-

ditionally stable and unconditionally unstable zones. Uncon-
ditionally unstable means cells in dry condition still tend to
fail all the time due to the steep slope even the soil wetness
is zero. By contrast, cells in unconditionally stable zone will
not fail even the soil mantle is saturated due to gentle slope
and effective cohesion.

When the effective cohesion is zero (soil is cohesionless
and no root cohesion), the lower bound of unconditionally
unstable zone is identical to friction angle (φ=38.3 degree)
and the upper bound of unconditionally stable zone equals to
25.4 degree (ρw /ρs=0.6 andφ=38.3 degree; Eq. 5). How-
ever, the effective cohesion contribution (the mean NDVI
value is 0.49) in Mindulle case generates 37.4 and 51.8 de-
gree, respectively, for slope boundaries of rainfall-sensitive
zone (Fig. 8).
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Fig. 8. The theoretical relationship between slope gradient, rainfall
intensity Ln(SCA) and FS. The cross dot is a specific point at 40
degree of slope and the three SCA values are labeled.

Previous study indicates the importance of plant roots
which provides stress resistance may increase 40% the value
of the friction angle (Rosso et al., 2006; Montgomery and
Dietrich 1994), however the measurement and aggregation
of root strength on slope stability is not clearly understood
(Schmidt et al., 2001). Many factors such as species, diame-
ter of root and density affect effective cohesion reciprocally
(Bischetti et al., 2005). Vegetation map or NDVI themes is
regarded as a good way to simplify and vividly represent the
effective cohesion (Borga et al., 2002). The vegetation effect
in this study increases 60% the value of the friction angle to
stress resistance, which makes a lower unconditionally un-
stable area (2.6%, see Fig. 6b) compared to that in previous
studies (∼15%; see Rosso et al., 2006; Montgomery and Di-
etrich 1994).

In the rainfall-sensitive zone, hydrological term plays a
major role determining the FS value. In Fig. 8, upper curved
dash line represents the soil wetness = 1.0 at the rainfall in-
tensity of 144 mm/day. According to Eq. (5), we also obtain
the curve of FS=1 (upper solid curve in Fig. 8) in the rainfall-
sensitive zone. Cells above the solid curve hold FS<1.0 (i.e.,
landslide occurs). Similarly, we make curves for rainfall in-
tensity of 327 mm/day. In this theoretical diagram, curve of
FS=1 lowers down as rainfall intensity increases. Certainly,
the larger hydrologic term expand the coverage of unsta-
ble zone until the entire catchment is fully saturated (seeing
Sect. 4.1).

Based on our simulation and theoretical relationship, FS
prediction of cells in between slope from 37.4 to 51.8 should
be judged cautiously. As mentioned in 3.1, algorithms
project SCA differences particularly for cells on hillslopes
(20% area of study catchment falls in between 40 to 50
degree, Fig. 3) and around 20% cells of Ln(SCA) values
are significantly inconsistent. It highlights the importance
of algorithm effects on landslide modeling in mountain-
ous watersheds. Besides, different hydrologic term (R/T),
which causes different rainfall-induced unstable coverage,
has been widely coupled with the concept of intensity-
duration-frequency to demonstrate the relationship between

landslide magnitude and rainfall return period (e.g. Barling
et al., 1994; Borga et al., 2002; Rosso et al., 2006). Appar-
ently, algorithm selection may alter landslide magnitudes de-
rived by rainfall return periods as well. We conclude that in
any comparison among SCA-related landslide models or en-
gineering application of rainfall return period analysis must
base on the same algorithm to obtain comparable results. The
Dinf is an intermediate algorithm among the three, we do
not evaluate their goodness; however, previous studies by
Sorensen et al. (2006) and Endreny and Wood (2003) sug-
gested using Dinf for SCA calculation based on their in-situ
observations by chemical tracers.

5 Conclusions

Landslide prevention is an important issue for land manage-
ment particularly in mountainous watersheds. We demon-
strate the influence of SCA algorithm on landslide model
outputs. The frequency distributions of SCA value at wa-
tershed scale by the three algorithms (FD8, Dinf, and D8)
reveal that the most divergent algorithm (FD8) can generate
the highest mean and the lowest standard deviation of SCA.
The higher mean of SCA causes relatively rapid saturation as
rainfall intensity increases. The smaller standard deviation of
SCA results in the more homogeneous pattern of estimated
soil wetness. Meanwhile, the greatest difference of SCA in
space is on the hillslopes, which occupies∼27% of entire
watershed. Such difference significantly affects prediction
of factor of safety (FS).

Simulations of SCA algorithm effect on unstable area cov-
erage and FS value predictions reveal potential algorithm-
generated deviations over a full rainfall spectrum. Relative to
the Dinf, the unstable areas by D8 and FD8 can reach∼17%
lower and∼41% higher, respectively, around rainfall inten-
sity of 100–300 mm/day, which is usual in subtropical moun-
tainous region. Based on theoretical diagram among slope,
rainfall intensity, Ln(SCA) and FS we derive the rainfall-
sensitive zone for FS prediction. The diagram reveals that
FS prediction is very sensitive to Ln(SCA) changes in slope
from 37 to 52 degree, which occupies a significant portion
(∼21% in this study) in analogue mountainous watersheds.
We conclude that any comparison among SCA-related land-
slide models or engineering application of rainfall return pe-
riod analysis must base on the same algorithm to obtain com-
parable results.
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