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ABSTRACT Simulation is a powerful tool to optimize composites materials forming. Both dry
fabric forming and resin flow can be simulated using fabric unit cell models. With the aim of
performing analyses of the mechanical behaviour at the mesoscopic scale, an accurate
geometrical model of the fabric unit cell has to be defined and meshed. Defining the geometry
on which this meshing is applied is a difficult and important point. In order to determine yarn
geometry for different cases of yarn structure and weave patterns, experimental observations
using different optical processes have been performed. The analysis of these results helps us
define an accurate 3D model of the woven yarn shape. Using this yarn model, a consistent 3D
geometrical model of fabrics is presented. This model ensures an accurate contact between
varns. It is called consistent because penetrations and spurious voids between warp and weft
yarns are avoided. The yarn section shape varies along the trajectory, so that the influence of
contact between yarns on their cross-section shape can be taken into account. A meshing
preprocessor based on this geometrical model is then developed. This is an important point
for 3D finite element simulation of fabrics, which is a powerful method to investigate
mechanical behaviour. A consistent geometry of the fabric at the deformed state can also be
obtained and used to define the influence of deformation on resin flow.

KEYWORDS. Meshing Pre-processor, Mechanical Properties, Fabric, Unit Cell, Mesoscopical
Model, Geometrical Model.




1. Introduction

Many processes can be used to form composite parts. For several of them (RTM
for example), the first step consists in forming a dry fabric before the resin is
injected (Carronnier et al., 1996; Rudd et al., 1997). Mechanical properties of the
final part and its ability to be formed depends of mechanical and permeability
properties of the dry fabric. Simulation of these processes is a very interesting tool
in order to predict whether a composite part is obtainable without using expensive
prototypes. Nevertheless, to perform simulations, fabric mechanical properties have
to be known. Experimental analyses may allow the obtaining of both mechanical
properties and permeability (Prodromou et al., 1997; Buet et al., 2001; Cao ef al.,
2004; Hoes et al., 2004). The drawback is that experiments are often expensive,
time consuming and moreover don’t enable to obtain results on non-existing fabrics.
Thus, simulation is a good alternative to obtain fabric properties. Since most of the
fabrics are periodic material, it is possible to define an elementary cell from which
the fabric can be constructed. The fabric behaviour is then deduced from the
elementary cell. Among the numerical approaches that aim to study elementary cell
properties, finite element analysis is an efficient method, but it needs an accurate
meshing of the unit cell (Boisse ef al., 2001). The multi-scale nature of the fabric
(macro-scale), composed of yarns (meso-scale), themselves composed of fibres
(micro-scale) leads to a complicated geometry that is difficult to model. A
simplified geometrical model has to be used to obtain the mesh of the elementary
cell. Numerous models exist (Peirce, 1937; Kawabata et al., 1973; Kuhn et al.,
1999; Bulusu et al., 2000; Lomov et al., 2000; Robitaille et al., 2003). Nevertheless,
meshes obtained with these models are not really well adapted to finite element
analysis of the unit cell since they are designed for other applications. Contact
surfaces between yarns are not described precisely enough. Interpenetration
between yarns, likewise the existence of unreal voids (due to the modelling)
significantly affects finite element results. The goal of this study is to present a tool
for the definition of a consistent 3D geometrical model of fabric and its application
to a meshing pre-processor. This mesh can then be applied to finite element
simulations of fabric deformation. Another application is injection simulation.

2. Mesoscopic geometrical models

Mesoscopic geometrical models have been developed to be able to give a better
description of fabric geometry at the initial state. This geometry will be possibly
strained within finite element analyses. Yarns are supposed to be continuous solids
(with specific properties) and the fabric is constituted by the interlacement of these
solids. The main assumption used for many of them is that the yarn section remains
constant along the curvilinear trajectory. The curvilinear trajectory can be composed
of sinusoids, splines, circles, or polynomials with elliptic section (Kuhn et al., 1999;
Bulusu et al., 2000; Lomov et al., 2000; Robitaille et al., 2003). Some of these



models have been applied in simulation of bi-axial behavior. Results can be found
in literature (Durville, 2002; Lomov ef al., 2003) and consistency between results
coming from different models is presented in (Lomov et al., 2003). Nevertheless,
for most of those models the contact zone is not precisely described. The contact
surface between yarns is brought back to a point or/and, the consistency is not
always ensured accurately enough. Some interpenetration or, on the contrary,
spurious voids can be noticed near the “real” contact zone between warp and weft
yarns. Above all, experimental observations that will be briefly described have
shown that the hypothesis of a constant section along the yarn is not sufficient to
model fabric geometry.

Figure 1. Transverse cut of a coated glass plain weave, definition of yarn section
model

Figure 2. Transverse cut of a coated glass plain weave, definition of the trajectory
model

The model developed by Kuhn and Charalambides does not have the previous
drawbacks. The section varies along the trajectory, taking into account
reorganization of fibers near the contact (Kuhn et al., 1999). Moreover, consistency
seems to be well ensured. But this model is, to our knowledge, limited to plain
weaves and has only been used to generate elementary cells of composite materials
(with hard matrix). The conclusion of this preliminary study is that it is necessary to
create a realistic consistent 3D geometrical model i.e. a geometrical model that will
ensure a description of the contact zone that avoids penetrations and spurious voids
(we speak of a consistent geometrical model). Existing models seem to be too
geometrically constrained to be fully consistent with experimental observations for
all types of weaving.



The proposed geometrical model for fabrics is based on different experimental
observations, the goal of which is

— to model accurately the contact zone between yarns,

— to ensure a consistent contact surface,

— to take the diversity of fabric geometries into account.

Yarn geometrical model is defined by the volume generated by the sweep of a
section along a trajectory. Section is defined by the envelope of yarn cross section
(Figure 1). Trajectory is defined by the longitudinal section of the yarn (Figure 2).

The 3D model of the fabric is constituted by the consistent assembly (no
interpenetration) of these yarns.

3. Experimental observations
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Figure 3. External view of a dry carbon twill with a white light interferometer

Different methods can be theoretically used to observe the cross section and the
trajectory. For many fabrics, the cohesion between fibers is not sufficient to ensure
the conservation of the cross section with contact. Thus, contact methods are not
useable to identify dry fabrics geometry. Other methods must be considered to
measure yarn geometry. Two other types of methods can be carried out. The first
one is based on optical measures. These techniques enable to perform precise 3D
geometrical measurements but only the visible parts can be obtained. The second
one consists in coating a dry fabric sample with a resin to keep the original shape
and then cut the sample. The resin penetratation inside the yarn, between the fibers,
can modify its shape, and must be avoid as much as possible. None of these



techniques is perfect but allowed us to obtain interesting information on the yarn
section shape for a dry fabric at the initial state. Different materials and different
interlacements have been observed by different methods.

From these observations, it appears that the reorganization of the fibers is an
important phenomenon. The cross section is dissymmetric due to the contact, and it
changes depending on boundary conditions on the fabric (Figure 1, Figure 2 and
Figure 3). Both the cross and the longitudinal sections change when a tension is
applied in one direction of the fabric. The tensed yarn becomes almost straight
whereas the undulation of the free transverse yarn rises. Thus, the cross section has
to change along the trajectory. This aspect is not usually present in most of the
proposed models. The yarn section shape strongly depends on the way the yarns
have been manufactured (twisted, embedded, coated). A geometrical model of
fabrics has to take this diversity into account.

Figure 4. Transverse cut of a coated glass plain weave, contact free zone

4. 3D geometrical model

The previous experimental observations lead us to consider three different zones
for the cross section: a contact zone, a contact-free zone, and a lateral zone that can
be only two points in the case of a weak cohesion of fibers (for instance figure 1).
These three zones can be approached by four conic curves for instance (parabolas,
circles). Values chosen for the lateral conics parameters will make them vary from
straight line to dot. The trajectory is constrained by the necessary 3D consistency of
the fabric model that we want to ensure. In the contact-free zone, since no lateral
load is applied to the yarn and the bending rigidity of yarns is very weak, the
contact-free part of the trajectory should be straight. This is confirmed by
experimental observations (Figure 4). Variations of section shape along the yarn are
taken into account using control sections at control points (Figure 5)(Hivet et al.,
2005).

The complete 3D model of the yarn is obtained through a smooth interpolation
between the control sections, which respects the imposed trajectory. The
interpolation i1s obtained using CAD software, such as PROEngineer®, which



includes a “swept blend” feature that is able to build volumes using control sections
and trajectories. The elementary cell of fabric is obtained by assembling m+n yarns.

Figure 5. Transverse cut in the direction 1 of the simplified model for a twill m*n

Figure 6. 3D model of a carbon twill 2*2

Some examples are presented below. Figure 5 and 6 present the obtained
geometry in the case of a 2*2 twill, Figure 7 those of a 3*2 twill and figure 8§ those
of a 4*3 twill. Sections shapes at the beginning and the end of the contact are
prescribed to ensure consistency. The model is said to be “consistent” because it



guarantees there is no penetration between warp and weft yarns, and it imposes that
contact happens where it should take. Consequently, there is no penetration and no
spurious voids between warp and weft yarn. That is very important for the next
computations made from the model (Figure 9).

4.1. Parameterisation of the model

Conics representing the contact zone are parabolas, because they have a simple
parametric expression and an explicit expression for their length. The model can
then be parameterized in order to be identified on a given fabric. Different types of
parameterization can be defined depending on the type of fabric under
consideration. The standard parameterization for a twill is presented on Figure 5.

The complete model of the elementary woven cell can be obtained from the
knowledge of half a direction. Therefore, one half of the elementary cell will be
studied. Conics representing the contact zone are parabolas, because they have a
simple parametric expression and an explicit expression for their length. We will
first the trajectory in weft direction is considered.

X
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Control points of the trajectory are defined as M | y | in the reference frame R.

z

The model geometry implies that the control points are to be defined by 8 unknown
coordinates:

0 X2 X3 X4 Xis X16
M| 0|M,|0 M;1 0 [M,| 0 M| 0 M| O
0 0 z z z z

13 14 15 15

Conics equations (two parabolas and two segments) are defined as:

P11 Z—z,=Py, (x_x12)2+q11 [1]
P12 Z_lezplz(x_x15)2+q12 [2]
D]1 z=0 [3]
D, z= d12x+512 [4]
D13 z = Zlé [5]

Parameters of the curves are depending on the control points coordinates:
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The model is completely defined by control point. Two tangency conditions
exist between segments and parabolas:

zZz. —Z z —Zz
. 13 2 “u 13
2p11(x13_x12)_2 - [8]
X3 — X, Xy — Xy
z —Zz z —Zz
. 14 15 “14 13
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8 coordinates related by two equations define the trajectory. 6 independent
parameters are necessary to identify the model.

The 6 control points are defined as follows for the warp (2) direction:

0 0 0 0 0 0
M, 1 0 [ Myl Yy | Mys| Vas | Moy | Voy | Mys| ¥as | Mag| Vs
Zy) Zy) Zy3 Zoy Z)s Z)s

Two tangency conditions can be written and one more relation can be
established between the two trajectories to ensure the consistency of the model:

2y = Zys T Zys Z,—z,tz, -z, = 2(211 _Zzl) [10]

Considering a simple geometrical model for twills that is useable for most
standard fabrics, three equations can be written between the coordinates :

X3 7 X = X5 =Xy [11]
c

X3 =X =2 [12]
2

Zi3 =2y =452y, [13]

Most sophisticated models can be considered if a more accurate model is needed
and 1f many parameters can be measured on the fabric.



Figure 7. 3D model of a carbon twill 3*2
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Figure 8. 3D model of a carbon twill 4*3



Figure 9. Transverse cut of a carbon twill 2*2, 3D model, consistency in different
planes

The truss model can be identified by 6 parameters (3 parameters per direction) in
the case of unbalanced fabrics. Considering lenticular sections, the consistency
between trajectory and sections permit to build the 3D model measuring only 1
thickness (warp yarn, weft yarn or fabric) on the real fabric.

The standard complete 3D model of an unbalanced fabric may be identified by
the measure of 7 parameters. These 7 parameters may be yarn width, yarn density,
crimp of each direction and thickness of the fabric. For balanced fabrics only 3
parameters are needed.
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These measures are quite easy to get on fabrics, so the model will be easy to
identify.

For specific fabrics and if more experimental parameters are available, more
sophisticated models may be identified, using from 4 parameters per direction (i.e. 8
parameters) to 9 per direction (i.e. 18 parameters). This possibility increases the
model power, because it can be adapted to the user’s knowledge of the fabric, and to
the degree of precision he needs. Details on the different parameterizations and on
the geometrical equations can be found in (Hivet ef al., 2005).

Validations of the process have been performed on five fabrics: 2 balanced plain
weave, 1 unbalanced glass plain weave and 2 balanced carbon twill 2*2. Two types
of parameters are measured on fabrics: parameters that are necessary to identify the
3D model, and other parameters, such as fabric thickness, or yarn geometry, with
the aim of comparing results given by the model against those obtained through
experiments. The results obtained with the model are consistent with the real values,
for instance, the ratios between measured and model thickness (for each yarn and
for the fabric) for balanced, unbalanced, plain weaves and twills are less than 5%.
Many different types of fabric models have been generated, in order to confirm that
any type of 2D fabrics may be modeled.

5. Applications

Geometries obtained using the consistent 3D model can be imported in a
meshing software such as Patran®. A PCL routine enables to generate automatically
a hexahedral mesh of the elementary cell. In that way, a 3D geometrical meshing
pre-processor of woven unit cells is defined. The mesh obtained in the case of a
plain weave is presented Figure 10. These meshes permit to perform virtual tests in
order to obtain the mechanical behaviour of the fabric from finite element
simulations (Gasser et al., 2000). These analyses are rather easy to perform and they
permit to investigate the influence of different parameters. They also allow
analysing fabrics before their manufacturing. An example of the shear deformation
of twill 2*2 is presented figure 11.

The 3D preprocessor is also used for the generation of the channel network
geometry that is the complementary volume of the reinforcement. The obtained
mesh (Figure 12) permits to simulate the resin flow (Figure 13) and to deduce the
permeability matrix (Laine et al., 2005; Fournier et al., 2005).
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Figure 10. 3D mesh for a plain weave fabric
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Figure 11. Finite element simulation of the shear deformation of a twill 2*2



Figure 12. Mesh of the complementary part of a plain weave

Figure 13. Resin flow in a glass plain weave

6. Conclusions
A simple and consistent 3D geometrical model of 2D woven fabrics has been

defined, it is adapted to most of the different shapes and weavingit insures no
penetrations and no spurious voids in the contact zone between warp and weft
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yarns. It is the first stage of a 3D geometrical meshing preprocessor of the unit
woven cells. Using PROEngineer® and Patran®, hexahedral meshing of the fabric
geometrical model can be obtained. This tool that permits 3D finite element
analyses of elementary cells and to determine the mechanical behaviour properties
by virtuel tests. It can also be used to simulate the resin flow in the complementary
volume of the yarns and in that way calculate te permeability parameters. Future
developments will concern more complex types of fabrics, such as 2.5D or 3D
fabric.
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