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Abstract. Quantifying the uncertainty of flood forecasts 1 Introduction

by ensemble methods is becoming increasingly important

for operational purposes. The aim of this paper is to ex-Quantifying the uncertainty of flood forecasts is becoming
amine how the ensemble distribution of precipitation fore-increasingly important for operational purposes. This is due
casts propagates in the catchment system, and to interpréd a number of reasons. First, the awareness of the value of
the flood forecast probabilities relative to the forecast errorsuncertainty bounds in flood management has increased. In-
We use the 622 kfiKamp catchment in Austria as an exam- deed, it is the uncertainty bounds that will assist flood man-
ple where a comprehensive data set, including a 500yr andgers in the trade-off between alternative decisions as they
a 1000yr flood, is available. A spatially-distributed contin- provide information on the likelihood of making less than
uous rainfall-runoff model is used along with ensemble andoptimal decisions as a result of forecast errors. Second, flood
deterministic precipitation forecasts that combine rain gaugeforecasts are increasingly used for small catchments where
data, radar data and the forecast fields of the ALADIN andthe forecast uncertainties tend to be larger than in large catch-
ECMWEF numerical weather prediction models. The analy-ments. Third, there is a tendency for making forecasts over
ses indicate that, for long lead times, the variability of the Jonger lead times which are associated with larger uncertain-
precipitation ensemble is amplified as it propagates throughies. The most accurate forecasts can be achieved by using
the catchment system as a result of non-linear catchment resbserved runoff along with routing models but the forecast
sponse. In contrast, for lead times shorter than the catchlead times are limited to the travel times in the streams. For,
ment lag time (e.g. 12 h and less), the variability of the pre-say, a 1000 krhcatchment these are on the order of 2 h (Ta-
cipitation ensemble is decreased as the forecasts are mainhle 1). The values in Table 1 are based on simulation results
controlled by observed upstream runoff and observed preand hydrograph analyses for various Austrian catchments.
cipitation. Assuming that all ensemble members are equallyRunoff models that use observed precipitation allow to ex-
likely, the statistical analyses for five flood events at thetend the lead times but at the cost of increased uncertainty.
Kamp showed that the ensemble spread of the flood forecas®recipitation forecasts allow to further extend the lead times
is always narrower than the distribution of the forecast errorsbut the uncertainties are still larger.

This is because the ensemble forecasts focus on the uncer- aog the magnitude of the precipitation forecast uncertainty

tainty in forecast precipitation as the dominant source of un-can pe large it has been the topic of much recent research.
certainty, and other sources of uncertainty are not accounteljost of the uncertainty in precipitation forecasts stems from
for. However, a number of analyses, including Relative Op-the propagation of small errors in the initial conditions of the
erating Characteristic diagrams, indicate that the ensemblgtmospheric models (Buizza, 2003). The standard method
spread is a useful indicator to assess potential forecast errogs estimating this uncertainty is hence to generate an ensem-
for lead times larger than 12 h. ble (or set) of different forecasts of atmospheric processes
that differ by their initial conditions (Taylor and Buizza,
2003) in addition to the main (deterministic) forecast. En-
semble forecasts have been operationally issued by the U.S.
National Center for Environmental Predictions (NCEP) and
Correspondence to: J. Komma the European Centre for Medium Range Weather Forecasts
(komma@hydro.tuwien.ac.at) (ECMWEF) for more than a decade. Each of the realisations
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432 J. Komma et al.: Ensemble forecast uncertainty

Table 1. Uncertainties and typical forecast lead times for a 1008 katchment.

forecast lead time  forecast uncertainty

River routing using observed runoff 2h small
Runoff model using observed precipitation 6h medium
Runoff model using precipitation forecasts 48h large

additional sources of uncertainty will come in. These include
uncertainties in estimating catchment precipitation and the

Elevation (m.a.s.l)

600 spatial distribution of precipitation (Siccardi et al., 2005), un-
e certainties in the soil moisture state of the catchment, as well

as uncertainties in the model structure and in the model pa-

rameters. Krzystofowicz (2001) presented a formal method

of combining the hydrological uncertainties with those of the
precipitation forecasts. Second, even when neglecting the

JF“’N hydrological uncertainties, the uncertainty in the flood fore-

casts will be different from those of precipitation because of

the non-linearity of the catchment system. Small inaccu-
racies can amplify if the system shows strongly non-linear
behaviour, for example, if threshold processes are present

(Bloschl and Zehe, 2005). However, very little is known on

Fig. 1. Kamp catchment (622 kf with telemetered rain gauges eyactly how the uncertainty of precipitation forecasts propa-

the aubcatchments, bide Ines the rier nemoric The figus in hed 125 1 the catchment system. Part of the protilem i that op-

| N ' . “erational flood management is interested in large floods that

ower left corner gives reference about the catchment location in S .

Austria, tend to exhibit different characteristics from smaller floods,
but they are — by definition — rare, so statistical analyses are
notoriously limited by small sample sizes.

(or members) of the ensemble is a possible trajectory of at- Given the current issue with ensemble forecasting meth-
mospheric processes over the lead time. By examining th@ds, the aim of this paper is (a) to examine how the en-
distribution of the ensemble one then gets a statistical measemble distribution of precipitation forecasts propagates in
sure of the forecast uncertainty. The value of making ensemthe catchment system, and (b) to interpret the flood forecast
ble forecasts lies in the fact that the forecast error changeprobabilities relative to the forecast errors. We use the Kamp
with time. For some meteorological situations, the likeli- catchment in Austria as an example where an operational
hood of heavy precipitation will be nil while for others it flood forecasting system has recently been implemented and
may be large even though the deterministic forecast does comprehensive data set, including two large floods, is avail-
not predict precipitation. More generally speaking, the moreable.

the ensemble spread deviates from its climatological mean,

the more additional information is provided by the ensemble

(Whitaker and Loughe, 1998). Often, the members of the2 Data and methods

ensemble are assumed to be equally likely and the ensemble

spread is assumed to represent the distribution of the forecagt1l Study area and data

errors. However, the statistical interpretation of the ensem-

ble spread is not straightforward. For example, Schaake eThe Kamp catchment is located in northern Austria, approxi-

al. (2004) analysed the statistical properties of NCEP ensemmately 120 km north-west of Vienna. At the Zwettl stream

ble precipitation forecasts from 1997-1999 and comparedjauge the catchment size is 622%and elevations range
them with measured precipitation. He found that the ensemfrom 500 to 1000 m a.s.l. (Fig. 1). The higher parts of the
ble forecasts were biased and that the ensemble spread waatchment in the Southwest are hilly with deeply incised
much smaller than the spread of the error distribution. Hechannels. Towards the catchment outlet in the Northeast the
proposed methods for bias removal and adjusting the ensenerrain is flatter and swampy areas exist along the streams.
ble spread. The geology of the catchment is mainly granite and gneiss.
Calculating flood runoff from predicted precipitation will Weathering has produced sandy soils with a large storage
modulate the uncertainty of precipitation in two ways. First, capacity throughout the catchment. 50% of the catchment
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is forested. Mean annual precipitation is about 900 mm of 0 25___50 75 _100___125___150___i75___200

Aug. 8, 2002

which about 300 mm become runoff (Parajka et al., 2005).  vu1. 10, 1999
To illustrate the nature of hydrologic response of the Kamp o oo
catchment the largest flood events on record and the as- . .7 1o
sociated rain events have been analysed using the teleme-JAE;: o
tered rain gauges shown in Fig. 1 and a number of addi- auwg. s, 1se1
tional rain gauges. Figure 2 shows the event precipitation of [, '3 o
these events along with the direct runoff depths. The direct, o aoee
runoff depths were estimated by subtracting baseflow from sep. 15, 1995
the event hydrographs that was assumed constant during eachoes. . 120
event. The events have been ranked according to precipita- ;2 "> 000
tion. There are two interesting findings. First, for the small- Aug. 18, 1588
est events only around 10% of rainfall become runoff while  auw. 2, 1906
the percentage can be much higher for the larger events. Dur- ;0" 5>’ oo
ing the dry summer months large precipitation depths are Aw- 19, 1977
necessary to exceed the soil capacity and produce any size- o )
able runoff as was the case for the extreme event of 8 Auguslt:'g' 2. Event precipitation and direct runoff depths for the largest
2002 (August 2002a). Clearly, runoff generation is a non-EVents on record. Kamp at Zwet 622kmEvents marked by
. . . asterisks are analysed in this paper.
linear process and as the magnitude of the event increases so
does the proportion of runoff that is generated. Second, for
the same precipitation depth, runoff can vary significantly. ] ] ) . . )
As a result of prior snow melt, antecedent soil moisture of 8- The details of the soil moisture routine are given in Ap-
the May 1996 event was high which produced a large proporpendlx A. Runoff routing on the hlllsk_)pes is represgnted by
tion of runoff. On the other hand, the two July 1997 events@n Upper and two lower soil reservoirs. Excess rainfall en-
had almost the same rainfall as the May 1996 event but muckers the upper zone reservoir and Ieayes this reservoir through
less runoff. There was significant rainfall prior to the 13 Au- three paths, outflow from the reservoir based on a fast storage
gust 2002 (August 2002b) event (namely the extreme Augusgoeffluentl( 1; pergolatlon to the lower zone with a perpola—
2002a event) which produced more than twice the runoff oftion rateCp; and, if a threshold of the storage sta®,  is
the July 1999 event that had similar precipitation but very lit- €xceeded, through an additional outlet based on a very fast
tle antecedent rainfall. It is clear that soil moisture exerts aStorage coefficienko. Water leaves the lower zones based
strong control on runoff response in the Kamp catchment. ©N the slow storage coefficienfs; and K3. Bypass flow

In this paper, the analyses of the ensemble forecasts ar@@»y IS accounted for by recharging the lower zone reser-
based on five flood events for which complete data sets o¥0ir directly by a fraction of the excess rainfalk; andk>
precipitation forecasts were available. These are marked b§S Well asCp have been related to the soil moisture state

asterisks in Fig. 2. Details of these events are given in Tall & linear way. The outflow from the reservoirs represents

ble 2. The initial moisture state was assessed by examintn€ total runoffQ, on the hillslope scale. These processes

ing antecedent rainfall. Both August 2002 events were in-2r€ represented on a 1k km grid. The model structure
deed extraordinary. More details of these events are given ift1d the model parameters have been identified by a five step

precipitation (mm) N
runoff (mm)m—

Gutknecht et al. (2002). procedure using field data, comprehensive hydrographic data
as well as qualitative evidence during floods (Reszler et al.,
2.2 Hydrological model 2006).

Runoff routing in the stream network is represented by
The model used in this paper is a spatially-distributed con-cascades of linear reservoirs with paramete(aumber of
tinuous rainfall-runoff model (Reszler et al., 2006). The reservoirs) and (storage coefficient) that are a function of
model runs on a 15min time step and consists of a snowunoff. Decreasing travel times with increasing flood levels
routine, a soil moisture routine and a flow routing routine. are represented by linearly decreasinwith runoff over a
The snow routine represents snow accumulation and melt bgertain range but as the flood water exceeds bank full dis-
the degree-day concept. The soil moisture routine representsharge k is decreased to represent flood attenuation on the
runoff generation and changes in the soil moisture state oflood plains. The parameters have been found by calibration
the catchment and involves three parameters:; the maximuragainst observed hydrographs and results of hydro-dynamic
soil moisture storag&C, a parameter representing the soil simulation models. In the context of this study it is important
moisture state above which evaporation is at its potential ratethat the model represents the catchment non-linearities well.
termed the limit for potential evaporatidiP, and a param- Comprehensive tests have shown that this is indeed the case
eter in the non-linear function relating runoff generation to (Bloschl et al., 2006). Of particular value have been the ex-
the soil moisture state, termed the non-linearity parametetreme flood events in August 2002 as they allowed to test the

www.nat-hazards-earth-syst-sci.net/7/431/2007/ Nat. Hazards Earth Syst. Sci., 7, 431-444, 2007
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Table 2. Characteristics of the events for which flood forecasts are analysed in this paper. Kamp at Zwett2 622 km

Aug 2002a Aug 2002b July 2005 Aug 2005a Aug 2005b
Precipitation (mm) 212 114 88 70 50
Direct runoff depth (mm) 82 56 27 13 13
Runoff coefficient () 0.39 0.49 0.30 0.18 0.26
Initial moisture state Dry Very wet Wet Dry Wet
Peak discharge (ffs) 459 367 95 68 65
Return period (yrs) ~1000 ~500 5 3 3
Beginning of event 6 Aug 00:00h 11 Aug 00:00h 5 July 00:00 h 14 Aug 00:00h 20 Aug 00:00h
End of event 10 Aug 21:00h 15 Aug 21:00 h 15 July 00:00h 19 Aug 21:00h 26 Aug 21:00h
Beginning of rising limb 6 Aug 12:00h 11 Aug 12:00h 10 July 12:00h 16 Aug 00:00h 21 Aug 12:00h
End of rising limb 8 Aug 06:00 h 13 Aug 18:00h 11 July 06:00h 17 Aug 21:00h 22 Aug 12:00h
Time to peak (h) 36 48 30 18 24

model over a wide range of event magnitudes, from small toln regions where this factor is large (i.e., the visibility by the
extreme, along with the smaller events on record (Fig. 2). radar network is low), most of the weight is with the station
To increase forecast accuracy, two real-time updating prointerpolation. Where the factor is close to unity, the scaled
cedures are used in the Kamp flood forecasting system. Theadar field dominates the final estimate. The final precipita-
first procedure assimilates runoff data to update the catchtion analysis reproduces the observed values at the raingauge
ment soil moisture state based on Ensemble Kalman filteringocations.
(EnKF) (Evensen, 1994). The strength of the EnKF is that Additionally, at each time step, deterministic precipita-
it can accommodate model non-linearity. The model vari-tion forecasts are made at 15min temporal resolution over
ance represents the errors in the precipitation and evapora lead time of 48h. The forecasts consist of two compo-
tion inputs that control the soil moisture state of the catch-nents. The first component is an observation-based extrapo-
ments and was set to a constant value of 0.005 (mm/1%min)lation or nowcast of the interpolated precipitation field using
based on sensitivity analyses. The model update is performenhotion vectors. They are determined from consecutive anal-
for every timestep and the updating is uniform within eachyses by searching for the spatial shift which gives the best
gauged catchment. The observation variance represents tteatch (lowest root mean square difference) of precipitation
discharge measurement errors and is assumed to increapatterns (Haiden and Steinheimer, 2007). The second com-
with runoff. The observation variance of runoff was set to ponent is a weighted mean of the forecast fields of the AL-
g-Ql.Z where£=0.0025 was obtained from sensitivity analy- ADIN (Wang et al., 2006) and ECMWF numerical weather
ses andQ; denotes the observed runoff at timestepThe prediction (NWP) models. The weighting function to esti-
soil moisture state of the catchment estimated by the EnKRnate the optimised precipitation forecagf: can be written
is used as the initial condition of all forecast runs. The secondas
procedure consists of an additive error model (termed MOS, _ =~ p T ween - P @
or model output statistics) that updates runoff directly. This ™ °Pt— " ALA " TALA T TTECM * TECM
error model exploits the autocorrelation of the forecast errotverewaia andwecm are the weights for the ALADIN and
and involves an exponential decay of the correction. The authe ECMWF precipitation forecast.a andPecwm, respec-

tocorrelation lag was found from error analyses of events adively. The weightawua o andwgcm have been derived from
4h. several years of comparisons of ALADIN and ECMWF fore-

casts with observed precipitation by minimising

2.3 Generating ensemble forecasts ¢* = ey +05-ep )

At each time step, precipitation observed at the telemeteregvheree,, is the mean absolute error apg is the absolute
rain gauges (Fig. 1) over the past 15min is interpolated onvalue of the bias. This optimisation has been performed sepa-
the 1 km grid using climatologically scaled radar information rately for moderatex5 mm/24 h) and heavy=(10 mm/24 h)
(Haiden et al., 2007). The climatological scaling is derived precipitation events. The sum of the optimized weighitsa

from a comparison of monthly totals of the radar and rain-andwgcyu can differ from unity to account for biases. The
gauge data at the station locations and varies with locatioomean error of the combined precipitation forecasts in that
and season. The scaled radar field is linearly combined witlperiod was 20—25% smaller than that of the individual AL-
the field derived by station interpolation, the weights of this ADIN and ECMWF forecasts (Haiden et al., 2007) and the
combination depending on the climatological scaling factor.biases were negligible.

Nat. Hazards Earth Syst. Sci., 7, 431-444, 2007 www.nhat-hazards-earth-syst-sci.net/7/431/2007/
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Another weighting function is used for a smooth transition the same initial conditions as the deterministic forecast with-
between the two components (nowcast and NWP forecastput any perturbation.
(Golding, 1998). Analyses of the forecast performance indi- The deterministic forecast fields (both precipitation and
cated that, in most cases, over the first 2—6 h of the forecasemperature) are used as an input to the runoff model to com-
the nowcast had smaller errors than the NWP forecast compute deterministic flood forecasts. The 50 members of the
bination. A weighting function was hence chosen that givesensemble forecasts of precipitation along with the determin-
full weight to the nowcast during the first 2 h, decreases lin-istic temperature forecasts are used to compute the ensemble
early to zero at 6 h, and remains at zero for larger lead timesflood forecasts, i.e., 50 realisations of runoff over a lead time

It should be noted that beyond the nowcasting range, théf 48h. These are analysed in this paper. Each member of
15 min temporal resolution of the precipitation forecast doesthe ensemble forecasts is updated by the additive error model
not reflect the actual information content of the meteorolog-in the same way which means that the error model does not
ical models. ALADIN provides output for every hour, and affect the ensemble spread.

ECMWEF provides 6-hourly totals, both of which are lin-
early interpolated to a uniform 15 min resolution. Similarly,
the spatial grid scale of ALADIN (9.6 km) and ECMWF
(~25km) is much larger than the 1 km grid of the hydro-
logical model. Although the scales of the meteorological

models and the hydrological model do not match, sensitiv—rq get an appreciation of the performance of the components
ity analyses indicated that the first order effect of precipita- ot the flood forecasting system, the forecast eregrsvere
tion uncertainty on runoff is related to (average) catchmentyy 2 mined for the five flood events of Table 2
precipitation, while the uncertainty resulting from a lack of
knowledge of the spatial detail of precipitation is a second 1 & Qij — Qi’
order effect. ej = —— o
12 — 11 — i

In order to quantify the uncertainty of the precipitation 27 iz '
forecasts, ensemble forecasts are generated. They are CQgjperee; is the mean absolute normalized error in percent for
structed, in a similar way as the deterministic forecasts. Thg,_ 4 timej, O;; is runoff at time step that is forecast with a

. 1 12}

ECMWF model_prowdes, at gach run, a set of 50 ensembl(?ead time ofj, Q; is the observed runoff at time stépandiy
forecasts in addition to the main (deterministic) run. The AL- andi, are the beginning and the end of the analysis interval

ADIN model currently does not produce ensemble forecaStsrgspectively. The error analyses were performed separately

operationally, so a set of 25 pseudo-ensembles is generate : ; .y
. e . r the entire flood events (i.e. between the beginning and the
by spatially shifting the ALADIN forecast in both the x and end of the flood event as in Table 2) and the rising limbs only

%(:Illraec'[rzoar:ssbk:a):aﬁ rri?ggn:::g?gea:;i% Ogyf%:zggqgn;; J]Z'SS;F;T{_(as in Table 2). The rising limb of a flood hydrograph is the
lallag ent ucedt u o period that is of most interest for the users of real-time flood
scale uncertainty in the position of the precipitation forecasts

. .~ prediction system. For a given lead tiniethe errors of the
Each of the ECMWF members is then randomly combined; PR
. five events were averaged and are shown in Fig. 3. Four cases
with one of the ALADIN pseudo-ensemble members, and g 9

. : . were considered.
with the nowcast. No uncertainty has been assigned to the In the first case (blue lines in Fig. 3) we assumed that fu-

nowcasts. This means that, up to 2h lead time, all ensembl%ﬂure precipitation and temperature were known and used their

members are identical (zero spread) and the spread INcreastiserved interpolated fields as inputs to the runoff model

at longer lead times. We use the pseudo-ensembles of the. . : - .
. . without any updating. Figure 3 indicates that, for this case,
ALADIN model in the construction of the ensembles because, : :
. : ‘the errors do not depend on the forecast lead time. This
they provide small-scale variance and spread not present in . ; ;
the ECMWE forecasts would be expected as this is the simulation mode. The model
T _ . errors for the entire flood events are about 15% (Fig. 3, left)
In the case of air temperature, station data are interpolateduhile they are about 30% if the rising limb alone is analysed
The forecasts are based on a combination of the station dat@:ig_ 3, right). The better model accuracy for the entire flood
with the ALADIN forecasts. No temperature ensembles areeyents results from including the time periods with no rain-
computed as their effect on the flood forecasting uncertaintyta||, i.e. the recession. In these periods the errors are small
is deemed to be small. as no uncertainties about the amount and the spatial distri-
The interpolated precipitation and air temperature fieldsbution of the input rainfall fields are propagated through the
are used to estimate the state variables of the runoff modefainfall-runoff model. In contrast, the rising limbs are more
such as soil moisture, reservoir storages and snow watedlifficult to simulate.
equivalent at each time step allowing for EnKF updating. Inthe second case we ran the model in a similar way as in
These state variables are used as the initial conditions for thease 1, however, allowed for the EnKF updating to estimate

flood forecasts. All members of the ensemble forecasts uséhe initial conditions of the forecasts (termed updated initial

3 Results and discussion

3.1 Model performance and deterministic forecasts

®)
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sim. initial conditions

updated initial conditions

updated initial conditions - MOS

forecast - updated initial conditions - MOS

3.2 Ensemble forecasting and propagation of non linearity

100 100 Depending on the soil moisture state, a change in precipi-
entire flood event rising limb tation input can be amplified (wet conditions) or dampened
(dry conditions) by the catchment system. In the Kamp
catchment the occurrence of big floods is associated with wet
catchment conditions or very large rainfall depths that wet up
the catchment during the event. In the case of the flood events
examined here, one would hence expect that the precipita-
7" tion forecast errors will be amplified as they are propagated
f'/—— e, through the hydrological model. To illustrate the propagation
o 8 iad j;e [h]32 40 4 0 8 ﬁad j;e [h]32 40 48 characteristics ensemble forecasts for the flood event of July
2005 are shown in Figs. 4, 5 and 6. The plotted time window
Fig. 3. Average forecast erroes of the five flood events of Table 2. '8N9eS from 9 July 2005 00:00 hto 12 July 2005 00:00 hin all
Entire flood event (left), rising limb only (right). Kamp at Zwettl, three figures. The thick red lines represent observed runoff,
622 kn?. the black lines represent the deterministic forecasts and the
thin blue lines represent the 50 ensemble members. The light
blue shading represents the confidence interval between the
10% and 90% quantiles of the ensemble forecasts.
conditions, red lines in Fig. 3). Updating the initial condi- _ Figure 4 shows the forecasts on 9 July 2005 00:00 h. In the

tions reduces the errors for both analysis periods. During thdirst 24 h of the forecast lead time only 5mm of precipitation

rising limbs the updating reduces the errors from about 30%;1ave been observed. The deterministic precipitation forecgst
to about 20%. For the entire events the updating reduces thi§ Very accurate but most of the ensemble members predict
errors from about 15% to about 12%. There is a slight de-More than that. In the second 24 h of the forecast lead time
pendence of the error on the lead time with smaller errors fo20ut SOmm of precipitation have been observed. Again,
short lead times. This dependence is related to the memor{’€ deterministic forecast is accurate. However, most of

of the hydrological system which is taken advantage of bythe ensemble forecasts underestimate precipitation slightly.
the updating. The deterministic flood forecast matches the observed hy-

drograph closely. During the first 12 h of the forecast lead

The third case was as case 2 but, in addition, allowed fortime, the ensemble members are very similar to each other.
updating by the additive error model (termed updated initial This is because the forecasts are controlled by observed up-
conditions — MOS, green lines in Fig. 3). The benefit of the stream runoff and observed precipitation through the routing
additive error model is limited to the first eight hours of the and runoff model components, respectively. In both model
forecasts which is the interval over which the errors are cor-components no uncertainty was introduced, i.e. the same data
related. For larger lead times the additive error model has n@nd parameters were used for all members of the ensemble.
effect on the forecasts, so the errors are identical with thosd-or lead times of 30 h and more, some of the ensemble mem-
of case 2. The fourth case was as case 3 but used forecalsers indicate a sudden increase in discharge with a maximum
precipitation and temperatures rather than the observationood peak of 100 #/s. As compared to precipitation, the
(termed forecast — updated initial conditions MOS, purple ensemble spread for these lead times is much larger. This is
lines in Fig. 3). The fourth case represents the operationaWhere the uncertainty in forecast precipitation becomes im-
real time configuration, where both updating procedures argoortant.
used along with the deterministic precipitation and tempera- The results of the forecast run on 10 July 2005 00:00 h
ture forecasts. In this case, the forecast performance showare plotted in Fig. 5. The total observed precipitation dur-
a clear dependence on the forecast lead time. In the first 8 mg the forecast lead time is about 75 mm while the deter-
the forecast, errors are less than 30% (rising limb alone) andninistic forecast predicts about 60 mm. This relatively mod-
about 18% (entire flood events). For lead times of 48 h the ererate underestimation of 15% translates into a larger under-
rors are 75% (rising limb alone) and about 50% (entire floodestimation of runoff with an estimated peak of 5¥/mas
events). This is much larger than the errors of case 3 whereompared to an observed peak of 99sni.e., an underes-
observed precipitation has been used as an input. This clearlymation of 40%, and the rising limb is almost completely
demonstrates that the main error source for lead times largemissed. The main reason is the missing precipitation block
than the travel times is the uncertainty in the precipitationat time 36 h. Most ensemble members underestimate precipi-
forecasts. The difference between the errors of the two analtation and the ensemble spread is very small up to a lead time
ysis periods is particularly large in case 4, as would be ex-of 24 h. Similarly, the spread of the runoff forecasts is small
pected, as the precipitation forecasts will be most significanduring the first 24 h but in the last 24 h of the forecasts the
in the rising limb where the rainfall occurs. spread increases significantly. Clearly, this increase is related

®
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Fig. 4. Ensemble forecasts (top: cumulative catchment precipita-Fig. 5. Ensemble forecasts (top: cumulative catchment precipita-
tion, bottom: runoff) on 9 July 2005 at 00:00 h (time O in the figure). tion, bottom: runoff) on 10 July 2005 at 00:00 h (time 24 in the
Kamp at Zwettl, 622 krf. figure). Kamp at Zwettl, 622 ki

80
to the non-linearity of the catchment system that translatese

the somewhat larger spread of precipitation at the end of thec
forecast period in a much larger spread in runoff. While the £
observed hydrograph is never within the confidence interval,
at the end of the forecast some of the ensemble members do |

40t

precipitation (m

20 -

indicate the possibility of a flood on the order of 108/m 120 onfidence interval
Twelve hours later, the forecasts are much more accurate Densemble forecasts

. T .. . ) 100 - eterministic forecast
(Fig. 6). The deterministic precipitation forecast estimates Observation

the observed precipitation very well over the entire lead time. ;|
The runoff forecasts are very good for the first 12h but do @
underestimate runoff for larger lead times. In this case, the% 60
underestimation is not a result of precipitation errors but is 2
related to the initial conditions of the hydrologic model that

are somewhat too dry. w0l
To illustrate how the spread of the precipitation ensem- \,/ﬂ

ble, representing the uncertainties in the precipitation fore- . P ” o p - - o
casts, is propagated through the hydrologic model we anal- time (hrs)

ysed the probability distributions of the precipitation ensem-

bles (model input) and the runoff ensemble (model output).Fig. 6. Ensemble forecasts (top: cumulative catchment precipita-
In both cases it was assumed that all ensemble members afign, bottom: runoff) on 10 July 2005 at 12:00h (time 36 in the
equally likely. As an example, Fig. 7 shows the probability figure). Kamp at Zwettl, 622 kfn

distributions of the forecast on 10 July 2005 at 00:00h as in

Fig. 5. For a lead time of 24 h the distributions of the pre-

cipitation and runoff ensemble are similar. They exhibit a at 48 h is 40 mm or 70% of the median precipitation while
narrow spread and are symmetric. For a lead time of 36 h théhe total range of the runoff uncertainty at 48 h is 9sn
two distributions are somewhat different. While the precip- or 200% of the median runoff. Small errors in rainfall may
itation ensemble spread remains small, the runoff ensemblé&anslate into larger errors in runoff. The example of Fig. 7
spread is larger and skewed to the right. This effect is everhas been extended to all the 232 forecasts examined in this
stronger for a lead time of 48 h and the largest 20% of thepaper. For each of these forecasts, the coefficient of vari-
runoff ensemble members have increased their spread dration of the ensemble members of precipitation and runoff
matically. The total range of the precipitation uncertainty has been calculated. The results for a lead time of 48 h are

401
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Fig. 7. Mapping of the precipitation uncertainties to runoff uncer- = 0 4 th i q llost | ;
tainties for forecast lead times of 24, 36 and 48h. cdf is the cu- P>50mm, and the medium and smallest dots relate to forecasts

mulative distribution functions assuming all ensemble members aréNIth 50> P>30 mm and 36 P>10 mm, respectively.

equally likely. Forecast on 10 July 2005 at 00:00h as in Fig. 5.

Kamp at Zwettl, 622 kr. study not all sources of uncertainty have been represented in
the ensembles. Rain gauge measurement errors, small scale
precipitation variability between the raingauges, uncertainty

shown in Fig. 8, stratified by the mean cumulative precip-in the routing and runoff models as well as uncertainties in

itation. The largest dots in Fig. 8 relate to forecasts withinitial soil moisture have not been represented in the ensem-
mean cumulative precipitatioR >50 mm, and the medium bles. Also, it is unclear whether the ECMWF ensemble fore-
and smallest dots relate to forecasts with-30>30mm and  casts and the ALADIN pseudo-ensembles are equally prob-
30> P>10mm, respectively. For small precipitation depths, able forecasts in the study region. The obvious method of
the uncertainty in precipitation may or may not matter for examining to what degree the ensemble spread actually cap-
runoff. Indeed, if precipitation is very small, runoff will be tures the distribution of the forecast errors is a comparison
controlled by groundwater response, so any uncertainty irof the two, based on an analysis of observed flood events.
precipitation will not appear in the runoff forecasts. In con- However, the forecast error distribution changes with time.
trast, for the instances when the forecasted precipitation waSypically, the forecast errors are large during the rising limbs
large (largest dots in Fig. 8), the coefficients of variations of floods and small during the recession and low flow peri-
may more than double when moving from precipitation to ods. Most importantly, one is interested in the forecast er-
runoff. In the example of Fig. 7, the coefficient of variation rors of large flood events but large events are always rare,
increases from 0.16 to 0.34 when moving from precipitationso statistical analyses are limited by small sample sizes. As
to runoff (arrow in Fig. 8). a simplification we assumed here that the forecast errors of
Clearly, this kind of mapping of precipitation uncertainties all 232 time steps of the five flood events of Table 2 can be
to runoff uncertainties for large forecast lead times is relatedcombined into a single distribution function for each forecast

to the non-linear nature of catchment response. Non-linearityead time. It should be noted, however, that not all of the 232

in runoff response has been observed at all space time scaleferecasts are completely independent from each other. We

Often, the non-linearity is more pronounced in dry climatescalculated the forecast errors as the difference between the

than in wet ones (Chiew et al., 2006). With 300 mm of annualdeterministic forecast and the observed runoff (positive error

runoff the Kamp is a rather dry catchment in an Austrian for overestimation) from which we derived the distribution

context. function. In a similar vein, we calculated the deviations be-
tween the ensemble forecasts and the deterministic forecast
3.3 Ensemble spread and forecast error (positive deviation if ensemble forecast is larger than the de-

terministic forecast), and calculated the distribution function
Ideally, the ensemble spread should be an estimator of thér the same time steps as in the case of the errors, assuming
distribution of the forecast errors. However, in the presentthat all ensemble members are equally probable.
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Fig. 9. Comparison of the distribution functions of the average ensemble spread around the deterministic forecast (solid red lines) and
forecast errors of the deterministic forecasts (dotted blue lines) for lead times of 6, 12, 24 and 48 h for the five flood events of Table 2. Kamp
at Zwettl, 622 knf.

Figure 9 shows the results of this comparison. The solidthe analysis of moderate-6 mm/24 h,>10 mm/24 h) pre-
red lines represent the average ensemble spread around thipitation events. What is of most interest in a flood fore-
deterministic forecasts and the dotted blue lines show the ereasting context are the very large precipitation events but
ror distributions of the deterministic forecasts. For a forecastsuch extreme events are rare, so sample size is very small.
lead time of 6 h, about 90% of the ensemble members hardlyt is likely that the forecast errors and biases of the extreme
differ from the deterministic discharge forecast (upper left events will differ from those of the moderate events as one
panel). The remaining members show a slight tendency ofvould assume that the error characteristics are heteroscedas-
being smaller than the deterministic forecast. The forecastic. However, accounting for such biases in practice is very
errors for this lead time exhibit a slightly wider distribution difficult.
than that of the ensemble members. For a forecast lead time The ensemble forecasts are almost symmetric although the
of 12h, the spread of the ensemble members increases @ h lead times do indicate a slight negative skew. Also, the
would be expected but the forecast errors increase even morensemble spread is always narrower than the distribution of
In particular, there are a number of time steps where runoftthe forecast errors. This would be expected as not all error
was significantly underestimated (i.e. negative errors). Thissources have been represented in the ensembles. However,
tendency continues as one moves to 24 and 48 h lead timeghe ensemble spread increases with lead time in a similar way
For 48 h, the ensemble spread is larger than that of the otheis the forecast errors. This means that the ensemble spread
lead times and so are the forecast errors. In about half thgjoes provide an indicator to assess potential forecast errors
time steps, the deterministic forecasts underestimate runofgver a range of lead times. Also, one would expect that the
by more than 301is while less than 10% of the ensemble most significant changes in the forecast errors as a function
forecasts indicate deviations of less thaB0 n/s. of time are captured in the ensembles as they are related to

The median forecast errors of the 6, 12 and 24 h lead timegrecipitation.
are close to zero but the large negative errors are more fre- As another possibility of assessing the ability of the en-
quent than the large positive errors, i.e., there exists a negsemble flood forecasts to capture the forecast errors we anal-
ative skew. This is even more the case for a lead time ofysed what we term “range hit rates”. A range hit is counted
48 h. This means that the deterministic forecasts underestiwhen the observed discharge value is within the range of a
mate runoff more often than they overestimate runoff in thecertain number of discharge ensemble members. How many
case of the five flood events. This effect can be potentially re-of the 50 ensemble members are used to define the upper
lated to the tendency of the deterministic precipitation fore-and lower range is described by the quantile. For the en-
cast to underestimate extremely high amounts of precipitatire forecast ensemble the quantile is 100%. A quantile of
tion during the five flood events. Although a bias correction 60% means that the highest 20% and the lowest 20% of the
is used in preparing the forecasts (see Sect. 2.3) it is based ansemble forecast values are not taken into account, i.e., a
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w
(=]

‘ ‘ 30 ‘ ‘ ‘ ‘ semble spread does provide an indicator to assess potential
3hrs Ghrs forecast errors over a range of lead times, provided the lead
12 1 times are 12 h or larger.

N
o

range hit rate (%)

or s 3.4 Relative operating characteristics
[
%o 20 40 e 0 100 0 20 40 6 8 100 Flood management decisions are often based on discharge
30 : : : 30 : : thresholds, i.e., if a threshold will be exceeded some kind of
g 12hrs 48hrs alarm is triggered. Depending on the context, the warning
g2 12 ] may result in an alert as is usually the case in early warning,
'f;;w’ 0 or it may result in flood mitigation action for shorter lead

times. When ensemble forecasts are available, any of the en-
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ semble quantiles could be used to trigger an alarm. There
O A ety T 0B ey o1 is a tradeoff between the ensemble quantile that is used and
the usefulness of the alarm. Ensemble members at the up-
Fig. 10. Range hit rates for lead times of 6, 12, 24 and 48 h for the per end (100% quantile) will more likely trigger an alarm
five flood events of Table 2. Kamp at Zwettl, 622%knThe range  but there will also be more false alarms. The opposite is
hit rate indicates in how many cases, relative to the total number otrue of the ensemble members at the lower end (0% quan-
forecasts, the observed discharge value lies within the range of theiles). In meteorology, the method of ROC (Relative Oper-
ensemble quantiles. ating Characteristic) — diagrams based on threshold analysis
are a common method for assessing this tradeoff and hence
the performance of probabilistic forecasting systems (Mason
and Graham, 1999; Buizza et al., 1999). In analogy, ROC-
range hit is counted if the observed runoff is within the rangediagrams are used here to illustrate the alert characteristic of
covered by the remaining 60% of the ensemble. A quantilethe ensemble flood forecasts for predefined discharge thresh-
of 0% relates here to the deterministic forecast alone, i.e., @lds.
range hit is counted if the observed runoff is identical with  As a first step, hit rates and false alarm rates are defined.
the deterministic forecast within the numerical accuracy of 2The hit rateHR is the ratio of the number of correct alars
digits used here. With this definition, the range hit rate in- and the total number of observed events defined by the sum
dicates in how many cases, relative to the total number obf correct alarms4 and missed alarm¥, i.e.
forecasts, the observed discharge value lies within the range
of the ensemble quantiles. The range hit rates were calcug r — H
lated for the same forecasts as used for Fig. 9. H+M

Figure 10 shows the results of this analysis for differentwhere a correct alarm is counted if both the observed and
forecast lead times. For all lead times, the range hit rate inforecast hydrograph exceed the threshold within the forecast
creases with the quantiles. Clearly, the wider the uncertaintyead time, and an observed event is counted if the observed
range the easier it is to capture the observed runoff. Fohydrograph exceeds the threshold within the forecast lead
quantiles larger than 60% the range hit rate increases moréme. In analogy, the false alarm raf@R is the ratio of the
strongly which is related to the influence of the hydrologic number of false alarmg and the total number of no-events
non-linearity combined with the growing deviation from the defined by the sum of false alarn#sand correct rejections
ensemble mean for the peripheral ensemble members. Fdf(neither the observed hydrograph nor the forecast exceeds
a lead time of 3 h, the range hit rates are always very smallthe threshold), i.e.

This is because most of the forecast error is due to the rout-

ing model and the discharge measurements and both errdfrAR =
sources have not been included in the ensemble forecasts.
However, as the lead time increases, the precipitation forewhere a false alarm is counted if the forecast hydrograph ex-
cast error becomes more important and the range hit rateseeds the threshold within the forecast lead time but the ob-
increase. The range hit rates are still much smaller than theerved hydrograph does not, and a no-event is counted if the
quantiles. In fact, if the ensemble forecasts captured all thebserved hydrograph does not exceed the threshold within
forecast errors one would expect the range hit rates to lie orthe forecast lead time H+M+F+C is 232 in this paper

the 1:1 line. Clearly, this is not the case as the ensembl@s this is the total number of time steps for which forecasts
forecasts focus on the dominant source of uncertainty, i.e.have been analysed. The hit rate and the false alarm rate of
uncertainty in forecast precipitation. The range hit rates arghe deterministic forecasts can be plotted as a single point on
similar for the 12 h and the 48 h lead times (as well as for 24a hit/false alarm rate graph. The same procedure is then re-
and 36 h not shown here) which suggests, again, that the erpeated for each quantile of the ensemble forecasts separately

0

(4)

F+C ©)
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which gives a set of points in the hit/false alarm rate graph 100
known as relative operating characteristic (ROC). A perfect
forecasting system gives a hit rate of 100% and a false alarm
rate of 0%, i.e. the point plots in the top left corner of the
ROC diagram. Systems with no skill result in a ROC curve
on the 1:1 line.

The relative operation characteristics were calculated for 5,
the same forecasts as used for Fig. 9 with a forecast lead

60

hit rate (%)

40

441
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‘{ threshold

10 m*/s 30 m¥s
time of 48 h and are shown in Fig. 11. Four thresholds were  ° T e w 0 e T e 0 e i
selected. The discharge thresholds of 50 and 138 mre
relevant values for flood warning at the Kamp (see Table 2), 100 100
the smaller thresholds of 10 and 38/mwere examined for 80 80
illustrative purposes. The dots represent the ensemble fore-_
casts at intervals of 5%, the crosses represent the determiniss *° 60
tic forecasts. A hit rate of 100% is reached for a threshold of £ "
10 mP/s and the 100% quantile of the ensemble forecast (i.e.

the largest of the ensemble members). This perfect hit rate 20 rechold 20
is associated with a false alarm rate of more than 80%. With 50 m¥s .
decreasing ensemble quantiles the false alarm rate decreases o 20 40 6 8 100 0o 20 40 6 8 100
to less than 20% while the hit rate is greater than 50% for felse alam rate (%) false alarm rate (%)

all ensemblef quangles. 8';?; alg%r(ishold Olf SUS’nlt;l; hlth_l Fig. 11. Relative Operating Characteristic (ROC) curves for the
rate ranges from about 0 ( 0 quantile) to o, Whi eprobabilis.tic (dots) and deterministic (crosses) 48 h flood forecasts

the false alarm rate ranges from 20% to nil. The false alarmy, gischarge thresholds of 10, 30, 50 and 1Gdstior the five flood
rates are even smaller for the 50 and 1G0sthresholds with  ayents of Table 2. Kamp at Zwettl, 622 Rrb% quantile (upward

similar hit rates. For the 100% threshold the forecasts of pointing triangle), 50% quantile (square) and 100% quantile (down-
the 100% quantile produce only 10% false alarms with a hitward pointing triangle).
rate of about 80%.

For all discharge thresholds, the hit rates of the 100%
guantiles of the ensemble forecasts are larger than those afecisions on alarms are often made based on maximising the
the deterministic forecasts as would be expected. This is theredibility of the forecasts rather than cost arguments.
main reason of using ensemble forecasts in flood manage- The area under the ROC curve is sometimes used as a mea-
ment. In general, the ROC curves show that the determinsure for the forecast skill (Stanski et al., 1989). The area un-
istic and probabilistic forecasts at the Kamp produce onlyder the curve decreases from 1 for a perfect prediction system
few false alarms and the percentage of false alarms decreases 0.5 for a prediction system with no skill. Fitting a cubic
with the magnitude of the discharge threshold. The hit rate isspline to the ROC curves in Fig. 11 gives areas of 0.90, 0.85,
limited to about 80% for the 50 and 10Gta thresholds. The  0.85 and 0.90 for the 10, 30, 50 and 10&snthresholds,
tendency of very small false alarm rates and maximum hitrespectively. As compared to precipitation forecasts in the
rates below 100% in the ROC curves indicate that the flooditerature, this is a favourable skill. For example, Buizza et
forecasts tend to underestimate the observed discharges, pat: (1999) found skills in the range of 0.70 and 0.83, depend-
ticularly for the 50 and 100 Afs thresholds. This tendency ing on precipitation thresholds and for a maximum forecast
is consistent with results of meteorological analyses, whichlead time of 3 days.
have shown that meteorological model forecasts tend to over-
estimate small precipitation values and underestimate large
precipitation values (Buizza, 1999). The analysis in this pa-4 Conclusions
per is based on five big flood events with heavy precipitation,
so some underestimation of precipitation would be expectedThe real-time flood forecasting system of the Kamp catch-
The tendency towards underestimating precipitation duringment in Austria has been operational since January 2006. It
the floods is amplified through the non-linearity of the hy- is used in this paper to examine how the ensemble distribu-
drologic response at the Kamp. Therefore, the flood quantildion of precipitation forecasts propagates in the catchment
of choice for flood alarm purposes would be a high ensemblesystem, and to interpret the flood forecast probabilities rela-
guantile, for example the 90% quantile. There is another artive to the forecast errors. The model was tested on five large
gument for using a large quantile which are the relative costdlood events including a 500 yr flood and a 1000 yr flood.
of false alarms and missed alarms. If false alarms are in- The analyses indicated that, for long lead times (e.g. 48 h),
expensive it may pay to choose higher flood quantiles as ithe variability of the precipitation ensemble is amplified as it
false alarms were as expensive as missed alarms. Howevarropagates through the catchment system. For the example

threshold
100 m*/s
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examined, the total range of the precipitation uncertainty is‘range hit rate” was defined as the number of cases, relative
70% of the median precipitation while the total range of theto the total number of forecasts, in which the observed dis-
runoff uncertainty is 200% of the median runoff. Small er- charge value lies within the range of the ensemble quantiles.
rors in rainfall may translate into larger errors in runoff. An Analyses of the range hit rates indicate that they are small
analysis of the coefficients of variation of the ensemble mem-+or short lead times but increase with lead time. The range
bers of precipitation and runoff suggests that, for small pre-hit rates are similar for lead time of 12h and more which
cipitation depths, the uncertainty in precipitation may or may suggests, again, that the ensemble spread does provide an
not matter for runoff. In contrast, for the instances when fu-indicator to assess potential forecast errors over a range of
ture precipitation is large, the coefficients of variations maylead times, provided the lead times are 12h or larger. Fi-
more than double when moving from precipitation to runoff. nally, the forecast skill of the 48 h ensemble forecasts was
Also, the ensemble distribution of precipitation is symmet- tested by ROC (Relative Operating Characteristic) diagrams
ric while that of the flood forecasts is skewed to the right. based on threshold analyses. For all discharge thresholds,
Clearly, this kind of mapping of precipitation uncertainties to the hit rates of the 100% quantiles of the ensemble forecasts
runoff uncertainties for large forecast lead times is related toare larger than those of the deterministic forecasts. This is
the non-linear nature of catchment response. In contrast, fothe main reason of using ensemble forecasts in flood man-
short lead times (e.g. 12 h and less), the variability of the pre-agement. For the largest discharge threshold examined here
cipitation ensemble is decreased as it propagates through tH&00 n?/s) the forecasts of the 100% quantile produce only
catchment system. This is because the forecasts are mainly0% false alarms with a hit rate of about 80%. The flood
controlled by observed upstream runoff and observed preguantile of choice for flood alarm purposes would be a high
cipitation through the routing and runoff model components,ensemble quantile, for example the 90% quantile.
as the forecasting system is operated in a real-time mode. Even though the ensemble characteristics do not exactly
The ensemble forecasts focus on the dominant source of urmatch the forecast errors, they do provide information about
certainty, i.e., uncertainty in forecast precipitation. For leadthe expected forecast errors. The comparisons indicated that,
times of 12h and less the ensemble spread is very narrofior lead times larger than 12 h in the case of the 622 km
as other sources uncertainty such as rain gauge measuremdamp catchment, the ensemble spread is a useful indicator
errors, small scale precipitation variability between the rain-to the forecast errors. While additional error sources could
gauges, uncertainty in the routing and runoff models as welbe included in estimating the flood ensembles it may not be
as uncertainties in the initial soil moisture have not been repnhecessary for operational flood forecasting purposes as the
resented in the ensembles. More generally speaking, it can be@ncertainty in forecast precipitation is the dominant source
expected that the lead time where the uncertainty of the preef flood forecast uncertainty for lead times of more than 12 h
cipitation forecasts starts to amplify will depend on the catch-in catchments such as the Kamp.
ment response characteristics, such as travel times in the river
reaches and runoff concentration. In small and flashy catch- .
ments this will be a short lead time while for large catchments”\PPeNdix A
it will be longer.

The paper also examined the ability of the probabilistic
forecasts to capture the distribution of the flood forecast er- . . . .

: -~ A conceptual soil moisture accounting scheme is used at the

rors. Assuming that all ensemble members are equally likely

_ . | gri le. Th m of rain and m M,i li
the statistical analyses of the ensemble forecasts for five roonde grid scale € sum ofrain & d. em;,.+ , 1S split
||r_1to a component/S that increases soil moisture of a top

events at the Kamp showed that the ensemble spread is alayer s, and a componeng,, that contributes to runoff
ways narrower than the distribution of the forecast errors.p c,:or;ponents are split asgfunctionSof '

This would be expected as not all error sources have been
represented in the ensembles. Although two updating proce- S \#
dures based on observed runoff have been used to improve? = (L_s> (Pr+ M) (A1)
the flood forecasts over the simulation mode, there always . ) ) i

remains a certain amount of hydrologic uncertainty in the s IS the maximum soil moisture storages controls the
forecasting system. It is also likely, that the precipitation en_gharaptenshcs of runoff generatlon and IS termed the hon-
sembles do not fully represent the precipitation forecast er_lmeanty parameter. If the top soil layer is saturated, i.e.,

rors Schaake et al. (2004). However, the ensemble spreaty =Ls: all rainfall and snowmelt contributes to runoff and

increases with lead time in a similar way as the forecast erd” 1S 0. If the top soil layer is not saturated, i.6,<Ls,
rors. This means that the ensemble spread does provide dAinfall and snowmelt contribute to runoff as well as to in-
indicator to assess potential forecast errors over a range df'€asingss throughds>0:

lead times. Also, one would expect that the most significantds = p, + M — 0p — Oby

changes in the forecast errors as a function of time are cap-if p. + M — Qp—Qpy >0 (A2)

tured in the ensembles as they are related to precipitation. AJS = 0 otherwise

Structure of the soil moisture model
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where, additionally, bypass flo@;, is accounted for. Anal- DVWK: Ermittlung der Verdunstung von Land- und Wassafien,
ysis of the runoff data at the Kamp indicated that flow that by- DVWK-Merkblatter, Heft 238, Bonn, 1996.
passes the soil matrix and directly contributes to the storag&vensen, G.: Sequential data assimilation with a nonlinear quasi-
of the lower soil zone is important for intermediate soil mois- ~ 9eostrophic model using Monte Carlo methods to forecast error
ture statesS;. For&p-Lg<Ss<&p-Lg (with £1=0.4, £2=0.9) Goslfj?rt':;tchS’\\/]\/. GNe|orrF1)rk:){‘Js E(as?;tzsr)rsggz’gt%if;i_nlgoall?ti’riegltge‘;- very
bypass flow was assumed to occur as short range forecasts, Meteorol. Appl., 5, 1-16, 1998.
Opy =apy - (Pr+M) if apy-(Pr+M) <Ly Gutknecht, D., Reszler, Ch., and@kthl, G.: Das Katastrophen-

. (A3) o -
QOby = Lpy otherwise hochwasser vom 7. August 2002 am Kamp — eine erste Ein
) schatzung (The August 7, 2002 — flood of the Kamp — a first
while no by pass flow was assumed to occur for dry and very assessment), Elektrotechnik und Informationstechnik, 119(12),
wet soils. Changes in the soil moisture of the top soil layer 411-413, 2002.
Sy from time step—1 toi are accounted for by Haiden, T., Kann, A., Stadlbacher, K., Steinheimer, M., and

Wittmann, C.: Integrated Nowcasting through Comprehen-

Ssi = Ssi-1+(dS — Ex) - At (A4) sive Analysis (INCA) — System overview. ZAMG report,
The only process that decreasgss evaporationt 4 which 49p, http:/iwww.zamg.ac.at/fix/INCAystem.doc, accessed 26

is calculated from potential evaporatiofip, by a piecewise y %arChTZOOZ'St e ML | g g of orecioit
linear function of th il moisture of th | r aiden, T. and Steinheimer, M.: Improved nowcasting of precipita-
ear function of the soil moisture of the top laye tion based on convective analysis fields, Adv. Geosci., 10, 125—

Es=Ep - 5_.; if Sy <L, (A5) 131, 2007, .
E,=Ep otherwise http://www.adv_-geosu.net/10/125/2007/. _ _

Kann, A. and Haiden, T.: The August 2002 flood in Austria: sen-
whereL , is a parameter termed the limit for potential evap- sitivity of precipitation forecast skill to area size and duration,
oration. Potential evaporation was estimated by the modi- Meteorol. Z., 14, 369-377, 2005.
fied Blaney-Criddle method (DVWK, 1996) as a function of Krzysztofowicz, R.: Integrator of uncertainties for probabilistic
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