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Abstract. The preconvective environment on days with or-
dinary, widespread, and severe thunderstorms in Southwest
Germany was investigated. Various thermodynamic and ki-
netic parameters calculated from radiosoundings at 12:00
UTC were verified against subsequent thunderstorm observa-
tions derived from SYNOP station data, radar data, and dam-
age reports of a building insurance company. The skill of the
convective parameters and indices to predict thunderstorms
was evaluated by means of probability distribution functions,
probabilities of thunderstorms according to an index thresh-
old, and skill scores like the Heidke Skill Score (HSS) that
are based on categorical verification.

For the ordinary decision as to whether a thunderstorm
day was expected or not, the best results were obtained
with the original Lifted Index (80% prediction probability
for LI≤−1.73; HSS=0.57 for LI≤1.76), the Showalter In-
dex, and the modified K-Index. Considering days with iso-
lated compared to widespread thunderstorms, the best per-
formance is reached by the Deep Convective Index. For days
with severe thunderstorms that caused damage due to hail,
local storms or floods, the best prediction skill is found again
for the Lifted Index and the Deep Convective Index, but also
for the Potential Instability Index, the Delta-θe Index, and a
version of the CAPE, where the lifting profile is determined
by averaging over the lowest 100 hPa.

1 Introduction

The prediction of thunderstorms is one of the most difficult
issues in weather forecasting. Deep convective clouds de-
velop on a rather small spatial and temporal scale in the order
of 1–10 km and 1–12 h. So far, operational numerical models
with horizontal resolutions of about 10 km have often failed
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to predict not only the location and the time of convection
initiation (Anquetin et al., 2005; Meißner et al., 2007), but
also the type and intensity of thunderstorms. Severe thun-
derstorms are frequently associated with heavy rainfall, hail,
or local storms that are a major cause of natural disasters
particularly over mountainous terrain that favor the initiation
or the triggering of convection (Orville, 1965; Banta, 1990;
Barthlott et al., 2006). Improving the prediction of thunder-
storms, especially of severe ones, consequently is a challeng-
ing task that may help to prevent or mitigate damage.

The general requirements for a preconvective environment
are well known and were summarized by many authors, for
example by Doswell (1987) or Houze (1993): 1) Any kind
of instability over a layer of sufficient depth, 2) a moist layer
at lower levels, and 3) a mechanism that triggers the con-
vection. To quantify the first two conditions, various ther-
modynamic and kinematic parameters have been designed
in the past decades. These so-called convective parameters
and indices reflect the potential for thunderstorm develop-
ment according to the prevailing properties of the air mass.
In many studies, the efficiency of the various indices derived
from the observed vertical profiles for thunderstorm predic-
tion was investigated, for example bySchulz (1989), Lee
and Passner (1993), Fuelberg and Biggar (1994), Huntrieser
et al. (1997), Haklander and Van Delden (2003), and Man-
zato (2005). However, little attention has been paid so far
to the index-based prediction of severe thunderstorms. The
present study aims at evaluating several convective indices
with respect to their skills and efficiency to predict thunder-
storms of variable severity. The study tries to give some use-
ful insight into the characteristics of the preconvective envi-
ronments that are decisive for the initiation of thunderstorms.

The area under investigation is located in the northern
parts of the federal state of Baden-Württemberg in South-
west Germany (Fig. 1). The terrain exhibits a certain com-
plexity with some rolling terrain and the low mountain ranges
of the Black Forest and Swabian Jura. Local wind systems
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Fig. 1. Area under investigation with the radiosonde station
Stuttgart-Schnarrenberg, SYNOP stations, range of the radar (solid
circle), and area of the considered insurance data (dotted circle).

often develop at the slopes and in the larger valleys (Koß-
mann and Fiedler, 2000), which may trigger the initiation of
convection. It is well known that this region favors the de-
velopment of deep convection (Meißner et al., 2007), often
associated with damage due to hail, local storms, or floods
(Kunz and Kottmeier, 2005). To obtain comprehensive in-
formation about both thunderstorm days and the intensity of
the thunderstorms, observation data from different networks
were used in this study: Data from SYNOP stations, radar
data, and damage reports from a building insurance company.

The paper is structured as follows: The data sets and their
characteristics as well as the derived convective indices will
be specified in Sect. 2. Section 3 will describe the methods
applied for the evaluation of the various indices. The skills
of the indices to predict thunderstorms in terms of statistical
parameters, probabilities of occurrence, and skill scores will
be discussed in detail in Sect. 4. The last Sect. 5 will give a
summary of the results and some conclusions.

2 Data sets

The prevailing preconvective environment is described by
various convective and thunderstorm indices derived from
radiosonde observations at 12:00 UTC at the station of
Stuttgart-Schnarrenberg (315 m a.s.l.; see Fig.1) of German
Weather Service (Deutsche Wetterdienst (DWD)). Substan-
tial cold air advection on higher levels, often associated with
cold front passages, may reduce static stability profoundly.
Therefore, days with a temperature decrease of more than

5 K at 850 hPa in the succeeding 00:00 UTC sounding, were
excluded from the analysis (66 days between 1986 and 2003,
i.e. around 2% of all days). This criterion was tested against
other criteria including other levels and checked for synoptic
consistency in several cases.

For the assessment of the indices, information about thun-
derstorm occurrence and their characteristics is necessary
with a high spatial coverage and for a sufficiently long term.
Since these high requirements are not met by a single data
set, data from different kinds of observations were used:
SYNOP station data (SY), radar data (RA), and insurance
data (SV). Depending on the data set, the days were di-
vided into days without thunderstorms and days with dif-
ferent characteristics of thunderstorms. (see Table 1 for
the number of days). Since the analysis is based on the
12:00 UTC soundings thunderstorm occurrence is consid-
ered between 12:00 and 23:50 UTC only. This was not taken
into account for the insurance data as they have no time in-
dication. All examinations are restricted to a 6-month period
between April and September, when severe thunderstorms in
Germany occur almost exclusively.

2.1 Synoptic station data (SY)

Data measured by all DWD SYNOP stations with a dis-
tance of less than 75 km around the radiosonde station be-
tween 1986 and 2003 were used to determine thunderstorm
days (red circles in Fig. 1: Stuttgart, Freudenstadt, Stötten,
Öhringen, Karlsruhe, and Ulm). Days with more than 50%
data set to false, e.g. no observer present, were excluded from
the list. Such days totaled 236 days or 7.2%. In the SYNOP
report, the present and past weather types at and around a
station are hourly encoded by the ww-code, a two-digit num-
ber between 00 and 99. The following numbers indicate the
occurrence of thunderstorms: ww=13, 17, 29, 91–99. If any
of these numbers is recorded at any station, the day is consid-
ered a thunderstorm day (SY). Figure 2a shows the monthly
means of thunderstorm days according to the observations at
the SYNOP stations with a distinct maximum in July and a
minimum in November.

2.2 Radar data (RA)

Based on the high-resolution data from the C-band radar of
IMK between 1998 and 2001, days with various thunder-
storm intensities could be distinguished. The radar situated
at the Forschungszentrum Karlsruhe (FZK) covers a range
of 120 km in radius (Fig. 1). It has a spatial resolution of
1 km×1 km and a temporal resolution of 10 min. Days with
less than 50 scans, i.e. less than 490 min observing time, were
excluded from the study.

To determine intensities and characteristics of the convec-
tive cells in the whole area, the tracking algorithm TRACE-
3D (Handwerker, 2002) was applied to the raw 3-D radar
data. The algorithm identifies convective cells by specific

Nat. Hazards Earth Syst. Sci., 7, 327–342, 2007 www.nat-hazards-earth-syst-sci.net/7/327/2007/



M. Kunz: The skill of convective indices to predict thunderstorms 329

Table 1. Numbers of thunderstorm days derived from observational data for different definitions: Thunderstorm days according to SYNOP
data (SY); days with all kinds of thunderstorms (RA1), widespread (RA2), and severe (RA3) thunderstorms according to the radar data (RA);
days with damage due to hail (SV1) and widespread hail (SV2); days with damage due to storm/flood (SV3) and widespread storm/flood
(SV4) according to the data of the SV insurance company (SV).

SY RA1 RA2 RA3 SV1 SV2 SV3 SV4

Non-thunderstorm days 2.251 461 – – 3.170 – 3.099 –
Thunderstorm days 807 117 86 60 124 21 195 39

radar signatures and follows them in space and time using
successive radar images. For each scan, the algorithm deter-
mines the total number of cells, maximum reflectivity, and
the volume and spatial extension of the convective area.

A day was classified as a thunderstorm day, if more than 6
scans during the relevant period, 3 of them consecutive, met
the following conditions: Maximum reflectivity≥60 dBZ,
number of cells≥6, convective area≥60 km2, and convec-
tive volume≥120 km3 (RA1). If all these criteria were ful-
filled for 15 scans with 5 of them consecutive, the day was
classified as a day with widespread thunderstorms (RA2). Fi-
nally, if the same conditions were valid as for RA1, but with
a maximum reflectivity of≥65 dBZ and a convective area of
≥100 km2, the days were categorized as severe thunderstorm
days (RA3). The different criteria were adjusted and tested
manually by convective signatures in summertime reflectiv-
ity images (MaxCappi).

The classification scheme for the radar data did not re-
veal any thunderstorm day between November and March
(Fig. 2a) because of the low vertical extension of convection
and the low reflectivity for ice particles. But also for the
other months, the number of thunderstorm days according to
the radar data is lower compared to that determined from the
SYNOP data. Hence, the criteria for defining a thunderstorm
day are more stringent for the radar data in comparison to the
SYNOP data.

2.3 Insurance data (SV)

Another classification of days with severe thunderstorms was
based on loss data of the SV Sparkassen–Versicherung build-
ing insurance company (hereinafter referred to as SV) for
the period 1986–2003. Between 1960 and 1994, a build-
ing insurance against natural hazards – earthquakes, land-
slides, floods, storms, hail, or avalanches – was obligatory in
Baden-Ẅurttemberg and offered exclusively by the monopo-
list Geb̈audeversicherung Baden–Württemberg. This results
in a good representativeness of the loss data, even though the
number of policies, now taken out by the successor SV, had
decreased successively since the abolishment of the obliga-
tion in 1994.

Separated into five-digit postal code zones, the data com-
prise the date of each damage event, the number of notifica-
tion of claims, and the kind of the hazard. The total number
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Fig. 2. Monthly mean of thunderstorm days as defined by SYNOP
station data and radar data (top) and number of hail or storm/flood
days according to the SV insurance data (bottom).

of policies per year and per postal code zone allows for a data
correction to account for the yearly variability of the portfolio
and especially for the aforementioned decrease after 1994.

In this study, data of loss due to hail or due to floods and
storms associated with severe thunderstorms were used for
all postal code zones within a region of less than 75 km in ra-
dius around the radiosonde station (Fig. 1). A day was classi-
fied as a hail day (SV1) or storm/flood day (SV3) when more
than 10 claims (corrected) were settled on that day. This
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lower threshold was necessary, because some damage notifi-
cations were ascribed to a wrong day. To separate local from
widespread events, a second threshold was defined by the
80% percentile of the frequency distribution of the number
of claims per day. This gives a threshold of 330 claims per
day for widespread/strong hail days (SV2) and 165 claims
for widespread storm/flood days (SV4).

Damage-causing thunderstorms as reflected by the insur-
ance data occur almost exclusively between May and August
(Fig. 2b). The absolute maximum for days with hail is found
in July, for storm/flood in June.

2.4 Radiosonde data and convective indices

From the Stuttgart radiosonde observations at 12:00 UTC,
various convective and thunderstorm indices that were con-
sidered to be predictors for expected thunderstorm devel-
opment, intensity of thunderstorms, or thunderstorm prob-
ability were calculated. The soundings contain profiles of
air pressure, geopotential height, temperature and dewpoint
temperature, wind speed and wind direction. As the ra-
diosonde data are archived only on constant pressure levels
as well as on significant levels, where the gradient of one
of the observed variables changes noticeably, all soundings
were interpolated into equidistant increments of 10 m.

During the observation period between 1 April 1986 and
30 September 2003, a total of 3256 complete soundings, that
is more than 98.9% of all possible soundings in that period,
were performed. Some vertical profiles exhibit incomplete
humidity or wind data, especially at upper air levels. If it
was not possible to calculate a certain convective index from
such an incomplete sounding, this index was excluded from
further examinations, but not the other indices on that day.

The theoretical concept underlying most of the different
indices is to represent conditional and/or latent and/or poten-
tial instability. The state of a layer is referred to as condi-
tionally instable when the environmental lapse rate curve is
between the dry and the moist adiabatic lapse rate curves on
a thermodynamic diagram (Haurwitz, 1941). Parameters that
account for this are the Vertical Totals (VT) or the Boyden In-
dex (BOYD). A state is referred to as latent instability when
the actual lapse rate above the level of free convection (LFC)
is lower than the moist-adiabatic lapse rate. In this concept,
conditional instability in a relatively dry environment can be
caused by a moist air parcel rising from below the LFC. This
is the underlying mechanism for the Convective Available
Potential Energy (CAPE), the Lifted Index (LI), Showalter
Index (SHOW), and Deep Convective Index (DCI). Finally,
a state of an unsaturated column of air where the equivalent
potential temperatureθe decreases with height is called po-
tential instability (Emanuel, 1994). If such a column is lifted
entirely until complete saturation, it will become unstable re-
gardless of its initial stratification. This kind of instability
is described by the KO Index (KO), the Potential Instability

Index (PII), and the Wet Microburst Index or Delta-θe Index
(DTeI).

Other indices are a combination of the three different con-
cepts: The Total Totals (TT), K-Index (K), S-Index (S),
or the Jefferson Index (JEFF). Kinematic information in
terms of wind shear, wind speed, or wind direction at dif-
ferent levels is incorporated in the Severe Weather Threat
Index (SWEAT), the SWISS Index (SWISS), and the Bulk-
Richardson Number (RIB). Information about hail size if ex-
pected can be derived from the Wet Bulb Zero height (WBZ).
All indices used in this study and the respective equations are
listed in Table A1 in the Appendix. A detailed description of
most of the indices can also be found in the study of Haklan-
der and Van Delden (2003).

3 Methods

3.1 Probability distributions

A possibility to assess the skill of the various indices and to
estimate the range of values for the different categories of
days is to compare the probability distribution functions. A
predictor is most efficient if the probability distributions of
the particular categories are clearly separated, i.e. if the over-
lap between the distributions is small. To obtain an overview
of the indices’ efficiency for direct comparison, the distribu-
tion functions were also characterized by three different per-
centiles: The median and the 15.9% and 84.1% percentiles
whose distance is twice the standard deviationσ in case of a
normal distribution, i.e. approximately 68% of all values lie
in between.

3.2 Probability of thunderstorms

The probability of thunderstorms occurring during a 12-h pe-
riod simply can be determined by counting all days with and
without thunderstorm observations for a specific index value.
For this, an ordered list from high to low index values with
the corresponding thunderstorm observations has to be cre-
ated at first. From this list, the 1st to thek-th day is taken
to calculate a mean index value with a standard deviation
and the ratio of thunderstorm days to the total numberk of
days in this interval. By considering the elements “correct
forecast” a and “false alarm” b of the contingency table (see
Table2 and next section) only, this ratio may be regarded the
thunderstorm probability. The fixed interval withk days is
shifted for about one day and so on, until the end of the list
is reached, giving (n−k+1) thunderstorm probabilities and
associated mean values for a sample sizen. The interval size
k for the SY data (n=3.058) was set to 200, for the RA3 data
(n=518) to 20, and for the insurance data (n=3.294) to 100.
The different interval sizes are due to the varying number of
thunderstorm days in the data sets.

To estimate the thunderstorm probability for a compari-
son of all indices, mean values and standard deviations for
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Table 2. Contingency table for a dichotomous categorical verifica-
tion of forecasts.

Observation

YES NO

YES a b
Fore- correct event forecast false alarms

cast c d
NO surprise events non-events

discrete probabilitiesP were quantified. They cannot be de-
rived directly from the graphs because of a lacking unam-
biguous relation between probabilities and index values, i.e.
the same probability may be obtained at several thresholds.
Hence, the method of Haklander and Van Delden (2003) was
applied who estimated the thresholds for a specific thunder-
storm probabilityP by determining the least index value
λhigh (with standard deviationσhigh), where the probability
reachesP , and the least index value beyond,λlow (with stan-
dard deviationσlow), where the probability stays≥P . Fi-
nally, the mean valueλ and the corresponding standard devi-
ationσ are given by:

λ(P ) = 0.5
[

(λhigh + σhigh) + (λlow − σlow)
]

, (1)

σ(P ) = 0.5
[

(λhigh + σhigh) − (λlow − σlow)
]

.

3.3 Categorical verification and skill scores

An objective method to assess the prediction skill of the var-
ious indices and to find appropriate thresholds is provided
by the categorical verification. The data sets are entered
into a 2×2 contingency table (Table 2), with four elements
a to d based on whether an event was observed (YES/NO)
and predicted (YES/NO). These methods are widely used
for the verification of weather forecasts (Wilks, 1995), but
in many studies also for the evaluation of thunderstorm in-
dices, e.g. by Doswell et al. (1990), Lee and Passner (1993),
or Huntrieser et al. (1997). Whereas the observations (pre-
dictands) match a type of binary scheme – like thunderstorm
occurrence vs. no thunderstorm occurrence –, the various pa-
rameters as predictors may assume a wide range of values.
By defining an appropriate threshold, also the index values
are separated into two parts. For indices that associate higher
values with a higher thunderstorm potential (e.g. CAPE or
DCI), a thunderstorm day is only predicted, when the thresh-
old is reached or exceeded. For indices that associate lower
values with a higher thunderstorm potential (e.g. LI or KO)
it is just reverse.

The problem then is to find an appropriate threshold,
where the correct event forecasts a are maximized and both
false alarms b and surprise events c are minimized. Fig-
ure 3 (top) illustrates the changes of the numbers in the cat-
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Fig. 3. Number of events for the different elements of the contin-
gency table according to Table 2 (top) and skill scores (bottom) as a
function of the Lifted Index LI100, verified using the SYNOP data.

egories a to d as a function of the Lifted Index LI100 (ver-
tical profile averaged over the lowest 100 hPa). For solving
this optimization problem, several skill measures were intro-
duced in the past. The index value, at which an appropriate
skill score reaches its maximum, is then assigned the opti-
mal threshold for the distinction of thunderstorm and non-
thunderstorm days. For the evaluation of thunderstorm in-
dices, both the Heidke Skill Score HSS (Heidke, 1926) and
the True Skill Statistic TSS (Hanssen and Kuipers, 1965)
are used frequently (see Appendix B for a description of the
scores). Both skill scores receive a value of 1 for a perfect
forecast, 0 for a totally random forecast, and a negative value
for a worst forecast.

An example of the behavior of several scores as a func-
tion of the LI100 is given in Fig. 3 (bottom). As the thresh-
old increases, both the Probability of Detection POD and the
False Alarm Rate FAR increase more or less monotonically
as the correct forecasts a and the false alarms b increase at
the same time. In contrast to this, the curves for HSS, TSS,
and the Critical Success Index CSI exhibit a distinct maxi-
mum for slightly different values of LI100. Hence, the as-
signed optimal threshold is subject to the applied skill score.
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Fig. 4. Relative frequency distribution and range of the values be-
tween the 15.9% and 84.1% percentiles for the Lifted Index LI100
(a andb) and the Deep Convective Index DCIS (c andd). Blank
squares in (b) and (d) indicate the mean values, filled squares the
median; the percentiles correspond to twice the distance of the stan-
dard deviation for a normal distribution.

The optimal thresholds according to the TSS frequently ex-
hibit a lower thunderstorm potential of the atmosphere than
the values for HSS. In most cases, the FAR for the maxi-
mum TSS exceeds that of HSS. Following Doswell et al.
(1990), who demonstrated that for very rare events (<1%)
TSS approaches the Probability of Detection POD that only
accounts for the observed events, the HSS was used here for
the assessment of the prediction skill of the indices.

4 Assessment of the convective indices

4.1 Probability distributions and mean values

First, the skills of the various indices are assessed by means
of probability distribution functions and related percentiles
as described in Sect. 3.1. Figures 4a and b show the prob-
ability distributions of the Lifted Index LI100 and the Deep
Convective Index DCIS (based on the surface Lifted Index
LIS) for non-thunderstorm and thunderstorm days according
to SYNOP data (SY), severe thunderstorm days according
to radar data (RA3), and days with hail damage (SV1) and
storm/flood damage (SV3). It should be noted that the area
below the distributions corresponds to 100%. For both in-
dices, the probability distributions for the SYNOP data over-
lap in a relatively small area only. For LI100, the size of the
area that is not jointly covered reaches 62%, for DCIS 45%.
When comparing thunderstorm days and days with severe
thunderstorms, e.g. SY with SV1 data, the non-overlapping
area is 37% for LI100 and 35% for DCIS.

Almost the same characteristics are obtained by the per-
centiles of the particular categories of predictands (Figs. 4b
and d). Again, the LI100 yields the clearest distinction of
all categories. For example, the range of values captured
by the lower and upper percentiles (i.e. 68% of all days)
for days with hail and storm/flood damage lies completely
outside the range of non-thunderstorm days according to the
SYNOP data. Furthermore, days with widespread and/or se-
vere thunderstorms are also indicated by smaller (for LI100)
or higher (for DCIS) index values – at least on the average for
various events. The range of values between the percentiles
defined is shown in Fig. 5 for all convective indices used in
this study. Most of the indices separate the different days
quite well. The worst indices according to the distribution
functions are SWISS12, HI, and SWEAT.

An estimation of expected hail size, if applicable, is given
by the WBZ height. According to the SV1 (and SV3) loss
data, the potential for large hail is highest for WBZ heights
between 2500 and 3500 m. Below as well as above this
range the hail size rapidly diminishes, resulting in an unam-
biguous relation between thunderstorm potential and WBZ
height. Since only in a few cases the WBZ exceeds a height
of 3800 m on days without thunderstorms, the upper range
can be neglected in the distributions function.

Nat. Hazards Earth Syst. Sci., 7, 327–342, 2007 www.nat-hazards-earth-syst-sci.net/7/327/2007/



M. Kunz: The skill of convective indices to predict thunderstorms 333

-20 -10 0 10 20

LIS

LI100

SHOW

KO

PII

DTeI

SWISS12

SYN SY RA3 SV1 SV3

-20 0 20 40 60

DCIS

DCI100 

VT

K

Kmod

Jeff

S

HI

TT

0 1.000 2.000 3.000 4.000

CAPELFC

CAPECCL

CAPEmul

WBZ

0 100 200 300 400

SWEAT

RIBLFC

RIBmul

RIBCCL

Fig. 5. Range of the index values between the 15.9% and 84.1%
percentiles of the distribution function evaluated for days without
thunderstorms (SYN), with all kinds of thunderstorms (SY), with
severe thunderstorms (RA3), hail damage (SV1), and storm/flood
(SV3) damage.

4.2 Probability of thunderstorms

Now, the thunderstorm probabilities are derived as a function
of the index valuesλ, as described in Sect. 3.2. By way of
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Fig. 6. Probability of thunderstorms as a function of the Lifted
Index LI100 (top) and the Deep Convective Index DCIS (bottom)
for days of different categories.

example, Fig. 6 shows the probabilities for the Lifted Index
LI100 and the Deep Convective Index DCIS. As expected, the
probability of all kinds of thunderstorm days increases with
decreasing LI100 and vice versa for DCIS. Highest proba-
bilities of up to 80% are reached when distinguishing be-
tween thunderstorm and non-thunderstorm days (SY) only.
For example, for a mean LI100 of −3.0 K, a highest proba-
bility of 85% was reached, i.e. 170 of the 200 days in this
interval were thunderstorm days (Fig. 6a). When consider-
ing the insurance data (SV1 and SV3), however, the com-
puted probabilities of damage due to hail or storm/flood are
significantly lower than for the other data sets. Considering
a mean value of−3 K for LI100, the probability of damage
by storm/flood is 49.5%, by hail 34.7% (Fig. 6a). This is
mainly due to the fact that it is only distinguished between
days with and without damage, regardless of whether thun-
derstorms occurred on that day or not. The highest prob-
abilities are reached for the decision between ordinary and
severe thunderstorms according to the radar data. Probabil-
ities above 90% are reached, whereas the curves also show
a strong variability. This is mainly caused by the fact that
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Table 3. Thunderstorm indices with optimal thresholds and dif-
ferent skill scores for the thunderstorm prediction verified against
SYNOP data between 1986 and 2003. The table shows the 12 in-
dices with the highest HSS.

Index Threshold HSS TSS POD CSI FAR

SY: thunderstorm vs. non-thunderstorm days

LI100 ≤1.76 K 0.57 0.62 0.81 0.53 0.39
SHOW ≤2.51 0.55 0.58 0.75 0.51 0.38
LIS ≤−0.22 K 0.49 0.54 0.73 0.47 0.43
Kmod ≥33.9 K 0.48 0.49 0.65 0.45 0.40
PII ≥−0.17 K km−1 0.47 0.52 0.72 0.46 0.44
TT ≥48.1 K 0.47 0.49 0.67 0.45 0.42
Jeff ≥27.9 K 0.46 0.50 0.70 0.45 0.44
CAPEmul ≥159 J kg−1 0.46 0.47 0.63 0.44 0.41
CAPECCL ≥380 J kg−1 0.46 0.48 0.65 0.44 0.42
K ≥26.1 K 0.46 0.47 0.63 0.44 0.42
KO ≤−0.31 K 0.46 0.50 0.72 0.45 0.45
VT ≥26.9 K 0.46 0.50 0.71 0.45 0.45

severe thunderstorms in the radar data are comparably rare
(60 days) due to the comparatively small sample size. Con-
sequently, the results should be interpreted with care.

Discrete thunderstorm probabilitiesP as a function of the
thresholds, as described in Sect. 3.2, are shown in Fig. 7
and additionally listed in Table C1 in the Appendix for the
SYNOP data (SV1) and the insurance data (SV1 and SV3).
The results for the radar data were omitted because of their
lacking of representativeness due to the small sample size
of events that is too low for the probability analysis. The
highest probabilities are reached when separating between
thunderstorm and non-thunderstorm days, regardless of their
intensities (SY). Two indices, namely, LI100 and Kmod, reach
a thunderstorm probability of more than 80%; thirteen of the
19 indices reach probabilities of more than 70%. Note that
the bar’s length in the figure is proportional to the standard
deviationσ(P ) that is determined by the distance between
λhigh andλlow (see Eq. 1). As expected, the probabilities of
the occurrence of damage are significantly lower than those
of the occurrence of all kinds of thunderstorms. Only 15 of
the 19 indices reach a probability of more than 30% for hail;
for storm/flood events, the number even decreases to 10.

4.3 Prediction skills and appropriate thresholds

An objective method to assess the prediction skill of the in-
dices is provided by the categorical verification as described
in Sect. 3.3. Both the optimal thresholds and the ranking
of the indices regarding their prediction skill are determined
by the maximum of the Heidke Skill Score HSS. The results
of the categorical verification are listed in Table 3 for the
SYNOP data, in Table 4 for the radar data, and in Tables 5
and 6 for the insurance data.

Although the ranking of the indices depends on the ob-
served thunderstorm characteristics and, hence, differs from
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Table 4. Same as Table 3, but for radar data between 1998 and
2001.

Index Threshold HSS TSS POD CSI FAR

(a) RA1: thunderstorm vs. non-thunderstorm days

Kmod ≥36.3 K 0.50 0.48 0.57 0.42 0.39
SHOW ≤2.10 0.48 0.55 0.73 0.43 0.49
LI100 ≤0.28 K 0.47 0.49 0.62 0.41 0.45
K ≥28.1 K 0.46 0.46 0.56 0.40 0.43
DCI100 ≥16.2 K 0.42 0.46 0.62 0.38 0.51
CAPEmul ≥520 J kg−1 0.41 0.45 0.62 0.37 0.52
DCIS ≥18.7 K 0.39 0.45 0.64 0.36 0.54
Jeff ≥29.2 K 0.39 0.41 0.56 0.35 0.51
CAPELFC ≥520 J kg−1 0.39 0.43 0.60 0.36 0.53
PII ≥−0.15 K km−1 0.39 0.49 0.74 0.37 0.57
LIS ≤−2.42 K 0.38 0.42 0.58 0.35 0.53
DTeI ≥1.34 K 0.37 0.42 0.60 0.34 0.55

(b) RA2: widespread vs. isolated thunderstorm days

DCI100 ≥12.2 K 0.41 0.39 0.87 0.74 0.17
LIS ≤−1.32 K 0.38 0.40 0.81 0.71 0.16
S ≥41.8 K 0.37 0.39 0.78 0.68 0.15
DCIS ≥14.1 K 0.36 0.34 0.88 0.74 0.18
WBZ ≥2458 m 0.33 0.31 0.86 0.72 0.19
SHOW ≤2.10 0.33 0.33 0.81 0.69 0.18
LI100 ≤0.63 K 0.33 0.35 0.77 0.67 0.17
KO ≤0.08 K 0.31 0.30 0.85 0.71 0.19
Kmod ≥33.5 K 0.31 0.31 0.83 0.70 0.18
K ≥26.3 K 0.31 0.33 0.78 0.67 0.17
DTeI ≥0.65 K 0.31 0.35 0.73 0.64 0.16
CAPELFC ≥329 J kg−1 0.30 0.32 0.77 0.66 0.18

(c) RA3: severe vs. non-severe thunderstorm days

DTeI ≥0.93 K 0.43 0.43 0.83 0.60 0.32
DCIS ≥22.3 K 0.42 0.42 0.65 0.53 0.25
SHOW ≤0.83 0.40 0.40 0.73 0.56 0.30
LIS ≤−2.42 K 0.38 0.38 0.77 0.56 0.32
LI100 ≤0.33 K 0.36 0.36 0.80 0.57 0.34
PII ≥0.03 K km−1 0.36 0.36 0.80 0.57 0.34
CAPELFC ≥732 J kg−1 0.35 0.35 0.67 0.51 0.31
KO ≤−1.00 K 0.35 0.34 0.83 0.57 0.36
DCI100 ≥12.9 K 0.34 0.34 0.90 0.59 0.37
CAPEmul ≥922 J kg−1 0.34 0.34 0.57 0.47 0.28
VT ≥27.0 K 0.33 0.33 0.75 0.54 0.35
WBZ ≥2507 m 0.33 0.32 0.88 0.58 0.38

table to table, the highest skill scores are generally achieved
with the traditional Lifted Index LI100, the Showalter In-
dex SHOW, and the modified K-Index Kmod. The most ap-
propriate indices for the prediction of severe thunderstorms
in descending order are: LI100, DCIS, DCI100, PII, DTeI,
CAPECCL, SHOW, and CAPEmul. In contrast, lowest skill
scores are reached in general by the Humidity Index HI, the
Bulk-Richardson number RIB, the Jefferson Index JEFF, the
S-Index, and the Boyden Index BOYD (not listed in the ta-
bles).

For the prediction of a thunderstorm day (SY in Table 3
and RA1 in Table 4a), the Lifted Index LI100, the Showal-
ter Index SHOW, and the modified K-Index Kmod, perform

Table 5. Same as Table 3, but for hail days according to the insur-
ance data between 1986 and 2003.

Index Threshold HSS TSS POD CSI FAR

(a) SV1: hail vs. non-hail days

LI100 ≤−2.07 K 0.39 0.44 0.48 0.27 0.62
CAPECCL ≥1763 J kg−1 0.36 0.41 0.45 0.24 0.66
CAPEmul ≥1474 J kg−1 0.36 0.39 0.43 0.24 0.65
CAPELFC ≥1474 J kg−1 0.35 0.39 0.42 0.23 0.66
DTeI ≥10.3 K 0.35 0.34 0.36 0.23 0.62
DCI100 ≥25.7 K 0.34 0.40 0.44 0.23 0.68
LIS ≤−4.19 K 0.34 0.47 0.52 0.23 0.71
DCIS ≥29.2 K 0.33 0.33 0.36 0.22 0.63
PII ≥1.90 K km−1 0.33 0.30 0.32 0.22 0.59
SHOW ≤−0.85 0.31 0.33 0.36 0.20 0.69
Kmod ≥38.9 K 0.27 0.38 0.44 0.18 0.77
KO ≤−6.32 K 0.26 0.29 0.33 0.17 0.74

(b) SV2: widespread vs. isolated hail days

PII ≥2.71 K km−1 0.31 0.25 0.29 0.24 0.40
SWEAT ≥287 0.31 0.23 0.25 0.23 0.29
DCIS ≥35.4 K 0.30 0.22 0.24 0.22 0.29
SHOW ≤−3.97 0.30 0.22 0.24 0.22 0.29
LI100 ≤−4.21 K 0.29 0.27 0.38 0.25 0.58
CAPECCL ≥2431 J kg−1 0.27 0.30 0.48 0.26 0.64
DCI100 ≥30.1 K 0.25 0.27 0.43 0.24 0.64
LIS ≤−5.67 K 0.21 0.27 0.52 0.23 0.70
Kmod ≥42.0 K 0.21 0.19 0.29 0.19 0.63
DTeI ≥11.8 K 0.20 0.23 0.43 0.22 0.69
WBZ ≥3485 m 0.20 0.22 0.38 0.21 0.68
K ≥31.1 K 0.18 0.26 0.57 0.23 0.73

best. The differences between both tables concerning the
ranking of the indices and their optimal thresholds are mainly
due to the different criteria that were used for the defini-
tion of a thunderstorm day. For the radar data, the criterion
is more stringent, as already reflected by the lower num-
ber of radar-defined thunderstorm days (Fig. 2). Consid-
ering the widespread vs. isolated thunderstorm day scheme
(RA2 in Table 4b), the ranking of the indices is slightly dif-
ferent with highest scores for the Deep Convective Index
DCI100, the surface Lifted Index LIS, and the S-Index. The
defined thresholds indicate a higher thunderstorm potential
compared to those discussed above.

For the prediction of severe thunderstorms that are asso-
ciated with damage due to hail (SV1 and SV2 in Table 5)
or storm/flood (SV3 and SV4 in Table 6), the highest skill
scores are obtained again for the Lifted Index LI100 and
the two versions of the Deep Convective Index, DCIS and
DCI100, but also for the CAPE in association with very high
thresholds (e.g.≥1763 J kg−1 for CAPECCL). The listed
thresholds of the indices for hail days reveal the highest con-
vective potential compared to all other data sets. Also the
thresholds for widespread damage days (SV2 and SV4) gen-
erally exhibit a higher thunderstorm potential compared to
the other damage days (SV1 and SV3). Another interesting
result is that indices that were designed for the prediction of
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Table 6. Same as Table 3, but for storm/flood days according to the
insurance data between 1986 and 2003.

Index Threshold HSS TSS POD CSI FAR

(a) SV3: storm/flood vs. none storm/flood days

LI100 ≤−1.96 K 0.42 0.39 0.42 0.29 0.52
DCI100 ≥25.3 K 0.40 0.39 0.42 0.28 0.55
DCIS ≥25.4 K 0.39 0.45 0.51 0.27 0.63
CAPECCL ≥1763 J kg−1 0.37 0.34 0.37 0.26 0.56
PII ≥1.05 K km−1 0.36 0.45 0.52 0.26 0.67
CAPEmul ≥806 J kg−1 0.35 0.49 0.57 0.25 0.69
Kmod ≥38.0 K 0.35 0.47 0.55 0.25 0.69
SHOW ≤0.54 0.35 0.53 0.63 0.25 0.70
DTeI ≥4.34 K 0.35 0.48 0.56 0.25 0.69
CAPELFC ≥1495 J kg−1 0.34 0.30 0.33 0.23 0.57
LIS ≤−4.12 K 0.34 0.37 0.42 0.24 0.65
KO ≤−3.39 K 0.32 0.50 0.61 0.23 0.73

(b) SV4: widespread vs. isolated storm/flood days

DCIS ≥31.8 K 0.38 0.36 0.46 0.33 0.47
LI100 ≤−3.24 K 0.34 0.33 0.44 0.30 0.50
DCI100 ≥25.7 K 0.34 0.46 0.74 0.35 0.61
KO ≤−6.01 K 0.31 0.37 0.59 0.31 0.60
CAPEmul ≥1400 J kg−1 0.30 0.39 0.67 0.32 0.62
DTeI ≥7.20 K 0.30 0.41 0.72 0.32 0.63
CAPECCL ≥2486 J kg−1 0.30 0.27 0.36 0.26 0.50
LIS ≤−4.63 K 0.30 0.38 0.64 0.31 0.62
PII ≥1.95 K km−1 0.29 0.31 0.49 0.29 0.59
CAPELFC ≥1400 J kg−1 0.29 0.37 0.64 0.31 0.63
SHOW ≤−2.00 0.29 0.25 0.33 0.25 0.50
WBZ ≥3218 m 0.25 0.39 0.80 0.30 0.67

severe events, such as SWISS, SWEAT, or WBZ, exhibit no
significantly high scores. Only the SWEAT is listed in sec-
ond position for widespread hail events.

When ranking the indices based on the TSS instead of the
HSS, the results and the optimal thresholds are almost the
same for the SYNOP and the radar data (not shown). Major
differences between both skill scores are observed for the in-
surance data only (SV1 to SV4 in Table 4). For all indices,
the optimal thresholds determined by the TSS maxima indi-
cate a lower thunderstorm potential of the atmosphere com-
pared to that determined by the HSS maxima. The reason
for the differences is that the TSS is more related to a high
POD than to a low FAR, while HSS emphasizes a low FAR
associated with a higher thunderstorm potential (see Fig. 3).
Consequently, the FAR reaches high values of up to 0.8 for
the TSS maxima. Only when the number of days with thun-
derstorms observed almost equals the number of days with
predicted thunderstorms, are the scores almost the same for
HSS and TSS, as it is the case for RA3 and, partly, RA2.

Regarding the layer that appears to be most relevant to the
thunderstorm potential, a systematic relation cannot be found
for both isolated and widespread thunderstorms. In case of
severe thunderstorms, however, higher scores are obtained
for indices that depend on the lowest layers. The two indices
with the highest scores in the RA3 data directly depend on

temperature and humidity near the surface. For the SV data,
highest scores are reached by indices that either are derived
from properties near the surface (e.g. CAPE or DCIS) or that
are averaged over the lowest 100 hPa (e.g. LI100 or DCI100).
The question, over which layer the temperature and humidity
profile should be averaged to reach highest scores will be
addressed in the next section.

4.4 Sensitivity of skill scores to changes of the lifted profile

A crucial issue for the indices that represent latent instabil-
ity is their direct dependance on the properties of a particular
air parcel that is assumed to be lifted from a certain level.
Especially on high radiation days with a strongly superadia-
batic stratification and a strong increase of the mixing ratio in
the lowest layers, it is questionable whether the values near
the surface in particular may be representative of the whole
lifting process and for a larger region. On such days, the tem-
perature of an air parcel lifted from the surface to a certain
level exceeds that of a parcel lifted from any height between
the surface and the condensation level. Hence, indices that
are related to the lifting profile, like the CAPE or the LI, are
very sensitive to the vertical profiles of temperature and hu-
midity in the lowest layers.

Four convective indices were chosen to examine the sen-
sitivities of the forecasting skill to an averaging of the ini-
tial profiles: the Lifted Index LI, the Deep Convective In-
dex DCI, and two versions of CAPE, once determined by the
LFC, CAPELFC, otherwise by the CCL, CAPECCL. All four
indices are based on the properties of an air parcel that is as-
sumed to be lifted either from the near-surface layer (CAPE,
DCI) or from a layer determined by vertical mixing (LI). To
test the sensitivities of the indices, the mixing ratio, tempera-
ture, and initial level, from where the parcels are assumed to
be lifted, were modified by density-weighted averaging from
the surface to a level between 10 and 100 hPa above.

The Heidke Skill Score HSS results for different initial
values are shown in Fig. 8. As can be seen, a general stan-
dard for averaging that gives best results for all indices and
all kinds of thunderstorm days cannot be derived. In case
of the Lifted Index (Fig. 8a), the best results for SY, RA1,
and SV are obtained by averaging the vertical profile over
the lowest 100 hPa that corresponds to the traditional LI100.
For the prediction of severe thunderstorms only (RA3 and
SV1–SV4), the score then increases with the vertical exten-
sion of the averaging layer. The lowest score is obtained for
the surface-based Lifted Index, LIS – again except for the
two radar data sets.

Even though the Deep Convective Index DCI is directly
based on the LI, the variability of the skill scores for different
averaging levels is obviously higher than that for the LI. For
the decision of thunderstorms vs. no thunderstorms as cap-
tured by both SY and RA1, the scores obtained for the vari-
ous averaging levels of LI differ only marginally. For these
categories, DCI100 scores best. However, when considering
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Fig. 8. Heidke Skill Score HSS for Lifted Index LI(a), Deep Convective Index DCI(b), CAPE from the LFC(c), and CAPE from the
CCL (d). Initial temperature and mixing ratio of the assumed lifted air parcel are averaged over a certain depth (in hPa) above the surface
indicated by the subscription; a subscribed s means no averaging.

the prediction of severe thunderstorms only, the results for
RA3, SV2, and SV4 behave in an opposite way, with high-
est scores for DCI derived from near-surface values without
averaging, DCIS.

No general standard can be derived for the two versions
of CAPE as displayed in Figs. 8c and d. In case of severe
thunderstorms, best results are obtained for CAPELFC when
the profile is averaged over the lowest 100 hPa. Thus, high
CAPE values resulting from a superadiabatic stratification of
the layers directly above the surface are reduced. Note that
the prediction skill of CAPECCL for SY and SV – except for
SV2 – is not very sensitive regarding the averaging layer.
Even though the results for CAPE differ from case to case
in this analysis, it is recommended to average the vertical
profile over the lowest 100 hPa for the assumed lifted parcel
– at least for the prediction of severe thunderstorms.

5 Discussion and conclusions

The aim of this study is to assess the skill of various con-
vective or thunderstorm indices derived from radiosonde ob-
servations at 12:00 UTC for the prediction of thunderstorm
occurrence. To obtain comprehensive information about both

thunderstorm occurrence and intensity, different kinds of ob-
servation data sets were used. Data from SYNOP stations
allow to determine days without and with thunderstorms for
a long term, but with a low spatial coverage. Radar data
exhibit additional information about thunderstorm properties
in terms of maximum intensity, number of cells, and spatial
extension of the convective area, but are available for some
years only and cover a very large region of 120 km in radius.
Loss data from a building insurance company facilitate the
identification of days with extreme thunderstorms associated
with hail or storm/flood damage. By bringing together the
different data sets, the prediction skill and appropriate thresh-
olds of the various convective indices for thunderstorms with
different intensities are assessed comprehensively.

Frequency distributions of the index values and derived
percentiles already revealed the efficiency of the indices and
yielded an estimate regarding the range of values for the dif-
ferent thunderstorm categories. Most of the indices showed
quite a good separation of the ranges of values according
to the different categories of days, especially LI100, LIS,
SHOW, DTeI, and PII.

The categorical verification divided the investigated data
sets into a 2×2 contingency table to assess the prediction
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skill of the different indices. By considering the elements of
the table associated with an index-based thunderstorm fore-
cast only, the probability of thunderstorms was derived. To
decide on thunderstorm vs. non-thunderstorm days, the LI100
and Kmod reach a probability of more than 80%. Considering
days with damage due to hail or storm/flood only, the proba-
bilities obtained are significantly lower. For the prediction of
hail days, probabilities of more than 40% are reached for the
two versions of LI and DCI, for all three versions of CAPE,
for SHOW, DTeI, PII, and Kmod. For the storm/flood days,
the same probability is reached by CAPECCL and DTeI only.

Using all the information of the contingency table, the
Heidke Skill Score HSS was used to determine appropriate
thresholds for a thunderstorm forecast and to rank the indices
according their prediction skill. For the decision between
thunderstorm and non-thunderstorm days, LI100 and SHOW
score best with values of 0.57 and 0.55 for HSS. For the de-
cision on severe vs. non-severe thunderstorms, an HSS value
in excess of 0.4 is reached by DTeI, DCIS, and SHOW only.
Considering damage days, the index with the highest score
differs from one data set to another. The six indices with the
highest skill scores for the loss data sets are in descending
order: LI100, DCIS, DCI100, PII, DTeI, and CAPECCL. Most
of the indices that scored best in terms of the maximum HSS
also reached a high thunderstorm probability, despite the fact
that these two parameters consider different elements of the
contingency table.

The study of both the maximum thunderstorm probability
and the skill scores reveals that the prediction of thunder-
storm days with different characteristics cannot be achieved
by a single convective index that fits best to the observations.
The skill of the indices rather depends on the thunderstorm
intensity and the objective of the investigation. That also
applies to the problem of finding an appropriate threshold.
When summarizing the results, the indices with the highest
skills for thunderstorm prediction based on the 12:00 UTC
sounding are LI100, DCIS, SHOW, DTeI, PII, and CAPE. In
contrast to this, the prediction efficiency is found to be poor-
est for HI, RIB, S, TT, and BOYD.

When assessing the skill of the indices, it must be taken
into account that several indices were designed for the pre-
diction of a special kind of thunderstorm. The Boyden In-
dex BOYD originally was designed to assess the thunder-
storm probability during frontal passages in the UK. The
Bulk-Richardson number RIB was created to estimate the
thermodynamic and dynamic forcing of convective devel-
opment that may help to separate single- or multicell thun-
derstorms from supercell thunderstorms. This explains the
low skills of both indices in our study. Several other indices
were designed to forecast severe thunderstorms, such as DCI,
SWEAT, or the SWISS Index. However, when considering
severe thunderstorms only, a high prediction skill was found
for DCI, but not for the two other ones.

Regarding the theoretical concept underlying the different
indices, latent instability (represented by LI, DCI, CAPE,

SHOW) or potential instability (represented by KO, PII,
DteI) are the most important conditions for the onset of con-
vection. As regards the decision between thunderstorm and
non-thunderstorm days according to the SYNOP data, also
indices that combine the two concepts (TT, K, JEFF, S) reach
high probabilities as well as high skill scores. In contrast to
this, the combined indices exhibit poor benchmarks when
considering days with severe thunderstorms only. Here,
higher scores are obtained only by indices representing latent
or potential instability and based on temperature and humid-
ity values either from a near-surface level or averaged over
the lowest 100 hPa. Indices considering additional dynamic
information like the RIB or the SWISS Index exhibit signif-
icantly smaller skills for all types of thunderstorm days. It
is interesting to note that several other indices are more suit-
able to predict thunderstorms than the KO Index that was
designed and is still used by the DWD.

The study revealed that an index-based prediction of
severe thunderstorms that are associated with hail or
storm/flood damage is a big challenge. Skill scores for the
prediction as well as the maximum probabilities of severe
thunderstorms are quite low compared to the prediction of
thunderstorm vs. non-thunderstorm days. It must be kept
in mind, however, that vulnerability plays a decisive role in
the loss data, since, especially in sparsely populated regions,
not each severe storm causes the minimum number of ten
claims that define a damage day in this study. Besides, hail
events without a sufficient size of the hailstones do not cause
any damage of buildings and, thus, are not recorded by the
data. In the categorical verification scheme, this leads to an
overprediction with high FAR and low skill scores in case
of severe thunderstorms. Although the scores reached are
significantly lower than for all other kinds of thunderstorms,
any information about a possible occurrence of severe thun-
derstorms is very valuable and may help to prevent or reduce
damage.

A limiting factor of the sounding-based prediction concept
arises from the assumption that the atmospheric conditions
are homogeneous for the next 12 h after the sounding. When
air masses with different properties are advected, for exam-
ple, in conjunction with a frontal passage, the sounding can-
not be representative of the whole area and the whole period.
Another constraint of this method results from the neglect of
forced ascent acting on several scales. Local-scale flow ef-
fects and evolving convergence zones over topographically
structured terrain may often trigger the onset of convection.
Synoptic-scale lifting associated with differential vorticity
advection, temperature advection, and/or diabatic heat trans-
fer is an important trigger especially for scattered and severe
thunderstorms. Besides, the horizontal moisture convergence
particularly near the earth surface is decisive for the life cycle
of thunderstorms. It it obvious, that all these effects cannot
be taken into account by analyzing single radiosonde obser-
vations. To overcome these constraints, the convective in-
dices could be combined with appropriate parameters from
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a numerical model. In a recent study, Van Zomeren and van
Delden (2007) combined different versions of the Lifted In-
dex with the vertically integrated moisture flux derived from
weather analysis data from the European Centre for Medium-
range Weather Forecasts (ECMWF). They showed in their
study that the prediction of severe thunderstorm days and
tornado events over Europe improves significantly when em-
ploying the moisture flux in the prediction scheme.

State-of-the-art weather forecast tools include several
models that consider different spatial and temporal scales of
atmospheric disturbances. For the prediction of deep con-
vection, nowcasting models with a lead time of up to 2 h
provide information of thunderstorm intensity and expected
cell tracks that are extrapolated from observation data of re-
mote sensing systems (e.g. KONRAD of DWD). However,
the life cycle of thunderstorms or new cell formation can-
not be forecast. Regional high-resolution weather forecast
models that explicitly resolve deep convection, have typical
lead times around 6–12 h. The quality of convection fore-
cast is high if real-time precipitation data, e.g. from radar
data, are assimilated into the system. Weather prediction for
lead times of more than 12 h, i.e. short–range (up to 3 days)
and medium–range (up to 10 days) weather forecast, is well
covered by several models (e.g. COSMO-LME and GME of
DWD). However, up to now these models still have problems
to predict the life cycle of deep convective clouds due to in-
adequate convection parameterization schemes, error in the
initial conditions, or turbulent closure problem (Hense et al.,
2003).

Convective indices derived from radiosonde observations
may give additional information about atmospheric stabil-
ity and conditions for lead times between 1 and 12 h. This
time range is of great importance to many users and for is-
suing warnings of local convective extreme events associated
with heavy precipitation, hail, severe downdrafts, or even tor-
nados. In the hierarchy of weather prediction models, this
time range is covered by both, nowcasting tools and very
short-range forecasts. Hence, convective indices could be
employed in both systems. They could be included in now-
casting tools to estimate the thunderstorm probability and/or
thunderstorm intensity. And they are still a helpful measure
to better estimate the convective situation for weather fore-
caster since they represent a real state of the atmosphere.

Appendix A

Definition of convective indices

A summary of all convective parameters and indices used in
this study is listed in Table A1.

Appendix B

Skill scores

Based on the definition of the contingency table (Table 2),
the scores for categorical weather elements used in this study
are defined as follows:

Probability of Detection POD

POD=
a

a + c
(B1)

The range of POD is from 0 to 1, with 1 for a perfect forecast;
POD increases with overforecasting events; it includes no
false alarms.

False Alarm Rate FAR

FAR =
b

a + b
(B2)

The range of FAR is 0 to 1, with 0 for a perfect forecast; FAR
increases with underforecasting events.

Critical Success Index CSI

CSI =
a

a + b + c
(B3)

The range of CSI is 0 to 1, with 1 for a perfect forecast;
CIS includes both false alarms and surprise events; however,
events with different frequencies cannot be compared.

Frequency Bias FBI

FBI =
a + b

a + c
(B4)

The range of FBI is between 0 and∞, with 1 for a perfect
forecast. FBI is the ratio between all events forecasted and
all events observed; the FBI does not include the non-event
forecasts d.

Heidke Skill Score HSS

HSS=
a + d − R

a + b + c + d − R
(B5)

with R =
(a + b) × (a + c) + (c + d) × (b + d)

a + b + c + d

The range of HSS is from−∞ to 1, with 1 for a perfect
forecast;R is the chance. Surprise events and false alarms
are included as well as the effect of a reference forecast. The
HSS is based on the hit rate as the basic accuracy measure
and follows the form of a generic skill score (Wilks, 1995).

True Skill Statistic (Hanssen-Kuiper discriminant): TSS

TSS=
a × d − b × c

(a + c) × (b + d)
(B6)
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Table A1. Summary of convective parameters and indices:T andT d are the temperature and dewpoint temperature (◦C), θe andθw are
the equivalent potential and wetbulb potential temperature (K),Z is the geopotential height (pgm), andRd is the gas constant for dry air
(J/kg K). The subscript indicates a certain constant pressure level, the characters the surface; an arrow in the subscription indicates the
lifting of an air parcel (e.g.T ′

x→y indicates the temperatureT of a parcel at they-level, which was initially lifted dry adiabatically from the
x-level to its condensation level and moist adiabatically thereafter).

Index name Equation Reference Comment

A: Indices describing conditional instability
Vertical Totals VT=T850−T500 Miller (1972)
Boyden Index BOYD=0.1(Z700−Z1000)−T700−200 Boyden (1963)

B: Indices describing latent instability
Lifted Index LI100=T500−T ′

i→500 Galway (1956) i: p, T and T d averaged over the lowest
100hPa

Deep Convective Index DCI=(T +T d)850−LIS Barlow (1993) LIS: Surface Lifted Index (no mixing)
Showalter Index SI=T500−T ′

850→500 Showalter (1953)

Convective available poten-
tial energy

CAPELFC=Rd

∫ EL
LFC (T ′

v−Tv) dlnp Moncrieff and Miller (1976) T ′
v is the virtual temperature of an air parcel

lifted from the surface to the level of free con-
vection (LFC) up to the equilibrium level (EL)

CAPECCL=Rd

∫ EL
CCL(T ′

v−Tv) dlnp same as above, but the air parcel is lifted moist
adiabatically from the cumulus condensation
level (CCL)

CAPEmul=Rd

∫ EL
i (T ′∗

v −Tv) dlnp defined for a parcel withT , T d, andp at a
level whereθe reaches its highest value in the
lowest 250hPa

C: Indices describing potential instability
KO Index KO=0.5(θe500+θe700)−0.5(θe850+θe1000) Andersson (1989) since the local pressure is often below

1000hPa, we used 950hPainstead;
Delta-θe DTeI=θeS−θe300 Atkins and Wakimoto (1991) designed to assess the potential for wet mi-

crobursts
Potential Instability Index PII=(θe925−θe500)/(Z500−Z925) Van Delden (2001)

D: Combination of A–C
Total Totals TT=(T +T d)850−2T500 Miller (1972)
K-Index K=(T850−T500)+T d850−(T −T d)700 George (1960) developed for forecasting air mass thunder-

storms
modified K-Index Kmod=(T ∗−T500)+T d∗−(T −T d)700 Charba (1977) T ∗ andT d∗ calculated by averaging between

the surface and the 850hPalevel
Humidity Index HI=(T −T d)850+(T −T d)700+(T −T d)500 Litynska et al. (1976)
Jefferson Index JEFF=1.6θw850−T500−0.5(T700−T d500)−8 Jefferson (1963)
S-Index S=TT−(T −T d)700−8 where8=0 for VT≥25,8=2 for 25>VT>22,

and8=6 for VT≤22; designed to indicate the
thunderstorm potential from April to Septem-
ber

Wet Bulb Zero Height WBZ Miller (1972) hight where the wetbulb profile transitions
from a positive to a negative temperature; in-
dicates the potential for hail

E: Indices considering kinematic properties
SWISS Index SWISS12=LIS−0.1WSh0−3+0.1(T −T d)650 Huntrieser et al. (1997) where WSh0−3 is the wind sheer in the low-

est 3 km agl; the index was designed for the
12:00 UTC sounding in Switzerland

Severe Weather Threat In-
dex

SWEAT = 12T d850+20(TT−49)+2f850+f500+
125[sin(d500−d850)]+0.2

Miller (1972) wheref andd are wind speed in knots and
direction in (0–360◦) on the indicated levels;
the first two terms must be greater or equal
than zero; the last term is set to zero if any of
the conditions are not met:130◦≤d850≤250◦,
210◦≤d500≤310◦, d500>d850, and bothf850
andf5000≥15 knots. SWEAT was designed
for the prediction of severe thunderstorms

The range of TSS is the same as for HSS. It equally empha-
sizes the yes/no events. TSS approaches the POD for very
rare events. It is formulated similarly to the HSS, except
for the reference hit rate in the denominator being that for
random forecasts that are constrained to be unbiased. Hence,
if the Frequency Bias FBI is near unity, then TSS≈HSS.
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Appendix C

Climatological means and standard deviations of the indices

Table C1. Mean and standard deviation of the indices for specific probabilities of thunderstorm occurrence, derived for
thunderstorm days (SY), days with hail damage (SV1), and days with storm/flood damage (SV3).

Thunderstorm days Hail days Days with storm/flood
Index SY SV1 SV3

—————————————- —————————— ——————————
80% 70% 60% 50% 40% 30% 20% 40% 30% 20%

VT (K) 30.0 27.8 29.9 29.0
±1.50 ±0.52 ±1.23 ±0.16

BOYD 99.0 97.9 100 98.9
±0.63 ±0.35 ±0.44 ±0.58

LIS (K) −5.28 −2.74 −1.48 −6.38 −5.11 −3.91 −6.13 −4.76
±0.87 ±0.34 ±0.71 ±0.87 ±0.39 ±0.25 ±0.66 ±0.53

LI100 (K) −1.73 −1.38 −0.14 0.70 −2.26 −1.97 −1.31 −2.22 −2.02
±0.38 ±0.30 ±0.23 ±0.20 ±0.28 ±0.26 ±0.14 ±0.27 ±0.24

DCIS (K) 28.7 23.2 21.7 31.8 28.7 24.4 31.2 28.6
±1.90 ±0.93 ±0.86 ±1.76 ±3.10 ±1.19 ±1.43 ±2.06

DCI100 (K) 26.6 22.4 19.1 28.1 25.4 23.9 28.8 25.4
±2.01 ±1.58 ±1.11 ±2.69 ±0.82 ±1.85 ±1.68 ±0.81

CAPELFC (J kg−1) 1836 706 339 1786 1601 1055 1808 1625
±632 ±112 ±64.9 ±225 ±163 ±485 ±229 ±171

CAPECCL 2049 1350 685 2166 1872 1459 2613 2335 1872
±385 ±388 ±242 ±339 ±142 ±359 ±478 ±288 ±142

CAPEmul (J kg−1) 1793 670 340 2095 1529 1005 1855 1529
±589 ±135 ±60.3 ±539 ±139 ±450 ±283 ±139

SHOW 0.26 0.78 1.37 −2.20 −1.15 −0.09 −2.47 −1.01
±0.26 ±0.21 ±0.31 ±0.89 ±0.31 ±0.64 ±1.18 ±0.30

KO (K) −4.79 −2.42 −6.45 −4.19 −6.75
±0.64 ±1.27 ±0.86 ±0.96 ±0.64

DTeI (K) 6.80 0.57 10.15 9.00 5.33 13.62 10.72 9.04
±1.12 ±0.59 ±1.13 ±1.06 ±3.41 ±2.49 ±1.24 ±1.07

PII (K km−1) 1.63 1.00 0.51 1.98 1.71 1.12 2.13 1.58
±0.32 ±0.24 ±0.30 ±0.21 ±0.16 ±0.10 ±0.24 ±0.32

TT (K) 53.8 50.8 49.6 52.9
±1.35 ±1.12 ±0.35 ±1.88

K (K) 32.1 30.0 28.1 33.7 30.8 32.8
±0.84 ±0.51 ±0.42 ±0.73 ±1.04 ±0.61

Kmod (K) 40.6 38.8 37.3 36.1 41.6 40.6 38.2 40.7
±1.08 ±0.58 ±0.52 ±0.49 ±0.84 ±0.48 ±1.11 ±0.54

Jeff (K) 32.0 30.5 29.1 31.8
±0.52 ±1.20 ±0.23 ±0.21

S (K) 49.9 43.2 46.4
±0.89 ±1.30 ±1.74

WBZ (m) 3427 3247 3534 3274 3533
±111 ±113 ±139 ±114 ±140

SWISS12 0.05 0.99 -2.70 -4.97
±0.45 ±0.34 ±1.03 ±1.47
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