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Abstract. Weather radar observations are currently the most
reliable method for remote sensing of precipitation. How-
ever, a number of factors affect the quality of radar obser-
vations and may limit seriously automated quantitative ap-
plications of radar precipitation estimates such as those re-
quired in Numerical Weather Prediction (NWP) data assim-
ilation or in hydrological models. In this paper, a tech-
nique to correct two different problems typically present in
radar data is presented and evaluated. The aspects dealt
with are non-precipitating echoes – caused either by perma-
nent ground clutter or by anomalous propagation of the radar
beam (anaprop echoes) – and also topographical beam block-
age. The correction technique is based in the computation
of realistic beam propagation trajectories based upon recent
radiosonde observations instead of assuming standard radio
propagation conditions. The correction consists of three dif-
ferent steps: 1) calculation of a Dynamic Elevation Map
which provides the minimum clutter-free antenna elevation
for each pixel within the radar coverage; 2) correction for
residual anaprop, checking the vertical reflectivity gradients
within the radar volume; and 3) topographical beam blockage
estimation and correction using a geometric optics approach.
The technique is evaluated with four case studies in the re-
gion of the Po Valley (N Italy) using a C-band Doppler radar
and a network of raingauges providing hourly precipitation
measurements. The case studies cover different seasons, dif-
ferent radio propagation conditions and also stratiform and
convective precipitation type events. After applying the pro-
posed correction, a comparison of the radar precipitation es-
timates with raingauges indicates a general reduction in both
the root mean squared error and the fractional error vari-
ance indicating the efficiency and robustness of the proce-
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dure. Moreover, the technique presented is not computation-
ally expensive so it seems well suited to be implemented in
an operational environment.

1 Introduction

During the last decades there has been an increasing need
to improve the quality of weather radar observations. Large
efforts have been devoted to bridge the gap between tra-
ditional qualitative uses, such as weather surveillance, to
radar automated quantitative processing required nowadays
by a number of applications. For example, the recent EU
COST 717 concerted action has remarked the potential ap-
plications of weather radar systems (Rossa, 2000), address-
ing specifically the assimilation in Numerical Weather Pre-
diction (NWP) models and also in hydrological forecast sys-
tems (Bruen, 2000). In particular, the automated use of radar
data has impelled a deeper understanding of the plethora of
phenomena affecting radar observations. Methods to detect
and correct such effects need to be incorporated within the
quality control of radar data (Alberoni et al., 2003).

One of the typical factors affecting the quality of radar im-
ages intended for quantitatve precipitation estimates (QPE)
is the presence of non-precipitating echoes. They are mostly
caused by the back-scatter of radar energy intercepted by
ground targets or sea waves, the so-called ground or sea clut-
ter echoes (Collier, 1996, 1998). Sometimes the quantity and
intensity of such echoes is increased because the vertical pro-
file of air temperature and moisture contains sharp gradients
that deviate or refract more than usual the radar beam trajec-
tory to the ground, which under normal circumstances is bent
away from the ground (Bean and Dutton, 1968). This phe-
nomenon is known as super-refraction and the new echoes
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698 A. Fornasiero et al.: Enhanced radar precipitation estimates

are commonly called AP, anaprop or anomalous propagation
echoes. Ducting, an extreme case of super-refraction, is pro-
duced when the radar energy is trapped within an air layer
and may travel for long distances before intercepting ground
targets.

Another important factor that should be considered in
weather radars operating in complex topography regions is
the effect of radar beam blockage by the surrounding hills
with similar or higher altitudes. The screening effect of
mountains prevent the radar observing the complete volume
of air which would be sampled if the system operated in a flat
land region. Obviously the lower the radar antenna elevation
angle considered, the larger the blockage produced. This is
a dilemma difficult to solve because the lower antenna eleva-
tions are generally the most valuable for radar precipitation
estimates (Joss and Waldvogel, 1990; Smith, 1998).

In the last years many techniques have been studied to
diagnose and correct ground clutter and AP echoes. Apart
of processor-level techniques for non-coherent and Doppler
radars, many others have been developed as post-processing
methodologies designed to remove AP or clutter echoes.
They are typically based in the analysis of the reflectivity
field structure (see, among others, Joss and Lee, 1995; da
Silveira and Holt, 1997; Pamment and Conway, 1998; Ful-
ton et al., 1998; Alberoni et al., 2001; Sánchez-Diezma et al.,
2001; Steiner and Smith, 2002; Haddad et al., 2004). Other
studies aimed at enhancing radar observations with satellite
images to remove non-precipitating echoes (Pankiewicz et al,
2001; Michelson and Sunhede, 2004).

More recently, polarimetric techniques have been con-
sidered to overcome – among others – AP, clutter and
beam blockage problems as described by Ryhzkov and Zr-
nic (1998), Illingworth (2003) or Ryhzkov et al. (2005). Be-
sides, other contributions oriented to hydrological modelling
have merged radar data with raingauge observations making
use of geostatistical techniques to clean ground clutter or AP
echoes from radar images (see, for example, Todini, 2001; or
Wesson and Pegram, 2004).

In this paper a new post-processing technique to decon-
taminate AP and clutter echoes and to correct for topograph-
ical beam blockage single-polarisation radar observations is
presented and evaluated. The organisation of the paper is
as follows. In Sect. 2 a description of the new correction
methodology is given. Section 3 gives an overview of the
data sets employed and Sect. 4 introduces the statistical mag-
nitudes used to examine the performance of the method. Sec-
tion 5 contains four different case studies where the perfor-
mance of the methodology is discussed. Finally, a summary
and conclusions are given in Sect. 6.

2 The combined method of clutter and beam blocking
correction

The methodology used to correct or reduce ground clutter
and radar beam blockage is briefly detailed in this section. A
preliminary description of the method can also be found in
Fornasiero et al. (2005).

The procedure is applied on the polar volume of reflec-
tivity acquired at short pulse mode – with the Doppler filter
active – to a three dimensional dataset. The output is a bi-
dimensional map of equivalent reflectivity values, also in po-
lar coordinates azimuth-range, which is finally interpolated
into a 2-D Cartesian grid of 1 km×1 km resolution.

The main idea of the procedure is to choose, for each
azimuth-range cell or range-bin, the elevation that is most
representative of the reflectivity value for rainfall estimation,
and projecting this value in the 2-D grid. These data are then
corrected for beam blockage and clutter.

The working scheme consists of three different stages:
choice of the scan elevation for each cell through a dynamic
antenna elevation map; correction for residual anomalous
propagation clutter through a vertical continuity test; and cor-
rection for the beam shielding.

2.1 Dynamic elevation map

The choice of the dynamic map is based on the search for
the minimum antenna elevation simultaneously not affected
from climatological clutter, with a beam shielding fraction
lower than 0.5, and not contaminated by anomalous propa-
gation clutter (the lower limit of the 3-dB beam should not
intercept the ground). This map is built resuming different
information: the static map of precipitation-free echoes, the
beam blocking rates and the heights, relative to the ground, of
the 3-dB beam lower limit. The last two parameters are ob-
tained simulating the beam path through a multi-layer model
(Fornasiero et al., 2005, 2006), where the refractivity gradi-
ent profile is retrieved from a linear weighted combination
of the two nearest (in time) radiosoundings profile, collected
by a station that is co-located with the radar. The resulting
profile is then interpolated at vertical steps of 0.2 km.

2.2 Residual anaprop

The correction for residual anaprop clutter is performed with
the method of Alberoni et al. (2001) modified by Fornasiero
et al. (2005). This method compares, for each range-bin, the
reflectivity value at the dynamic elevation map with those
observed at the successive elevation scans at the same loca-
tion. The basis of this method is founded on the expectation
of higher vertical coherence of meteorological signal with re-
spect to ground clutter, which presents stronger vertical gra-
dients. This procedure is sometimes called vertical continu-
ity test and is often included in the corrections performed
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Table 1. Principal characteristics of San Pietro Capofiume radar.

Model GPM 500 C 

Site San Pietro Capofiume 

Latitude (°) 44.655 

Longitude (°) 11.624 

Antenna height (m a.s.l.) 30 

Frequency (GHz) 5.43–5.64 

Peak power (kW) 500 

Pulse width (µs) 0.5 1.5 3.0 

Radial resolution (m) 250 500 1000 

PRF (Hz) 1200 600 300 

Maximum range (km) 125 250 500 

Main lobe width (°) 0.9 

Antenna diameter (m) 5 

Antenna gain (dB) 46 

Azimuthal speed (°/s) 20 

Polarisation Vertical or Horizontal 

Angles of scan strategy (°) 0.5 + k·0.9, with k=0, 1,…, 15 

 

over reflectivity radar data to obtain rainfall rate estimations
(see for example Fulton et al., 1998).

2.3 Beam shielding

Finally, the evaluation and correction for beam blocking is
performed using a geometric optic approach based in the in-
terception function proposed by Bech et al. (2003). In this
study it has been applied the above-mentioned multi-layer
model to retrieve the radar beam trajectory instead of as-
suming a homogeneous vertical refractivity gradient for the
whole air-layer. This refinement allows a more detailed de-
scription of the radar beam behaviour introducing the possi-
bility to simulate a wider variety of propagation effects such
as beam-splitting.

In Fig. 1 is illustrated the complete correction procedure,
emphasizing the input and output data and the additional re-
quired information. The scheme will be called hereinafter
‘BDA’ (acronym of the three procedures included: Beam
blocking, Dynamic map and Anaprop correction).

3 Datasets description

To evaluate the efficiency of the described methodology it
has been applied to the rainfall rate measured by the C-band
Doppler radar of San Pietro Capofiume, located in northern
Italy (see Table 1 for details). The radar precipitation esti-
mates have later been compared with raingauge data.

choice of the 
dynamic map

vertical 
continuity test

beam blockage 
correction

clear air echoes map

beam blocking rates

trajectory of the 3 dB 
beam lower limit

radiosounding data

DTM

historical reflectivity 
dataset

corrected Z field

polar volume 
of reflectivity 

decluttered through
Doppler filter

Fig. 1. BDA scheme of reflectivity data correction. The two blue
rectangles are the input data, the yellow rectangle contains the in-
termediate products, the yellow circles are the three correction steps
leading to the final output, the corrected reflectivity (Z) field.

The reflectivity data used in the analysis are provided ev-
ery 15 min and collected using a short pulse of 0.5 microsec-
onds and a pulse repetition frequency (PRF) of 1200 Hz. The
radar pixels had a resolution of 250 m×0.9◦ and the mea-
surements extended up to a maximum range of 125 km. As
explained in the previous section, after the application of
the correction the radar reflectivity is also contained in a bi-
dimensional grid azimuth-range where each cell measures
250 m×0.9◦. The data are then resampled into a tempo-
ral Cartesian grid of 250 m×250 m resolution, assigning the
value of each polar cell to the nearest Cartesian cell. There-
after this Cartesian grid is transformed to another one of
lower resolution (1 km×1 km) more adequate to the original
radar sampling, using the criterion of the maximum reflectiv-
ity value into a box composed by 16 elementary cells.

The reflectivity Z is converted into rainfall rate R using a
Z-R power-law relation Z=aRb, where the coefficients a and
b are those indicated by Joss and Waldvogel (1970) for con-
vective (a=500, b=1.5) and stratiform rain (a=250, b=1.5).
Stratiform and convective events were distinguished subjec-
tively by visual inspection on the radar data volumes. For
sake of simplicity no attempt has been made to assign differ-
ent Z-R relationships to different pixels of the same image
distinguishing between stratiform and convective precipita-
tion type. This could be done with a classification technique
such as those described by Sánchez-Diezma et al. (2001) or
Rigo and Llasat (2004).

Finally, the hourly cumulated rainfall amount is obtained
through weighted average of the five precipitation intensity
values at 00, 15, 30, 45, 60 min before the nominal hour,
where the extreme minutes of each hour (00′ and 60′) weigh
half of the others. This is done in order to take into account
that half part of the 00′ and 60′ amounts do correspond to the
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Fig. 2. Raingauges available for the analysis (black points) and
radar coverage (black circle) in the North of Italy.

previous and next hour respectively unlike the other precip-
itation amounts, which are recorded completely within the
nominal hour.

Raingauge data were provided every 60, 30, or 15 min
(see Tables 2 and 3). The amounts reported every 30 and
15 min were summed to obtain the corresponding hourly
value. Most of the stations were located in the mountainous
area and behind the mountains – in the SW part of the radar
coverage –, so that beam blockage corrections could be eval-
uated. The raingauges had tipping-bucket switches and were
not warmed. Therefore some records might be mistaken dur-
ing snow events. As explained later this has been taken into
consideration in the analysis.

In Fig. 2 is represented the location of the raingauges and
the radar maximum range circle.

4 Evaluation parameters

The comparison between raingauges and radar data has been
performed through the visual inspection of rain maps and
through a quantitative-statistical analysis based on the calcu-
lation of some indices relative to the hourly-cumulated rain
and to the event cumulated rain. The indices are: the bias,
the root mean squared error, the fractional mean reduction
and the fractional variance reduction.

Calling RG the cumulated rain rate (over the hour or over
the event) produced by the gauges and RR that estimated
from reflectivity radar data in the corresponding cells, the
indices used can be written as (Marzano et al., 2004):

Table 2. Raingauges available for the analysis divided by integra-
tion time.

1st type 2nd type 3rd type

Integration time (min) 15 30 60
Number of raingauges 184 176 41
Total raingauges 401

Table 3. Raingauges taken into consideration for the analysis in
each case study, detailing the number of observations in mountain
blocked areas and in all areas (total).

Number of Apr Dec July Set July Set
stations mount. mount. mount. mount. total total

Available 401 401 401 401 401 401
Used 142 135 176 179 221 239

The bias<εR>

〈εR〉 = 〈RR − RG〉 (1)

the root mean square error RMSE

RMSE=
√

〈ε2R〉 (2)

the fractional mean reduction FMR

FMR=
〈RG〉−〈εR〉

〈RG〉
(3)

the fractional variance reduction FVR

FVR=
σ 2RG−σ 2εR

σ 2RG

(4)

where the angle brackets mean average over time and over
the cells.

An efficient correction method should reduce the RMSE
towards the “optimum limit” of 0, and it should produce val-
ues of FMR and FVR tending to 1. In the analysis of the
case studies, the RMSE calculated on the event-cumulated
rain, is called RMSECUM. Because of the linear relation be-
tween bias and FMR, in the next section, it has been con-
sidered only the FMR that is normalized with respect to the
mean gauges rainfall field. Moreover, when FMR is higher
or lower than 1, the bias is respectively negative or positive.

The evaluation is limited to the raingauges located beyond
20 km from the radar site, to avoid the radar antenna sec-
ondary lobes effect. Moreover, two different coverage ar-
eas are taken into consideration: the whole 360◦ angle and
that limited between angles 135◦ and 270◦, with respect to
the north direction (in this case the minimum range is in-
creased to 40 km). The second area represents the mountain-
ous area, considered to highlight the behaviour of the algo-
rithm in complex orography.

Nat. Hazards Earth Syst. Sci., 6, 697–710, 2006 www.nat-hazards-earth-syst-sci.net/6/697/2006/
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Fig. 3. Scheme of reflectivity data correction operative at ARPA-
SIM (SA scheme).

5 Results and discussion

To evaluate the performance of the new BDA correction
method it has been compared with another reference method
that does not correct the radar data for beam blockage and
does not consider either the approximate path of the beam to
reduce the clutter.

This reference algorithm of clutter removal is actually op-
erative at ARPA-SIM to correct data of San Pietro Capofi-
ume and Gattatico radars. The algorithm is based on the use
of a static clutter filter derived from a climatological map of
non-precipitating echoes employed to select the antenna el-
evation. Besides, the removal of residual anaprop clutter is
done applying a vertical continuity test to the radar echo vol-
umetric observations (see Fig. 3). This reference method will
be called hereinafter “SA”.

The evaluation of the performance of the algorithms by us-
ing raingauges is uncertain at low temperatures when snow
is present and tipping-bucket raingauges are not warmed. To
address this problem, in the stratiform precipitation cases,
comparisons were restricted to raingauges located at least
100 m below the minimum 0◦ level during the event consid-
ered and having cumulated amounts higher than 1 mm. This
restriction tries to avoid including snowfall observations mis-
taken by the gauges though some sleet is likely to be included
in the higher radar observations considered. However this ap-
proach does not remove all the stations of interest, because
raingauges sited in the valleys and beyond the mountains are
conserved.

The first two events considered were stratiform cases: one
occurred in spring, the other one in winter. In these cases,
the analysis was limited to the mountainous and blocked ar-
eas, because the propagation conditions were nearly standard
and hence no significant changes between the BDA and SA
outputs are produced in flat land areas.

The last two cases were convective summer events. In
those cases superrefraction and ducting conditions were
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Fig. 4. Temperature(a) and refractivity vertical gradient profiles(b)
obtained from radiosonde ascents during the 24-h period from 3rd
00:00 Z to 4th 00:00 Z April 2003.

clearly present due to the effect of a surface thermal inversion
causing a strong surface duct. Therefore, these two cases are
the most interesting to illustrate the effects of BDA method-
ology.

5.1 Case study 1: April 2003

The first case presented took place from 2 to 4 April 2003.
It was a clear stratiform event with minimum 0◦C level at
around 1000 m (measured by radiosoundings) and normal re-
fraction conditions, as it is visible in Fig. 4. The cumulated
rainfall field, obtained using BDA method, seems to be more
coherent and realistic as compared to SA output, because
the shielding effect of mountains is reduced (Fig. 5). How-
ever, no significant difference is shown by the raingauge-
comparison RMSE and FVR indices, and the FMR is even
slightly worse (Fig. 6).

One reason for this behaviour is probably the lack of cor-
rection for vertical reflectivity variation. In fact, to avoid the
mountain shielding effect in BDA method, the elevation is
increased and the considered reflectivity values become less

www.nat-hazards-earth-syst-sci.net/6/697/2006/ Nat. Hazards Earth Syst. Sci., 6, 697–710, 2006



702 A. Fornasiero et al.: Enhanced radar precipitation estimates

Fig. 5. Cumulated rain of the April 2003 event, obtained using BDA(a) and SA(b) methods. In the SA precipitation field it is visible
the shielding effect of the mountains; in BDA, after beam blockage correction, the field seems more coherent in the mountainous area and
beyond.

0

2

4

6

8

rmse/g rmse/gSA

(a)

0

2

4

6

8

 rmsecum/g  rmsecum/gSA

(b)

-2

-1

0

1

fmr fmrSA

(c)

-4

-3

-2

-1

0

1

fvr fvrSA

(d)

Fig. 6. Radar-raingauges comparison indices for the April event showing the performance of the BDA (dark pink) and SA (fuchsia) methods.
Only raingauges located below 900 m a.m.s.l. (100 m below the minimum 0◦ level) and in the mountainous sector (azimuth [135◦, 270◦],
range>40 km) are considered.(a) RMSE normalised with respect to the mean gauge rainfall field for the hourly;(b) as a for the event
cumulated rain rate;(c) FMR; (d) FVR indices.

representative of the ground value. So it seems plausible that
during this event, at least in some cases, a blocked radar ob-
servation nearer the ground might provide a more accurate

rainfall estimate than an unblocked observation aloft because
of the presence of snowfall and sleet at higher altitudes.
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Fig. 7. Temperature(a) and refractivity vertical gradient profile(b) obtained from radiosonde data during the 11th 00:00 Z December 2003.

Fig. 8. Cumulated rain of 10–11 December 2003 event, obtained using BDA(a) and SA(b) methods.

5.2 Case study 2: December 2003

The second event took place during 10 and 11 December
2003 and the minimum 0◦C level was approximately 600 m,
while the propagation conditions were normal (Fig. 7).
Hence, the raingauges taken into consideration were those
up to 500 m.

As in the previous case, the BDA output seems to be more
coherent at the visual inspection (Fig. 8). In this case all the
scores, calculated in the mountainous sector, were improved
when the BDA methodology was applied: the RMSE and
RMSECUM were reduced, patent improvement is visible in
the FVR, the bias (positive, because FMR is lower than 1)
decreased. The considerable reduction in FVR confirms the
higher spatial coherence of BDA field beyond the orography
obstacles.

Otherwise, the results, especially in this case, should be
carefully considered. In fact, in the centre of the Fig. 8,
that represents the event cumulated rainfall rate, a remark-

able concentric increase seems present, that evidences a clear
bright band. Therefore, at longer ranges, the precipitation is
probably snow and sleet. The bright band contribution is con-
firmed by the positive bias and by the height of the midnight
0◦ level (Fig. 9).

5.3 Case study 3: September 2003

The third case took place during 8 and 9 September 2003: the
N gradient profiles, retrieved from the radiosoundings repre-
sentative of the event, show deep superrefraction especially
in the second day (moreover at midnight a temperature inver-
sion is present), as pointed out in Fig. 10.

All scores yielded by the BDA method improved SA re-
sults (except the FMR that does not provide relevant changes)
either in the mountain region (Fig. 12) or in the 360◦ domain
(Fig. 13) presented separately for this case study. The im-
provement, though still exists as pointed out by the scores, is
less evident in the 360◦ coverage: in fact, dealing with beam

www.nat-hazards-earth-syst-sci.net/6/697/2006/ Nat. Hazards Earth Syst. Sci., 6, 697–710, 2006
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Fig. 9. Radar-raingauges comparison indices for the December event. Only the raingauges located below 500 m a.s.l. (100 m below the 0◦

level at midnight) and in the mountainous sector are considered.(a) RMSE normalised with respect to the mean gauge rainfall field for the
hourly; (b) as a for the event cumulated rain rate;(c) FMR; (d) FVR indices.
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Fig. 10. Temperature(a) and refractivity vertical gradient profiles(b) obtained from radiosonde ascents during the 24-h period from 8th
12:00 Z to 9th 12:00 Z September 2003.

propagation and beam blocking, the BDA method produces
the major effect in complex orography areas, and therefore,
the scores improvement is smoothed by averaging over the
whole radar domain (that includes a large flat land share).
In either cases the higher impact is on RMSECUM, that
is moreover, two-three times smaller than RMSE. This fact
proves the higher usefulness of radar data in the estimate of

cumulated rainfall field, as compared to the instantaneous
one.

Finally, the visual inspection of Fig. 11 reveals that the
BDA precipitation field appears less affected from orography
shielding (note the 170–270◦ and the 5–10◦ sectors of the
image) than that obtained with the reference method SA.
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Fig. 11. Cumulated rain of September 2003 event, obtained using BDA (left) and SA (right) methods. In the SA output, sectors 5◦–10◦ and
170◦–270◦ show the shielding effect of mountains, much less apparent in BDA field after the beam blockage correction was applied.
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Fig. 12. Radar-raingauges comparison indices for the September event, calculated in the mountainous sector.(a) RMSE normalised with
respect to the mean gauge rainfall field for the hourly;(b) as a for the event cumulated rain rate;(c) FMR; (d) FVR indices.

5.4 Case study 4: July 2003

In 31 July 2003 the results were not so evident. The propaga-
tion conditions – showing an intense surface duct – are shown
in Fig. 14 and the rainfall fields in Fig. 15. In particular, in the
mountainous area the scores seemed to be worse (Fig. 16),

more specifically both the RMSE and FMR calculated from
hourly values. A closer analysis revealed substantial tempo-
ral variations throughout the event of the performance of the
BDA algorithm.

Comparing the 17 p.m. hourly radar rainfall field ob-
tained through BDA and SA methods with the rain gauges
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Fig. 13. Radar-raingauges comparison indices for the September event, calculated in the 360◦ sector and beyond 20 km from radar site.(a)
RMSE normalised with respect to the mean gauge rainfall field for the hourly;(b) as a for the event cumulated rain rate;(c) FMR; (d) FVR
indices.
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Fig. 14. Temperature(a) and refractivity vertical gradient profiles(b) obtained from radiosonde ascents during the 24-h period from 31st
00:00 Z July to 1st 00:00 Z August 2003.

measurements, in the sector around the green line (–179◦

azimuth) shown by Fig. 17, it can be observed an overesti-
mation, more evident in the new method. However, in that
moment raingauges did not measure precipitation.

This was an unexpected result because at this time, due
to anaprop risk, the BDA scheme chose nearly always the

second elevation scan, while in SA the first was mostly con-
sidered (see the right panel of Fig. 18), and they were also
expected lower reflectivity values.

The reason is probably another one: as it is visible at –
179◦ RHI (left panel of Fig. 18), overhanging precipitation
is present and it is intercepted more widely from second
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Fig. 15. Cumulated rain of July 2003 event, obtained using BDA (left) and SA (right) methods.
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Fig. 16. Radar-raingauges comparison indices for the July event, calculated in the mountainous sector.(a) RMSE normalised with respect
to the mean gauge rainfall field for the hourly;(b) as a for the event cumulated rain rate;(c) FMR; (d) FVR indices.

elevation scan than from the first one. Therefore, a method
to recognise such features could be very helpful in this case.

Extending the analysis to the whole radar domain, and fo-
calising it on the evening hours, Fig. 19, the indices become
better in BDA with respect to SA output (except the FMR
that is directly related to the bias). It seems clear that in the
evening, when the anaprop contribution is stronger, the new
methodology works well and the effects are visible too in flat

land areas. The improvement is partially due to the use of
radiosounding information and to the modelling of the 3-dB
beam lower limit path that conditions the elevation choice.
This thesis is confirmed, in the same figure, by the yellow
bars which represent the indices calculated on the output of
a method that works analogous to BDA, except for assuming
standard propagation to reproduce the beam path.
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(a)                              31/07/2003 17        BDA (b)                              31/07/2003 17        SA

Fig. 17. Comparison between rainfall rates measured by the radar and by the raingauges at 31 July 2003 17:00 Z and using BDA(a) and SA
(b) algorithms. The green line represents the RHI section illustrated in Fig. 18. In the area surrounding this line BDA produces precipitation
where raingauges measure 0 mm. SA output is less affected from this problem.
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Fig. 18. Radar observations recorded on the 31 July 2003 16:04 Z(a): RHI at azimuth –170◦. (b): maps of antenna elevations chosen to
retrieve rainfall rate from reflectivity data, for BDA and SA correction methods. The black line represents the RHI section. In the BDA map
it is chosen the second elevation, nearly everywhere, which seems to intercept overhanging precipitation as is evidenced in the Fig. 17 from
the comparison with the raingauges.

6 Conclusions

A post-processing operational method to correct single-
polarisation radar reflectivity data for ground clutter and
beam blocking has been evaluated in this paper. The method,
called “BDA”, has among its main characteristics the detailed
analysis of the beam shape and trajectory to build the correc-
tion and the use of radiosounding information as input data
in the calculation of the radar beam path.

The advantages and limitations of the BDA method have
been studied through the comparison with another previous
method called “SA” based on static map clutter elimina-
tion and anaprop removal, which neglects beam blocking er-
rors and assumes standard refraction conditions for the radar
beam. The two methods have been applied to four case stud-
ies that took place at different seasons in the Po Valley (Italy).
The analysis of the case studies was based on two tools: vi-

sual inspection and calculation of some statistic indices of
comparison between the radar rainfall field and raingauge
measures (FMR, FVR, RMSE).

In summary, through a comparison with raingauges the
proposed BDA shows a tendency of the BDA method to re-
duce the RMSE and the variance, and a growth of the bias
(except for the December event). The choice of higher an-
tenna elevation measurements of BDA with respect to SA
and the lack of Vertical Profile of Reflectivity (VPR) cor-
rection, is probably the reason of this bias increment. The
improvement in the other indices, mainly in FVR, proves
the higher coherency of the field obtained using BDA, con-
firmed too from visual inspection of cumulated rainfall fields.
It is also expected that, once removed the bias through ad-
equate VPR correction the new method works consistently
better than the older one. Moreover, taking into account re-
alistic propagation conditions, this combined methodology is
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Fig. 19. Radar-raingauges comparison indices for the July event, calculated in the 360◦ sector beyond 20 km from radar site and during the
evening (from 17:00 Z to 23:00 Z) performance of the BDA (dark pink) and SA (fuchsia) methods. In yellow are the indices calculated
on the output of a correction method analogous to BDA but considering standard propagation conditions during the event (SP).(a) RMSE
normalised with respect to the mean gauge rainfall field for the hourly;(b) as a for the event cumulated rain rate;(c) FMR; (d) FVR indices.

efficient to avoid and remove anomalous propagation echoes.
Finally, it should be taken into account the probability of
overhanging rain, mainly during summer, as shown by one
of the case studies. This could be done considering for ex-
ample the Pohjola and Koistinen (2004) method to recognise
such features through analysis of the VPR shape.

The version of the algorithm studied in the present work
assumes as input the atmospheric data acquired in the 12
hours before and after the time of interest. This is a con-
straint for real time applications. A possible solution is the
use of NWP model forecasts of the refractivity field tendency
(Bech et al., 2004), which could be complemented with the
introduction of anaprop statistics in the simulation of the re-
fractivity profile. Otherwise, it has been observed that the
use of a detailed beam description produces the major effects
in anaprop cases: a possible choice could be to use standard
propagation or simply the average refractivity gradient, when
anaprop has low probability, or when NWP model data are
not reliable. After including these modifications, taking into
account that the proposed methodology is not computation-
ally expensive, this procedure is well suited for real-real time
application.
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