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Abstract. This paper presents a model using rain gauge and
weather radar data to predict the runoff of a small alpine
catchment in Austria. The gapless spatial coverage of the
radar is important to detect small convective shower cells,
but managing such a huge amount of data is a demanding
task for an artificial neural network. The method described
here uses statistical analysis to reduce the amount of data and
find an appropriate input vector. Based on this analysis, radar
measurements (pixels) representing areas requiring approxi-
mately the same time to dewater are grouped.

1 Introduction

In the field of weather forecasting the radar is a key instru-
ment. The combination of radars with satellite data, auto-
mated meteorological measurements from aircraft, and with
a network of ground-based meteorological instruments has
been shown to provide enhanced nowcasting and short-term
forecasting capabilities (Smith et al., 2002). Weather radars
are mainly used in the field of short term precipitation fore-
casting (nowcasting). But the meteorological service is not
the only field of application. Hydrological applications are
gaining importance in the domain of radar technology. Due
to their good spatial and temporal resolution, and their gap-
less spatial coverage, precipitation data acquired by weather
radars offer an enormous potential for hydrological applica-
tions as well.

The following model is a further development of a rainfall-
runoff model based on radar estimates of rainfall (Teschl
and Randeu, 2004), applied to the Sulm-basin in the Aus-
trian province of Styria. The previous work demonstrated
the feasibility of interrelating runoff measurements of a river
and radar precipitation data of the underlying catchment on
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a neural network basis. The analysis showed that the radar
rainfall data provided a better indication for areal precipita-
tion and in succession for the runoff volume than a single
raingauge was able to. The model presented here combines
rain gauge, radar and runoff data.

1.1 Study area

The study area is the Sulm catchment in the south-west of
Styria, Austria. The whole basin includes an area of 1105.7
square kilometres. Elevations reach from 263 m (above mean
sea level, m.s.l.) at the watershed outlet (Leibnitz) to 2125 m
(m.s.l.) on the Koralpe mountain range. The average water-
shed slope is 11.9%.

Scope of this analysis is the sub-catchment Wernersdorf.
This small catchment (about 35 km2 in area) is of particular
interest, because as there are no more flow meters upstream,
the possibilities for high water warnings for this place are
limited. On the other hand the discharge measurements at
Wernersdorf can be helpful to identify severe situations that
may lead to hazards downstream. Our data shows that when-
ever the flow meter at Wernersdorf had high peaks also the
flow meters downstream had maxima after a significant time
lag. Figure 1 presents a map of the Wernersdorf catchment,
showing the radar grid and the location of rain gauge and
flow meter.

In summer this region is often affected by rain showers.
Short convective storms are the dominant flood producing
processes in this area (Blöschl et al., 2001). Sometimes the
spatial extension of these showers is so small that a detec-
tion is only possible by weather radar, while none of the rain
gauges in that area reports precipitation.

The catchment response of this part of Austria can be con-
sidered as flashy. The annual maximum daily precipitation
occurs in late summer (Blöschl et al., 2001). This is the pe-
riod where the maximum annual flood peaks are measured.
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areal precipitation and in succession for the runoff volume than a single raingauge was able 

to. The model presented here combines rain gauge, radar and runoff data.  
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Figure 1. Map of the Wernersdorf catchment  

In summer this region is often affected by rain showers. Short convective storms are the 

dominant flood producing processes in this area (Blöschl et al., 2001). Sometimes the spatial 

extension of these showers is so small that a detection is only possible by weather radar, while 

none of the rain gauges in that area reports precipitation. 

Fig. 1. Map of the Wernersdorf catchment.

1.2 Available data

For the processing of the neural network model rain-gauge,
flow meter and radar data were available. The datasets ex-
tend over a 1-year period from January to December 2000.
The temporal resolution of all datasets was assimilated to the
temporal resolution of the runoff data which is 15 min.

1.2.1 Rain gauge and flow meter data

Because of the specific geographic and climatic situation the
rain gauge and flow meter density is quite high compared
to other parts of Austria. The outflow [m3/s] is known for all
tributaries in the Sulm basin at 13 different sites. The time in-
terval between the outflow-measurements is 15 min. Precipi-
tation data are available from a network of rain gauges. The
rain gauges are working on the tipping bucket principle with
a resolution of 0.1 mm. The temporal resolution is 15 min.
Data from 10 rain gauges are available. One rain gauge is lo-
cated within the focused Wernersdorf sub-catchment. Both,
rain gauge and flow meter data are officially controlled and
verified by the Hydrographische Landesabteilung Steiermark
(Department for Hydrography of the Province of Styria).

1.2.2 Radar data

To improve the spatial coverage, weather radar data from the
Doppler weather radar station on Mt. Zirbitzkogel are used.
The designated radar is a high-resolution C-band weather-
radar. It has the following specifications:

– Altitude of the radar-station (m.s.l.): 2372 m

– Time interval between measurements: 5 min

– 3-dB-Beamwidth: 1◦

– Minimum elevation angle: 0.8◦

– Spatial resolution of the volume element: 1 km3

(1×1×1 km3)

– Resolution in measured reflectivity: 14 levels of rain-
rate, converted from reflectivity Z by using a fixed rela-
tionship (Z=200·R1.6)

– Instrumented range: 220 km

– Distance from the research area: to run from 42 km (Ko-
ralpe mountain range) to 80 km (Leibnitz, watershed
outlet)

2 Neural network model

An Artificial Neural Network (ANN) is a method inspired
by the human brain and nervous system. ANNs consist of
a set of processing elements (neurons) operating in paral-
lel. As the biological exemplar, the function of the ANN
is determined basically by the connections between the neu-
rons. ANNs have been used in various scientific fields to
solve problems such as pattern recognition, particle identi-
fication and classification. Furthermore ANNs are a proved
and efficient method to model complex input-output relation-
ships (Aliev, 2000). They learn the relationship directly from
the data being modelled. Various fields of hydrology have
been investigated with success with ANNs (Adeloye and De
Munari, 2006). Particularly they have been used for rainfall-
runoff modelling, river flow and flood forecasting e.g. Imrie
et at. (2000); Kim and Barros (2001); Toth and Brath (2002).

One of the most common neural network model is the
Multi-Layer Perceptron (MLP), and this is the type of ANN
used here. A MLP is a network that consists of three types
of layers: input, hidden, and output layers. Patterns are in-
troduced to the network via the input layer. In the hidden
layers (one or more) the processing is done, the result for the
given input pattern is produced and transmitted to the output
layer. A MLP is a feed forward neural network. It is called
“feed-forward” because all of the data information flows in
one direction. The neurons of one layer are connected with
the neurons of the following layer, there is no feedback. Here
a fully connected MLP with one hidden layer is used.

The network function of an MLP is determined largely
by the number of neurons in the different layers and the
weighted connections between them. The product between
the inputp and the scalar weightw is calculated. Together
with the scalar biasb, the argument of the transfer function
f is formed which produces the scalar outputa.

a = f (wp + b) (1)

A number of transfer or activation functions exist. Fre-
quently used however are non-linear sigmoid functions. Mul-
tiple layers of neurons with nonlinear transfer functions like
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the sigmoid transfer function allow the network to learn non-
linear and linear relationships between input and output (De-
muth and Beale, 1998). This is important for our application
because the relationship between rainfall within a catchment
and runoff at its outlet is known to be highly non-linear and
complex (e.g. Hsu et al., 1995).

The logistic sigmoid transfer function takes the input,
which may have any value between plus and minus infinity,
and map the output to the range 0 to 1. Therefore the data
must be scaled so that they always fall within the specified
range. The disadvantages of sigmoid activation functions in
the output layer, concerning the model’s ability to generalise
beyond the calibration range, are given by Imrie et al. (2000).
Solomatine and Dulal (2003) suggest to use an unbounded
linear function in the output layer because it is able, to a cer-
tain extent, to extrapolate beyond the range of the training
data. Therefore the network used here incorporates a linear
function in the output layer and logistic sigmoid activation
functions in the input and hidden layers.

3 Preprocessing

In order to make the training process of the ANN more ef-
fective the available data has been pre-processed. The goal
of this process was to configure the ANN properly, more pre-
cisely, to define an input vector and a network structure that
best represent the watershed behaviour.

For this purpose the dataset has been investigated with sta-
tistical methods in order to determine the correlation between
input and output data. The cross-correlation is a measure
of similarity of two signals. It is a function of the relative
time between the signals. The cross correlation coefficient
between rainfall and runoff, which was calculated by nor-
malising the cross-correlation of the two signals, has been
used to identify the time lag (offset) where the similarity is
highest.

Rain gauge as well as weather radar series were investi-
gated and the analysis showed that the time lags with the
highest cross correlation coefficients between rainfall and
runoff series lie between 90 to 180 min, depending on the po-
sition within the catchment where the rainfall was measured.
Table 1 shows the time lags in detail.

The analysis revealed that the correlation coefficients of
rain gauge and radar measurements vary significantly. None
of the radar data series obtained the maximum value of the
rain gauge (0.2747). The poor correlation coefficients of
the radar measurements can be explained by the fact that
the radar does not detect low-level precipitation below 3 km
(m.s.l.). High reaching convective rain cells however, the
dominant source of high water and floods in this area, can be
detected with good visibility by the weather radar station on
Mt. Zirbitzkogel.

In order to answer the question whether the time lags of
the radar pixels are though comprehensible for the catch-

Table 1. Time lag with the maximum cross correlation coefficient
between rainfall and runoff series. (The position number refers to
the position of the 1 km×1 km radar pixels within the catchment top
down line by line.)

Measuring site Cross correlation coeff. Time lag [min]

Rain gauge

Site no. ow3780 0.2747 90

Weather radar

Position no.:1 0.1437 135
2 0.1438 135
3 0.1481 135
4 0.1431 135
5 0.1473 135
6 0.1533 135
7 0.1439 135
8 0.1583 165
9 0.1435 135

10 0.1586 135
11 0.1501 135
12 0.1496 135
13 0.1704 150
14 0.1041 180
15 0.1583 135
16 0.1751 150
17 0.1527 135
18 0.1119 150
19 0.1594 135
20 0.1802 135
21 0.1833 135
22 0.1545 120
23 0.1651 120
24 0.1449 105
25 0.1428 105
26 0.1511 105
27 0.1556 105
28 0.1460 105
29 0.1491 105
30 0.1493 105
31 0.1666 90
32 0.1659 90

ment, despite the low correlation coefficients, the radar pixel
directly above the rain gauge was examined and compared
with the time lag of the rain gauge.

The cross correlation between gauge measured rainfall and
runoff becomes a maximum at a shift of 90 min (see Fig. 2).
The radar measurement in about 3 km altitude above the rain
gauge site (no. 24) exhibits a shift of 105 min (see Fig. 3).
The difference – 15 min prior to the rain gauge – is connected
with the temporal resolution of the time series (it is the short-
est time lag which can be identified) and can be explained by
the different altitude of radar and rain gauge measurements:
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In order to answer the question whether the time lags of the radar pixels are though 

comprehensible for the catchment, despite the low correlation coefficients, the radar pixel 

directly above the rain gauge was examined and compared with the time lag of the rain gauge. 

The cross correlation between gauge measured rainfall and runoff becomes a maximum at a 
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minutes prior to the rain gauge – is connected with the temporal resolution of the time series 

(it is the shortest time lag which can be identified) and can be explained by the different 

altitude of radar and rain gauge measurements: aloft and on the ground. Therefore the values 
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Figure 2. Cross correlation analysis between rain-gauge and runoff measurements 

 

Fig. 2. Cross correlation analysis between rain-gauge and runoff
measurements.
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Figure 3. Cross correlation analysis between radar (radar pixel no. 24, directly above 

raingauge) and runoff measurements.  
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This is the shortest shift between precipitation and runoff series that could be found. 
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12 antecedent rainfall measurements depending on the time lag where the maximum 

correlation between runoff and rainfall was measured. But this would lead to a huge number 
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of the input vector had to be reduced. A method to do this is for example the principal 

component analysis (e.g. Demuth and Beale, 1998) which eliminates those components 

contributing the least to the variation in the data set. But this means that only a few radar 

measurements would be part of the input vector and the main advantage of the radar the gap 

less spatial coverage would be lost. The detection of small convective shower cells would not 

be ensured. 

The method used to solve this conflict was to group radar measurements with the same time 

lag, leading to a smaller input vector. The radar pixels showing the same time lag to the runoff 

on average were summed up. This leads to groups of several pixels herein after referred to as 

Fig. 3. Cross correlation analysis between radar (radar pixel no. 24,
directly above raingauge) and runoff measurements.

aloft and on the ground. Therefore the values of the radar
seem comprehensible.

The correlation analysis suggests that a forecast for 6 time
lags (90 min) is appropriate. This is the shortest shift between
precipitation and runoff series that could be found.

The correlation analysis also suggests that it makes sense
to define an input vector with 6 to 12 antecedent rainfall mea-
surements depending on the time lag where the maximum
correlation between runoff and rainfall was measured. But
this would lead to a huge number of input parameters and
an effective training would not be possible. Therefore the
dimension of the input vector had to be reduced. A method
to do this is for example the principal component analysis
(e.g. Demuth and Beale, 1998) which eliminates those com-
ponents contributing the least to the variation in the data set.

Table 2. Time lag with the maximum cross correlation coefficient
between clusters and runoff series.

Measuring site Cross correlation coeff. Time lag [min]

Rain gauge
Site no. ow3780 0.2747 90

Cluster no.:1 0.1705 90
2 0.1650 105
3 0.1729 120
4 0.1907 135
5 0.1623 150
6 0.1583 165
7 0.1041 180

But this means that only a few radar measurements would be
part of the input vector and the main advantage of the radar
the gap less spatial coverage would be lost. The detection of
small convective shower cells would not be ensured.

The method used to solve this conflict was to group radar
measurements with the same time lag, leading to a smaller
input vector. The radar pixels showing the same time lag to
the runoff on average were summed up. This leads to groups
of several pixels herein after referred to as clusters represent-
ing the amount of precipitation in this area. Table 2 shows
correlation coefficient and time lag of the precipitation mea-
surements forming the input vector. The rain gauge measure-
ments are left unmodified. They are not grouped with radar
measurements showing the same 90 min time lag. Cluster 1
to 7 represent summations of radar time series showing the
same time lag with respect to the runoff data. The correlation
coefficients of the clusters are often higher than those of the
radar pixels forming the cluster. The advantage of this tech-
nique is that information of each pixel above the catchment is
still represented in the dataset. Because of the bigger clusters
the information where exact a small convective shower cell
occurred is lost but the rainfall amount within the area repre-
sented by the cluster is available and the time lag when the
rainfall shows the highest correlation with the runoff series is
known.

Besides rainfall measurements, it may also be useful to
present antecedent runoff measurements to the ANN. Sud-
heer et al. (2002) propose the partial autocorrelation to de-
cide how much former runoff values should be included into
the input vector, see Fig. 4. The time lag before the correla-
tion falls in the 95% confidence band is used as an indicator.
According to this algorithm the input vector should contain
runoff values from up to 8 antecedent intervals. In our case,
where a forecast for 90 min is made, 5 antecedent runoff mea-
surements are not available. Therefore networks with up to 3
antecedent runoff measurements were tested.

Nat. Hazards Earth Syst. Sci., 6, 629–635, 2006 www.nat-hazards-earth-syst-sci.net/6/629/2006/
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Figure 4. Partial auto correlation analysis of the runoff data. 
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ANN architecture

For identifying the architecture of an ANN associated
with determining the number of neurons in each layer, the
trial-and-error approach is still the most common (Imrie et
al., 2000; Pan and Wang, 2004; Toth et al., 2000). Some
software packages perform the trial-and-error optimisation
automatically. The architecture anyway is highly dependent
on the problem to be solved and so no general solution can
be given.

An area of conflict is that a small network may have insuf-
ficient degrees of freedom (weights and biases) to represent
the relationship between rainfall and runoff, and a large net-
work with many weights to be adapted may memorise fluc-
tuations in the training data and is therefore not able to gen-
eralise.

Therefore the method used to determine the architecture of
the ANN was to start with a small network (one hidden layer
and three hidden nodes), to increase the number of nodes and
to choose the network with the best performance. During the
training process the error on the validation set (mean square
error) was monitored. When the validation error increased
the training was stopped and the minimum of the validation
error was taken as indicator for the performance. Thus a net-
work with twelve nodes in one hidden layer was determined.

Essential for a good performance of an MLP is cautious
selection of the training validation and test data sets. In the
present case where data of a period of one year are available
the selection of the subsets for the training validation and
test process is even more eminent. Eventually a method was
used that ensures that each of the tree subsets contains ran-
dom data from all seasons. Therefore the whole data set was
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Figure 5: Comparison between predicted and measured runoff series of the test dataset. 
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Fig. 5. Comparison between predicted and measured runoff series
of the test dataset.

Table 3. RMSE andR2 of the training set and the five subsets
separately. The number of the subset refers to the occurrence in
Fig. 5.

RMSE R2

Subset
1 0.0084 0.8863
2 0.0396 0.8685
3 0.0554 0.8566
4 0.0365 0.7419
5 0.1136 0.8306

Overall 0.0596 0.9489

divided into rainfall events and their corresponding runoff
hydrographs. These events where classified into the seasons
they belong to and training validation and test subset where
formed by randomly assigning events from all seasons to all
subsets.

4 Results and discussion

The simulation performance of the ANN model was evalu-
ated on the basis of Root Mean Square Error (RMSE) and
R2 efficiency coefficient by Nash and Sutcliffe (1970).

In Fig. 5 the comparison between predicted and measured
runoff series can be seen. The output of the model, simu-
lated with test data, shows a good agreement with the target
concerning prediction of the time of maximum concentra-
tion. As mentioned above training validation and test data
contain subsets from all seasons. In Fig. 5 the vertical grid
lines separate the different subsets.

www.nat-hazards-earth-syst-sci.net/6/629/2006/ Nat. Hazards Earth Syst. Sci., 6, 629–635, 2006
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Table 3: RMSE and R² of the training set and the five subsets separately. (The number of the 

subset refers to the occurrence in Fig.5. 

 RMSE R² 
Subset   

1 0.0084 0.8863 
2 0.0396 0.8685 
3 0.0554 0.8566 
4 0.0365 0.7419 
5 0.1136 0.8306 

Overall 0.0596 0.9489 

 

Table 3 shows that the performance of all subsets except subset 4 can be considered as good. 

The high RMSE of subset 5 is due to the underestimation of the highest peak. Figure 6 shows 

this subset in detail. 
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Figure 6: Comparison between predicted and measured runoff series of the subset 5 of the 

testset. 

Figure 6 shows that the dynamics in the hydrograph are captured quite well by the model, 

while the highest peak is underestimated. The underestimation is believed to result from the 

Fig. 6. Comparison between predicted and measured runoff series
of the subset 5 of the testset.

Table 4. RMSE andR2 of the validation set and the four subsets
separately. The number of the subset refers to the occurrence in
Fig. 7.

RMSE R2

Subset
1 0.0083 0.9497
2 0.0919 0.7185
3 0.0322 0.892
4 0.1071 0.8694

Overall 0.0645 0.9412

The parameters RMSE: 0.0596 andR2: 0.9489 suggest a
very good performance. In general, aR2 value greater than
0.9 indicates a very satisfactory model performance, while a
R2 value in the range 0.8–0.9 signifies a good performance
and values less than 0.8 indicate an unsatisfactory model per-
formance (Coulibaly and Baldwin, 2005).

The R2 value has to be treated with caution, because it
contains the mean of the observed runoff values. Because of
high runoff values of the last subset of the training dataset
the mean value over the whole training set is 0.4884. Table 3
gives the RMSE andR2 values for the five subsets of the
training data.

Table 3 shows that the performance of all subsets except
subset 4 can be considered as good. The high RMSE of sub-
set 5 is due to the underestimation of the highest peak. Fig-
ure 6 shows this subset in detail.

Figure 6 shows that the dynamics in the hydrograph are
captured quite well by the model, while the highest peak is
underestimated. The underestimation is believed to result
from the fact that the training dataset did not contain such
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supported by an analysis of the vaildation dataset.  
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Figure 7: Comparison between predicted and measured runoff series of the validation dataset. 
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Figure 8: Comparison between predicted and measured runoff series of the subset 4 of the 

validation set. 

Concerning RMSE and R² the performance of the test and validation set is more or less equal. 

The validation subset shown in Fig. 8 also has with 0.1071 a high RMSE value. Table 4 

shows the details.  

Table 4: RMSE and R² of the validation set and the four subsets separately. (The number of 

the subset refers to the occurrence in Fig.7. 

 RMSE R² 
Subset   

1 0.0083 0.9497 
2 0.0919 0.7185 
3 0.0322 0.892 
4 0.1071 0.8694 

Overall 0.0645 0.9412 

 

 

 

Fig. 8. Comparison between predicted and measured runoff series
of the subset 4 of the validation set.

high discharge values. This assumption is supported by an
analysis of the vaildation dataset.

Again the highest peak is underestimated. Obviously the
effect the unbounded linear function in the output layer has,
to help the ANN extrapolate beyond the range of the training
data, is not significant. Figure 8 shows the affected subset 4
in detail.

Concerning RMSE andR2 the performance of the test and
validation set is more or less equal. The validation subset
shown in Fig. 8 also has with 0.1071 a high RMSE value.
Table 4 shows the details.
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