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Abstract. The accuracy of 4 Digital Elevation Models
(SRTM30, GTOPO30, SRTM3 and local DEM produced
from aerial photogrammetric images) for the volcanoes Mer-
api and Merbabu in Java, Indonesia is investigated by com-
parison with 443 GPS ground control points. The study con-
firms the high accuracy of SRTM3 and SRTM30, even if the a
priori defined 90% confidence level of 16 m for the SRTM3 is
not always achieved in this mountainous region. Accuracy of
SRTM30, GTOPO30 and SRTM3 is mainly dependent on the
altitude itself and the slopes’ inclinations, whereas the pho-
togrammetric DEM exhibits constant accuracy over a wide
range of altitudes and slopes. For SRTM3 and SRTM30 a
statistically significant correlation between heights and as-
pects of the slopes is also found.

Accuracy of DEMs which are generated by interpolation
on a finer grid does not change significantly. Smoothing of
DEMs on a coarser grid, however, decreases accuracy. The
decrease in accuracy is again dependent on altitude and slope
inclination.

The comparison of SRTM30 with GTOPO30 exhibits a
significant improvement of SRTM30 data.

1 Introduction

Accurate and detailed knowledge of topography is basic to
many earth processes in- and outside of its surface. Topo-
graphic information in the form of Digital Elevation Models
(DEM) is used in Geosciences as a tool for reducing and ex-
plaining observations as well as for predicting and modeling
possible natural hazards such as avalanches, landslides, rock
falls or volcanic pyroclastic flows.

Between 1996 and 2002 we participated in the project
“MERAPI” (Zschau et al., 1998). One of the most active vol-
canoes in the world – Merapi in Central Java, Indonesia – was
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investigated in order to learn how this volcano works and to
increase the possibilities of correctly predicting its volcanic
activities. In the beginning we immediately realized there
was a lack of accurate, up-to-date topographic data. We had
available – for our purposes very coarse – the GTOPO30-
DEM, bad copies of old topographic maps from 1948, scale
1:25 000 and SPOT images.

A DEM was developed from the SPOT images with a grid
size of 20×20 m. However, it has large data gaps due to
clouds and smoke development, especially around the sum-
mits of Merapi and Merbabu. These gaps were filled by in-
terpolation and merging of the digitized contour lines of the
topographic maps (Jousset, 1996). Standard deviation – de-
termined by comparison with the heights of 360 ground con-
trol points – is 121 m (Snitil, 1998).

To improve the situation concerning accuracy and resolu-
tion we developed a local DEM – called “LDEM” – from
aerial photogrammetric images.

In November 2003 the SRTM3 and SRTM30 DEMs for
Europe and Asia were released. We have now the possibility
of comparing different DEMs around Merapi to assess accu-
racy and resolution of DEMs in tropic mountainous regions.
In the following sections we will give more detailed infor-
mation about the region under investigation, the DEMs used
in this study, the applied statistics, results of the comparisons
carried out and final conclusions.

2 The region around Merapi and Merbabu

The andesitic stratovolcano Merapi in Central Java, In-
donesia (latitude=7◦32′26′′ S, longitude=110◦26′48′′ E, alti-
tude=2950 m above sea level (a.s.l.)), is one of the most ac-
tive volcanoes in the world. It is located near the subduction
zone of the Indo-Australian plate under the Eurasian plate
(Fig. 1a) at the Sunda Arc. Merapi is the youngest of a
chain of volcanoes lined up along a regional fault running
NNW-SSE and consisting of Ungaran, Telomoyo, Merbabu
and Merapi (van Bemmelen, 1956) (Fig. 1b).
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Fig. 1. Location of the volcanoes Merapi and Merbabu.(a) Map of
Indonesia; the red points indicate the locations of active volcanoes.
(b) SIR-C/X-SAR- satellite image P-4750 of Central Java taken on
October 10, 1994. The volcanoes Ungaran, Telomoyo, Merbabu
and Merapi are lined up along a regional fault running NNW-SSE.

The volcanic activities of Merapi are classified as follows:

– permanent lava dome development

– periodic dome collapses connected with pyroclastic
flows

– lahars at the slopes, especially at the beginning of the
rainy season.

The Volcanological Survey of Indonesia (VSI) permanently
monitors Merapi’s activities in 5 observatories (Fig. 2).

The region around Merapi and Merbabu is densely popu-
lated. Volcanic eruptions of Merapi threaten the city of Yo-
gyakarta, located 25 km to the south. Two million people live
in and near the so-called forbidden, first and second danger
zones.

The elevation range of the region is sizable. Yogyakarta
is located at a mean altitude of 100 m a.s.l. The summit of
Merbabu is higher than 3100 m a.s.l.

The surface relief around Merapi and Merbabu is very
rough. We have analyzed the relief roughness in a region
of about 37 km×26 km around Merapi and Merbabu using
the relief roughness coefficient RR of Meybeck et al. (2001)

RR =
hmax − hmin

cs/2
(1)

Fig. 2. Hazard map of Merapi according to Purbawinata et
al. (1996).

Table 1. Relief Roughness RR around Merapi and Merbabu; cell
size=3×3′′. The computation is based on the SRTM3 – Digital
Elevation Model.

RR (m/km) Cells Cells (%) Area (km2)

RR<250 24 471 20 198.215
250≤RR<500 52 254 43 432.257
500≤RR<750 15 725 13 127.372

750≤RR 28 146 24 227.982
Total 120 596 100 976.827

with cs length of cell in kilometers=0.092 km,hmax, hmin
maximal and minimal elevation in the cell in meters. For
the analysis we used the SRTM3 DEM as described in
Sect. 3.1.2.

Inspection of Table 1 shows that relief roughness coeffi-
cients RR of 80% of cells are≥250 (m/km). Classification
of the topography according to Meybeck et al. (2001) is not
meaningful, since more than 80% of the cells are classified
as “mountainous, very rough”.

The maximal slope angle reaches 50◦.
Up to 1800 m a.s.l. agricultural use of the land around Mer-

api and Merbabu prevails. But dense tropical rain forests
can also be found – particularly on the eastern and southern
slopes of Merapi and Merbabu. At altitudes between 1800 m
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and 2600 m vegetation consists of grasses and bushes. Above
2600 m a.s.l. rocks and gravels prevail.

In the following sections we will analyze the accuracy of
DEMs between 7◦–8◦ S and 110◦–111◦ E. Our particular in-
terest is focused on a region around Merapi and Merbabu ex-
tending 37 km in N-S direction and 26 km in E-W direction.

3 Data

3.1 Digital Elevation Models

In this study we compare 4 of the DEMs currently available
for the region around Merapi and Merbabu:

– LDEM

– SRTM3

– SRTM30

– GTOPO30

3.1.1 Local Digital Elevation Model LDEM

The local Digital Elevation Model LDEM is a digital sur-
face model (DSM), which we have developed from 110 aerial
images, image scale 1:50 000. The images were taken in
1981 and 1982. The camera constant is 88 mm, average
flight height 5600 m a.s.l.; image overlap along the track of
flight is 60%, side lap 20%. The orientation of the im-
ages was achieved with the bundle solution using automatic
tied point generation and a subset of ground control points
(GCPs) (see Sect. 3.2). Grid spacing is 0.5×0.5′′. LDEM
is located between 7◦20′18′′–7◦40′54′′ S and 110◦17′48′′–
110◦32′21′′ E and covers an area of 37 km×26 km around
Merapi and Merbabu.

Elevations of LDEM are ellipsoidal heights H referenced
to the WGS84 ellipsoid (Fig. 3a).

The standard deviation of image coordinates±0.45 pixel
as obtained by bundle solution corresponds to±9 m in eleva-
tion. That coincides with the anticipated accuracy of LDEM
σh≤±8.7 m according to Eq. (2) (Kraus, 2004).

σh ≤ ±0.0002∗ h +
0.0001

c
h ∗ tanα , (2)

wherec is camera constant,h flight height above surface
≤5600 m andα slope angle≤50◦. Assuming no systematic
errors and normal distribution of the residuals, the a priori
accuracy of LDEM is 14.3 m at the 90% confidence interval
(Sachs, 1992) according to Eq. (6).

More details about developing LDEM are given by Wrobel
et al. (2002) and L̈aufer (2003).

The LDEM-data were also averaged 6×6 to produce 3 arc
second data commensurate with SRTM33 (see Sect. 3.1.2).
This DEM is referred to as “LDEM33”.

Fig. 3. Local photogrammetric DEM and SRTM3 DEM around
Merapi and Merbabu. The color bar gives elevation above sea level
(a.s.l.) in meters. Contour line interval is 200 m.(a) Local pho-
togrammetric DEM “LDEM”.(b) SRTM3-DEM; the red rectangle
in the inset map of Java is the section represented. The magenta
dashed rectangle indicates the regions of other DEMs e.g. LDEM,
LDEM33, SRTM33 and SRTM0505.

3.1.2 SRTM3

The Shuttle Radar Topography Mission (SRTM) is a joint
venture of NASA’s Jet Propulsion Laboratory, National
Imaging & Mapping Agency (NIMA), and the German
(DLR) and Italian Space Agencies (ASI).

From 11–22 February 2000, the Shuttle Radar Topogra-
phy Mission (SRTM) was flown on board the space shut-
tle “Endeavour” (Koch and Heipke, 2001). SRTM utilized
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Fig. 4. GTOPO30 and SRTM30 DEMs of Central Java; the red
rectangle in the inlet maps of Java gives the range of the DEMs
shown; contour line interval is 200 m, unless otherwise noted.(a)
GTOPO30 DEM;(b) SRTM30 DEM; (c) Standard deviations of
SRTM30 heights of Central Java; contour line interval is 50 m;(d)
Ground Control Points GCPs used to determine absolute accuracy
of DEMs. The blue dashed rectangle describes the range of the local
LDEM.

dual Spaceborne Imaging Radar (SIR-C) and dual X-band
Synthetic Aperture Radar (X-SAR) configured as a base-
line interferometer (Rosen et al., 2000), acquiring two im-
ages simultaneously. These images, when combined, can
produce a single 3-D image. SRTM successfully collected
data for 80% of the earth’s land surface, for most of the
area between 60◦ N and 56◦ S latitude (Farr and Kobrick,
2000). SRTM data is being used to generate a digital to-
pographic map of the Earth’s land surface with data points
spaced every 1 arc second for the United States of America
(SRTM1) and 3 arc seconds for global coverage (SRTM3)
of latitude and longitude. The linear absolute vertical accu-
racy is 16 m, the horizontal circular error 20 m at the 90%
confidence level (http://www.nga.mil/ast/fm/acq/890208.pdf
MIL-PRF-89020B).

Since November 2003 unedited SRTM3 data have been
available underftp://e0mss21u.ecs.nasa.gov/srtm/. In July
2004 the release was completed with the data of Australia.
All this data is specified as being of “research grade”. The
data does not meet DTED standards (NIMA, 2000) and has
not been edited for voids and spurious height values. Wa-
ter bodies often have spurious appearance. In the meantime,
“completed” SRTM-Digital Terrain Elevation Data (SRTM
DTED) have also been made available on CD at a cost of
60$/CD. A complete overview of all available data can be
found at Gamache (2004).

Figure 3b shows the unedited SRTM3-DEM for Central
Java between 7◦–8◦ S and 110◦–111◦ E. The white areas are

due to the data gaps. No data exist for 19 950 cells or 1.4%
of the area. Also some cells of the Indian Ocean in the NW
corner are not set to 0 m.

Generally any SRTM-DEM is a Digital Surface Model
(DSM). That means, the elevation data are with respect to
the reflective surface, which may be vegetation, man-made
features or bare earth. The elevations h are given above the
WGS84 geoid (a.s.l.).

The SRTM dataset, like many other global datasets, has
accuracy parameters, which describe it globally, while spe-
cific elevation errors are not sufficiently defined.

The C band Interferometric Synthetic Aperture Radar (In-
SAR) instrument utilized to collect SRTM data had an inci-
dence angle of between 31◦ and 61◦ thus resulting in slopes
of corresponding angles being difficult to image accurately.
Mountainous regions such as Merapi and Merbabu are par-
ticularly prone to different types of errors with InSAR sys-
tems: Layover, shadowing, foreshortening and voids when
the slope angle exceeds the incidence of the radar beam
(Hansen, 2001; L̈aufer, 2003; Eineder, 2004).

Different validation studies of the SRTM data have been
published (see e.g. Heipke et al., 2002; Sarabandi et al.,
2002; Smith and Sandwell, 2003; Jarvis et al., 2004a, b; Ko-
cak et al., 2004; Falorni et al., 2005) investigating the specific
accuracy of SRTM-DEMs.

Generally all authors find that SRTM3 DEMs meet the an-
ticipated accuracies of 16 m vertical and 20 m horizontal ac-
curacy over flat, open land surfaces. Over terrain with high
relief and steep slopes, however, Falorni et al. (2005) suggest
that the 16 m stated accuracy specifications should be con-
sidered more as guidelines. Gamache (2004) provides a good
review of most of the studies. However, no study investigates
the accuracy of SRTM3 in mountainous, tropic regions over
an elevation range of about 3000 m as we do in this work.

We have derived 3 different DEMs from the original
SRTM3 DEM:

– SRTM3F for Central Java between 7◦–8◦ S and 110◦–
111◦ E is a DEM with 3×3′′ grid spacing where the
voids are filled by interpolation using the shareware
software “SRTMFILL” (3D Nature, 2003).

– SRTM33 is a subset of SRTM3F for the same range as
LDEM. Grid size is 3×3′′.

– SRTM0505 has the same range and grid size (0.5×0.5′′)
as LDEM. It is computed by bilinear interpolation of
SRTM33 data.

3.1.3 GTOPO30

GTOPO30, completed in late 1996, was developed over a
three year period. It is essentially a compilation of various
elevation data sources and samples the global topography on
a grid size of 30×30′′. In Java only data from Digital Chart
of the World (DCW) (Danko, 1992) are used. There are no
data gaps.

http://www.nga.mil/ast/fm/acq/890208.pdf
ftp://e0mss21u.ecs.nasa.gov/srtm/
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Table 2. Summary of the DEMs analysed.∗ Voids are not considered.

Dataset Grid Region Epoch of number of accuracy (90%
spacing generation (year) cells confidence level (m)

GTOPO30 30×30′′ 8–7◦ S before 1996 14 400 160
110◦–111◦ E

SRTM30 30×30′′ 8–7◦ S 2000 14 400 <302
110◦–111◦ E

SRTM3 3×3′′ 8–7◦ S 2000 1 422 451∗ 16
110◦–111◦ E

SRTM3F 3×3′′ 8–7◦ S 2000 1 442 401 16
110◦–111◦ E

SRTM33 3×3′′ 7◦41′–7◦20′ S 2000 120 598 16
110◦18′–110◦32′ E

SRTM0505 0.5×0.5′′ 7◦41′–7◦20′ S 2000 4 347 440 16
110◦18′–110◦32′ E

LDEM 0.5×0.5′′ 7◦41′–7◦20′ S 1981/1982 4 347 440 ≤14.7
110◦18’-110◦32′E

LDEM33 3×3′′ 7◦41′–7◦20′ S 1981/1982 120 598 ≤14.7
110◦18′–110◦32′E

The circular accuracy in the DCW is stated as±650 m at
the 90% confidence level (USGS-EROS Data Center, 1997),
although Gesch et al. (1999) suggest that 160 m linear verti-
cal error is more realistic based on comparison with higher
resolution sources.

In the following we will analyze only a section of
GTOPO30 between 7◦–8◦ S and 110◦–111◦ E (Fig. 4a).

3.1.4 SRTM30

SRTM30 (Fig. 4b) can be considered to be either a
SRTM dataset enhanced with GTOPO30, or an upgrade to
GTOPO30. The SRTM3 data were averaged 10×10 to pro-
duce 30 arc second data commensurate with GTOPO30.
SRTM30 data can be downloaded at no cost fromftp://
e0mss21u.ecs.nasa.gov/srtm/. Instead of a 90% confidence
level, the standard deviation of each cell is provided. Fig-
ure 4c shows the SRTM30 standard deviations for Central
Java between 7◦–8◦ S and 110◦–111◦ E. The maximum stan-
dard deviation is 189 m.

Standard deviations of cells of altitudes<500 m are
<±20 m. The largest standard deviations are found at the
summits of volcanoes e.g. Merapi and Merbabu.

3.2 Ground control points

Between 1996 and 2002 we carried out repeated gravity mea-
surements around Merapi and Merbabu (Gerstenecker et al.,
1998; Setiawan, 2003; Tiampo et al., 2004; Jentzsch et al.,
2004; Tiede et al., 2005). For the positioning of gravity
points geodetic Trimble and Leica GPS receivers were uti-
lized. Least square adjustments of the GPS-observations
with the software packages GPSurvey 3.5 (Division, 1995)
and “Bernese 4.2” (Hugentobler et al., 2001) yield identical
results. The root mean square errors (RMSE) for the horizon-

tal coordinates are<±0.1 m and for the vertical<±0.2 m
(Götz, 2003). Horizontal accuracy at the 90% confidence
level is 0.16 m, the vertical 0.32 m.

In total we have determined the 3-D coordinates of 443
points in the International Terrestrial Reference Frame 2000
(Boucher et al., 2004). We use them in the following as
Ground Control Points (GCPs) (Fig. 4d).

The coordinates of the GCPs are given on the WGS84 el-
lipsoid. The elevations H are ground truth ellipsoidal heights.
In order to convert them to heights h above sea level (a.s.l.)
the geoid heights N are subtracted according to Eq. (3)
(Heiskanen and Moritz, 1967)

h = H − N . (3)

Global geoid heights with 2×2′ grid spacing calculated
from the Earth Gravity Model 96 (EGM96) (Lemoine et
al., 1997) are currently available fromhttp://topex.ucsd.edu/
cgi-bin/getdata.cgi.

Table 2 provides a summary of the data described in
Sect. 3. One important criterion for the following investi-
gation is the period in which the data of the DEMs are col-
lected. Changes in geomorphology and vegetation in tropic,
volcanic regions occur very quickly and have to be consid-
ered if different DEMs in such regions are compared.

4 Statistics

The most general approach to assess the accuracy of DEMs is
the application of frequency analysis as described by Kraus
(2000). More convenient, however, is to validate DEMs in
the space domain. In particular the absolute accuracy of
DEMs is assessed by comparison with GCPs that have, to
some degree, higher vertical accuracy and/or by compari-

ftp://e0mss21u.ecs.nasa.gov/srtm/
ftp://e0mss21u.ecs.nasa.gov/srtm/
http://topex.ucsd.edu/cgi-bin/get_data.cgi
http://topex.ucsd.edu/cgi-bin/get_data.cgi
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Table 3. Statistics for the different DEMs;n=number of available ground control points (GCP);iqr=interquartile range. Extreme values are
marked by bold numbers.

DEM n biashoff (m) median (m) standard deviationσd (m) skewnessγd kurtosisκd range (m) iqr (m)

SRTM3 443 −0.2 3.1 13.4 −0.9 10.4 145 8.2
SRTM3F 443 −0.2 3.1 13.4 −0.9 10.4 145 8.2
SRTM33 347 −1.4 2.2 14.7 −0.9 8.7 145 11.3
SRTM0505 347 −1.3 2.4 13.9 −0.6 6.8 114 11.2
LDEM 347 8.3 9.4 14.9 −1.9 31.7 234 11.8
LDEM33 347 4.5 5.3 15.9 −0.8 13.8 199 15.7
SRTM30 443 −14 0.3 68.8 −1.4 7.8 595 37.7
GTOPO30 443 −102.5 −38.5 249.2 −2.0 7.3 1580 166

son with other DEMs of higher accuracy (Koch and Heipke,
2001; Muller et al., 2000; Jarvis et al., 2004a, b).

Relative accuracy of a DEM is assessed by comparing it
with a reference DEM of the same extension and grid size.

To estimate absolute accuracy, elevationshDEM at the lo-
cations of GCPs were extracted from all DEMs and com-
pared with the elevations of GCPshGCP in order to determine
the differencesdi , biashoff , residualsvi , standard deviation
σd , skewnessγd , kurtosisκd and range according to Eq. (4)

di = hDEM − hGCP

hoff =
1
n

n∑
i=1

di

vi = di − hoff

σd =

√
n∑

i=1
v2
i

n−1

γd =
E

[
v3
i

]
σ3

d

κd =
E

[
v4
i

]
σ4

d

range = vmax − vmin

(4)

wheren is number of samples andE mathematical expec-
tation. Additionally we give the median (50th percentile) of
the differencesdi and the interquartile rangeiqr – the dif-
ference between the 75th and 25th percentile of the residuals
vi . Scatter plots ofvi over hGCP represent the dependence
of residualsvi from elevationshGCP. Histograms show the
distribution of residualsvi of the particular DEMs.

Residualsvi of all DEMs are binned into different classes
depending on heighthGCP, slopeαGCP and aspectAGCP at
GCP locations. Biases and standard deviations for each class
are computed and plotted againsthGCP, slopeαGCP and as-
pectAGCP, respectively.

The relative accuracy between two Digital Elevation Mod-
els DEM1 and DEM2 of identical grid size is evaluated in
a similar way. Instead ofhGCP, the heights of a second
DEM hDEM2 are used as reference. The differencesdri of
the heightsh, dAi of the aspectsA anddαi of the slopesα,

respectively, are computed using Eq. (5).

dri = hDEM1 − hDEM2
dAi = ADEM1 − ADEM2
dαi = αDEM1 − αDEM2

(5)

Bias hoff , residualsvi , standard deviationσd , skewnessγd

and kurtosisκd are estimated by inserting the differencesdri ,
dAi anddαi instead ofdi in Eq. (4).

Residualsvi are binned again in different classes depen-
dent on heighthDEM2, slopeαDEM2 and aspectADEM2.

5 Results

5.1 Absolute accuracy of DEMs from ground control
points

Elevation values were extracted from all DEMs and com-
pared with the GCPs-heights in order to determine the pa-
rameters according to Eq. (4). The results of the comparison
are summarized in Table 3.

Inspection of Table 3 shows that the interpolation of gaps
in SRTM3 does not influence the absolute accuracy. There-
fore, in the following we provide results only for SRTM3F
and all offsprings, e.g. SRTM33 and SRTM0505.

The residualsvi of the DEMs do not have a normal distri-
bution, since skewnessγd is always6=0. Some of the distri-
bution histograms are plotted as examples in Fig. 5a–5d.

In the literature there are no hints indicating for which
distribution the 90% confidence level of SRTM3 is defined.
If we assume normal distribution, the 90% confidence level
is related to the standard deviationσd according to Eq. (6)
(Sachs, 1992)

P(|vi | ≥ 1.645σd) ≤ 0.1 . (6)

The a priori standard deviationσd of SRTM3 is then≤10 m.
Otherwise Tschebyscheff’s inequality

P (|vi | ≥ kσd) ≤
1

k2
(7)

with k=3 is valid. We present, therefore, in Table 4 the num-
ber of samples for 4 different error margins
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Table 4. Number of samplesvi within different error bounds.N is the number of all available GCPs (100%),n the number of samples,
wherevi is within the error margins. Extreme values are marked by bold numbers.+ For SRTM30 and GTOPO30 a 90% confidence interval
−160 m≤σ≤160 m is assumed.

DEM −σd≤vi≤σd −16 m≤vi≤16 m −1.645σd≤vi≤1.645σd −3σd≤vi≤3σd N

n % n % n % n %

SRTM3F 374 84 383 86 407 92 433 98 443
SRTM33 283 82 289 83 315 91 341 98 347
SRTM0505 284 82 290 82 316 91 338 97 347
LDEM 265 76 276 80 326 94 342 99 347
LDEM33 270 78 270 78 323 93 342 99 347
SRTM30 363 82 419+ 95 396 89 430 97 443
GTOPO30 337 76 369+ 84 399 90 422 95 443

– σd≤vi≤σd ,

– 16 m≤vi≤16 m,

– 1.645σd≤vi≤1.645σd ,

– 3σd≤vi≤3σd .

The number of samples within the –σd≤vi≤σd error margin
exceeds the limits of normal distributed samples of 68% sig-
nificantly. However, none of the DEMs in Table 4 meets the
a priori defined 90% confidence level of 16 m (see Sect. 3.1).
The residuals of all DEMs are within the 90% confidence
interval, if Eqs. (6) or (7) is applied.

For analyzing the influence of outliers we computed the
statistics according to Eq. (4), with which we have eliminated
outliers before. In Tables 5–7 the statistics for the different
error margins are shown.

SRTM3F generally has the smallest standard deviation.
For the accuracy investigation of SRTM3F, 443 GCPs are
available compared to 347 for SRTM33 and LDEM. Each
of these additional 96 GCPs are located at altitudes between
100 m and 1000 m, the elevation range where SRTM data fit
within the 90% confidence level of 16 m with GCPs heights.

After SRTM3F, standard deviation of LDEM has the
smallest value (Tables 5–7).

Depending on the number of deleted outliers, interpolation
of SRTM33 on a finer grid of 0.5×0.5′′ decreases the stan-
dard deviationσd up to 6.6%; averaging of LDEM on a 3×3′′

grid increasesσd by more than 25% (Tables 5–7).
In Figs. 5e and 5f the residualsvi of LDEM and SRTM33

are plotted over GCP heightshGCP. The plot exhibits two
important features:

– LDEM residuals are <0 in the range between
100 m≤hGCP≤500 m. Above 500 m the dispersion of
the residuals is low. There, LDEM heights are larger
than GCP heights.

– SRTM33 residuals show small variations between
100 m≤hGCP≤1000 m. The dispersion increases with
increasinghGCP.

Fig. 5. Histograms and scatter plots of height differencesdi :
(a) GTOPO30-GCP;(b) SRTM30-GCP;(c) SRTM-3F-GCP;(d)
LDEM-GCP; red curve is the normal distribution;(e) scatter plot
of LDEM height differencesdi over GCP heightshGCP; (f) scatter
plot of SRTM33 height differencesdi overhGCP.
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Table 5. Statistics for 90% confidence level: outliers|vi |≥3×σd are not considered;n=number of analyzedvi ; iqr=interquartile range.
Extreme values are marked by bold numbers.

DEM n biashoff (m) median (m) standard deviationσd (m) skewnessγd kurtosisκd range (m) iqr (m)

SRTM3F 433 0.4 3.1 10.5 −1.3 6.0 76 7.6
SRTM33 341 −41.1 2.3 12.3 −1.2 5.1 81 10.8
SRTM0505 338 −0.7 2.6 11.5 −1.0 4.7 74 10.9
LDEM 342 8.7 9.4 9.6 −0.1 5.1 77 10.7
LDEM33 342 4.7 5.3 12.8 −0.2 4.0 88 15.3
SRTM30 430 −7.7 1.0 54.2 −0.7 6.1 395 32.5
GTOPO30 422 −61.4 −27.8 170.5 −1.4 6.4 1197 150.3

Table 6. Statistics for 90% confidence level: outliers|vi |≥1.645×σd are not considered;n=number of analyzedvi ; iqr=interquartile range.
Extreme values are marked by bold numbers.

DEM n biashoff (m) median (m) standard deviationσd (m) skewnessγd kurtosisκd range (m) iqr (m)

SRTM3F 407 1.8 3.3 7.4 −1.0 4.6 44 6.6
SRTM33 315 0.9 2.9 8.4 −0.8 3.8 47 8.7
SRTM0505 316 0.6 2.8 8.4 −1.0 3.8 46 9.3
LDEM 326 7.7 9.1 8.0 −0.7 3.5 43 10.5
LDEM33 323 4.1 5.1 10.6 −0.4 3.0 51 14.9
SRTM30 396 −1.9 1.9 33.8 −0.3 4.5 215 28.3
GTOPO30 399 −34.4 −22.9 119.3 −0.4 4.2 754 128

Table 7. Statistics: residuals|vi |>16 m are not considered;n=number of analyzedvi , iqr=interquartile range. Extreme values are marked
by bold numbers.

DEM n biashoff (m) median (m) standard deviationσd (m) skewnessγd kurtosisκd range (m) iqr (m)

SRTM3F 383 2.4 3.4 5.7 −1.0 4.1 31 5.7
SRTM33 289 1.8 3.1 6.3 −0.8 3.3 31 7.4
SRTM0505 290 2.0 3.2 6.1 −0.8 3.1 30 7.6
LDEM 276 6.3 7.6 6.6 −0.8 3.0 31 9.5
LDEM33 270 3.1 3.4 7.8 −0.3 2.2 31 11.9
SRTM30 419 −5.7 1.1 46.7 −0.7 5.8 308 31.6
GTOPO30 337 −13.9 −9.6 75.2 0.07 2.5 319 98.4

We have binned the residualsvi in different classes de-
pending on heighthGCP, aspectAGCP and slopeαGCP at the
GCP locations in order to investigate the regression of biases
and standard deviations on GCP heights, aspects and slopes.
Number of samples/class is shown in Table 8.

In Figs. 6–8 class biases and class standard deviations are
plotted for the different DEMs.

The SRTM-class biases and standard deviations change
nonlinearly with heighthGCP (Fig. 6): Up to 1000 m a.s.l.
class biases are>0 m; the dispersions of the residuals are
small. The standard deviations confirm that the data are quite
well within the 90% confidence interval of 16 m. Above
1000 m a.s.l. the SRTM-biases become<0 m. Standard de-
viations increase significantly.

Similar behavior shows the plot of biases and standard
deviations over the slopeα (Fig. 6). For slopes between
0◦<α<10◦ we find biases≥0 m and standard deviations be-
tween 6 and 10 m. For slopesα>10◦ the biases are<0 m and
the standard deviations increase up to 35 m.

There also seems to be a correlation between aspect A and
the class biaseshoff . Biaseshoff reach at aspects between
100◦ and 150◦ a maximum.

The photogrammetric LDEM exhibits homogenous accu-
racy (red lines in Fig. 7). Standard deviationσd decreases
with increasing altitude in agreement with Eq. (2). Differ-
ences between the particular class biases are tested as not
statistically significant at the 95% confidence level. Statisti-
cally significant dependency of LDEM biases from aspect A
and slopeα is also not found.
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Fig. 6. Class biases hoff and standard deviationsσd of SRTM3F,
SRTM33 and SRTM0505 heights plotted over GCP elevations,
aspects and slopes. Error bars of class biases are 3σ er-
ror bars. Red lines=SRTM0505 biases and standard devia-
tions; green lines=SRTM 3F biases and standard deviations; blue
lines=SRTM33 biases and standard deviations.

Class biases of LDEM33 (blue lines in Fig. 7) differ for
heightshGCP>1000 m from LDEM-class biases. Class stan-
dard deviations of the LDEM33vi increase withhGCP. They
are generally larger than LDEM class standard deviations.

Figure 8 demonstrates that class biases of GTOPO30
and SRTM30 become smaller with increasinghGPC and
slopeαGCP; however, the class standard deviations increase.
SRTM30 heights fithGCP much better than GTOPO30
heights even at high altitudes. Biases of GTOPO30 heights
are strongly dependent on aspectAGCP.

The locations of GCPs whose residualsvi exceed the er-
ror bound−16 m≤vi≤16 m are plotted in Fig. 9. For LDEM
most of these points are located on the western slopes of Mer-
api, whereas the outliers for SRTM-DEMs are distributed
more randomly on the eastern slopes of Merbabu and Mer-
api.

5.2 Relative accuracy of DEMs

In this section we estimate the relative accuracy between
SRTM DEMs and LDEM as well as between SRTM30 and
GTOPO30. The aim is to identify areas with systematic dif-
ferences between the particular DEMs. The large number
of samples (cells) allows the estimation of reliable statis-

Fig. 7. Class biases hoff and standard deviationsσd of LDEM
and LDEM33 plotted over GCP heights, aspects and slopes. Er-
ror bars of class biases are 3σ error bars. Red lines=LDEM biases
and standard deviations; blue lines=LDEM33 biases and standard
deviations.

tics. For this study we use all LDEM-models and GTOPO30
as reference models (hDEM2, ADEM2, αDEM2) according to
Eq. (5).

5.2.1 Comparison between SRTM3 and LDEM

Comparisons were carried out in 2 ways:

– comparison of DEM heights,

– comparison of aspects and slopes.

Two pairs of DEMs were compared:

– SRTM33 – LDEM33,

– SRTM0505 – LDEM.

Results are given in Table 9. The biaseshoff between
SRTM33 and LDEM33 as well as SRTM0505 and LDEM
correspond well with the mean geoid height of−25.7 m.
Again the residualsvi are not distributed normally, since
skewnessγd is 6=0. Standard deviationsσd vary between
12.5 m and 13.9 m and are smaller for the coarse grid DEMs
(SRTM33 and LDEM33). Relative accuracy is of the same
order as the absolute accuracy shown in Table 5.
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Table 8. Binning of residualsvi of investigated DEMs dependent on height, aspect and slope at GCP locations; numbers are the samples/class.

Classification SRTM 3F SRTM 33 SRTM 0505 LDEM33 LDEM SRTM 30 GTOPO 30

HeighthGCP

h≤500 107 32 32 29 29 107 107
500<h≤1000 127 106 106 101 99 127 127
1000<h≤1500 107 107 107 103 101 107 107
1500<h≤2000 55 55 55 48 49 55 55
2000<h≤2500 21 21 21 21 23 21 21
2500<h 26 26 26 21 25 26 26

AspectAGCP

0◦<A≤30◦ 21 18 18 12 15 12 12
30◦<A≤60◦ 21 17 25 19 24 20 20
60◦<A≤90◦ 27 17 15 20 19 48 48
90◦<A≤120◦ 48 32 33 25 28 86 86
120◦<A≤150◦ 52 38 37 43 46 52 52
150◦<A≤180◦ 53 41 38 38 42 61 61
180◦<A≤210◦ 61 41 40 38 33 39 39
210◦<A≤240◦ 44 40 51 32 30 44 44
240◦<A≤270◦ 40 36 24 31 24 46 46
270◦<A≤300◦ 32 30 29 34 25 15 15
300◦<A≤330◦ 21 17 20 13 20 10 10
330◦<A≤360◦ 23 20 16 18 20 10 10

SlopeαGCP

α≤5◦ 209 114 114 100 100 225 225
5◦<α≤10◦ 95 101 101 104 104 158 158
10◦<α≤15◦ 39 37 37 35 35 33 33
15◦<α≤20◦ 38 26 26 33 33 2 2
20◦<α≤25◦ 30 27 27 25 25 18 18
25◦<α≤30◦ 13 21 21 11 11 5 5
30◦<α≤35◦ 15 13 13 11 11 2 2
35◦<α 4 4 4 4 4 0 0

Table 9. Statistics of height differencesdr; n is the number of samples,hoff the bias,σdr the standard deviation,γdr skewness,κdr the
kurtosis andiqr the interquartile range, respectively.

DEM n hoff (m) median (m) σdr (m) γdr κdr range (m) iqr (m)

SRTM0505-LDEM 4 347 440 −25.7 −25.1 13.9 −0.32 10.9 391 17.1
SRTM33-LDEM33 120 598 −25.7 −25.7 12.5 −0.29 15.1 375 16.0
SRTM30-GTOPO30 14 400 6.0 −6.0 82.4 1.9 18.6 1657 66.0

Additional information gives the plot of the residualsvi in
Fig. 9. The residuals at heights up to 600 m a.s.l. are>0 m.
They become<0 m with elevations>600 m.

If we assume 16 m as 90% confidence level for both
DEMs, the 90% confidence levelcl for the residualsvi ac-
cording to the error propagation law is

cl = 16∗
√

2 = 22.6 m (8)

Cells where the residualsvi≤−22.6 andvi≥22.6 are shown
in Fig. 9 as magenta and white areas, respectively. The

largest magenta area is located at the western foot of Mer-
api’s slopes. According to the aerial images taken in 1981
and 1982 this area was covered by rain forest. In 1996, when
we visited this area for the first time, the forest had been re-
placed by low shrubbery and grass. Perhaps these residuals
reflect the change of vegetation.

White areas are located at the south-eastern and north-
western corners of LDEM33.

Again we binned the residuals in the same way as shown
in Table 8. The class biases are plotted against heighthLDEM ,
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Table 10. Statistics of aspect differencesdA and slope differencesdα. hoff is the bias,σd the standard deviation andiqr the interquartile
range, respectively.

DEM hoff (◦) median (◦) σd (◦) max (◦) min (◦) iqr (◦)

Aspect differencedA (◦)

SRTM0505-LDEM 0.3 0 91 ./. ./. 60
SRTM33-LDEM33 −0.1 0 50.8 ./. ./. 16.8

Slope differencedα (◦)

SRTM0505-LDEM −3.9 −1.7 7.4 53.0 −66.8 6.8
SRTM33-LDEM33 −0.3 −0.2 1.9 31.2 −37.8 1.5

Fig. 8. Class biases hoff and standard deviationsσd of
SRTM30 and GTOPO30 heights plotted over GCP heights, as-
pects and slopes. Error bars of class biases are 3σ error
bars. Red lines=GTOPO30 biases and standard deviations; blue
lines=SRTM30 biases and standard deviations.

aspectALDEM and slopeαLDEM (Fig. 10). Absolute values of
class biases and standard deviations increase with increasing
altitude and slope. Class biases reach maximum values at
aspects ofA=135◦ and 245◦.

5.2.2 Comparison of aspects and slopes

AspectA and slopeα are the first derivatives of a DEM. We
computed them in order to assess how well topographic de-
tails are represented in the different DEMs. In Table 10 we
show the basic statistics of the differencesdAi anddαi ac-
cording to Eq. (5).

Fig. 9. Residualsvi=SRTM33 elevations – LDEM33 elevations;
the color bar gives the residualsvi in meters; contour lines show
topography; contour line interval is 200 m; magenta areas are re-
gions where residualsvi<−22.6 m, white areas are regions, where
residualsvi>22.6 m; red circles are GCPs where the residuals be-
tween LDEM33 and GCP elevations exceed the 90% confidence
level (±20.4 m); yellow squares are the GCPs, where the residuals
vi between SRTM33 and GCP elevations exceed the 90% confi-
dence level (±20.2 m).

There is no significant bias concerning the aspects. Slope
biases are small, whereby LDEM slopes are in the mean
larger than SRTM slopes. Generally, dispersion parameters
such as standard deviation, range and interquartile range iqr
for the coarse grid DEMs (SRTM33 and DEM33) are smaller
than for the fine grid DEMs. Therefore, the coarse grid
DEMs (SRTM33 and DEM33) fit each other better than the
fine grid DEMs (LDEM and SRTM0505).

LDEM and DEM33 contain considerably more topo-
graphic details than SRTM33 and SRTM0505. As an exam-
ple, gradients of topography around the summit of Merapi
are shown in Fig. 11.

We tested different approaches for automatically extract-
ing topographic structures such as ridges and break lines
from the DEMs. The best performance was shown using
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Fig. 10.Class biaseshoff and standard deviationsσd of SRTM0505
and SRTM33 heights over LDEM and LDEM33 heights, as-
pects and slopes. Error bars of class biases are 3σ error
bars. Red lines=SRTM0505 biases and standard deviations; blue
lines=SRTM33 biases and standard deviations.

Fig. 11. Topographic details of Merapi summit. Contour line inter-
val is 200 m. Blue arrows show topography’s gradients. Dashed
black lines are topographic edges and ridges as determined by
Canny’s algorithm (Canny, 1986). Red markers give the location of
the GCPs at the summit.(a) LDEM; (b) SRTM0505;(c) LDEM33;
(d) SRTM33.

Fig. 12. Height differences between SRTM30 and GTOPO30
heights. Contour lines give the topography. Contour line interval
is 500 m. The circles mark the locations of GCPs.(a) Height differ-
ences between SRTM30 and GTOPO30 heights. The blue dashed
rectangle gives the range, which is shown in more detail in (b)–(d).
(b) Height differences around the summits of Merapi and Merbabu.
(c) Detail of SRTM30 DEM around the summits of Merapi and
Merbabu. (d) Detail of GTOPO30 DEM around the summits of
Merapi and Merbabu.

the algorithm by Canny (1986). With the Canny approach
in LDEM many topographic structures are identified. We
can check their accuracy using the horizontal positions of the
ground control points. Most of the GCPs plotted in Fig. 11
are located very near to ridges and break lines, where they
also are in nature (Wrobel et al., 2002).

Ridges and break lines as generated from SRTM33,
SRTM0505 and LDEM33 by the Canny algorithm are
not correct. Obviously the grid spacing of SRTM33 and
LDEM33 is too coarse to render small scale details of the
topography.

5.2.3 SRTM30 – GTOPO30

The differencesvi between SRTM30 and GTOPO30 are un-
usually large (Table 9, Fig. 12a). The distribution of residu-
alsvi shows some systematic behaviour. The minimum and
maximum of residualsvi are found around the summits of
Merapi and Merbabu (Fig. 12b). Test computations and plots
of the summit areas indicate that after the vertical error the
circular horizontal errors exceed the 90% confidence level
of 650 m. In Figs. 12c and 12d the summit areas of SRTM30
and GTOPO30 are plotted together with the GCPs. The sum-
mit areas of Merapi and Merbabu of both DEMs do not coin-
cide well with the horizontal position of GCPs, whereby hor-
izontal differences between SRTM30 summit cells and GCPs
are significantly smaller. To obtain an optimal fit of SRTM30
and GTOPO30 beneath a vertical biashoff horizontal offsets
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Fig. 13. Class biaseshoff and standard deviationsσd of SRTM30
heights over GTOPO30 heights, aspects and slopes. Error bars of
class biases are 3σ error bars.

xo andyo should also be determined with the help of a 3-
dimensional similarity transformation (Heipke et al., 2002).

Class biaseshoff and class standard deviationsσd increase
with elevations and slopes. Class biases are also dependent
on aspects, where the extreme values are found at aspects
of 75◦ and 255◦ (Fig. 13). Primarily the circular errors are
responsible for the dependencies of residuals on aspect and
the increase of class biases with elevation and slope.

6 Conclusions

This study provides a broad range of results on the accuracy
of investigated DEMs. Generally we can show that SRTM-
3 and SRTM30 are a vast improvement on previous global
DEM products.

However, the biases and standard deviations of the DEMs
analysed are nonlinearly dependent on elevations and slopes.

Through comparison with GCPs we find that standard de-
viation of SRTM3 DEMs increases with elevation and slope,
whereas bias shows nonlinear changes. The specified 90%
confidence level of 16 m is exceeded when absolute heights
are>1000 m. Up to an elevation of 1000 m the SRTM data
satisfy the 90% confidence level.

The photogrammetric LDEM data displays accuracy sim-
ilar to SRTM3. Class biases also change with altitude. How-
ever, class standard deviations decrease with elevation.

LDEM data represent more topographic details than
SRTM3, e.g. break lines and ridges. This is also true if
LDEM data are averaged on the coarser grid size of SRTM3.
Averaging decreases accuracy. Interpolation of SRTM3 data
on a finer grid possibly decreases standard deviation. How-
ever, interpolation cannot improve the topographic details.

The DEMs generated by the SRTM mission are a sub-
stantial and very significant step towards detailed accurate
global DEMs, especially for far, remote and poorly surveyed
regions.

SRTM30 is an excellent replacement of the inhomoge-
neous GTOPO30, particularly in mountainous regions like
the volcanic area around Merapi and Merbabu.

However, SRTM3 does not make the generation of local,
high resolution DEMs unnecessary. Such models are only
generated by special missions (laser scanning, large scale
aerial photogrammetric images, airborne SAR) dedicated to
the determination of a high resolution, highly accurate DEM.
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