Spatial prediction models for landslide hazards: review, comparison and evaluation - Archive ouverte HAL
Article Dans Une Revue Natural Hazards and Earth System Sciences Année : 2005

Spatial prediction models for landslide hazards: review, comparison and evaluation

Résumé

The predictive power of logistic regression, support vector machines and bootstrap-aggregated classification trees (bagging, double-bagging) is compared using misclassification error rates on independent test data sets. Based on a resampling approach that takes into account spatial autocorrelation, error rates for predicting "present" and "future" landslides are estimated within and outside the training area. In a case study from the Ecuadorian Andes, logistic regression with stepwise backward variable selection yields lowest error rates and demonstrates the best generalization capabilities. The evaluation outside the training area reveals that tree-based methods tend to overfit the data.
Fichier principal
Vignette du fichier
nhess-5-853-2005.pdf (2.7 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-00299312 , version 1 (18-06-2008)

Identifiants

  • HAL Id : hal-00299312 , version 1

Citer

A. Brenning. Spatial prediction models for landslide hazards: review, comparison and evaluation. Natural Hazards and Earth System Sciences, 2005, 5 (6), pp.853-862. ⟨hal-00299312⟩

Collections

INSU EGU
1790 Consultations
1936 Téléchargements

Partager

More