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Abstract. This paper is an extension of the single-phaseon the dynamics of the flow over a general basal topography.
cohesionless dry granular avalanche model over curved an@hese simulation results reveal new physical insight of debris
twisted channels proposed by Pudasaini and Hutter (2003)¥lows over such non-trivial topography. Model equations are

It is a generalisation of the Savage and Hutter (1989, 1991 papplied to laboratory avalanche and debris-flow-flume tests.
equations based on simple channel topography to a twoVery good agreement between the theory and experiments is
phase fluid-solid mixture of debris material. Important terms established.

emerging from the correct treatment of the kinematic and
dynamic boundary condition, and the variable basal topog-
raphy are systematically taken into account. For vanish-;
ing fluid contribution and torsion-free channel topography

our new model equations exactly degenerate to the previpepris and mud flows are multiphase, gravity driven flows
ous Savage-Hutter model equations while such a degenergopnsisting of randomly dispersed interacting phases. In the
tion was not possible by the Iverson and Denlinger (2001)geophysical context they consist of solid components with
model, which, in fact, also aimed to extend the Savage angjifferent grain size and shape, of liquid and possibly air.
Hutter model. The model equations of this paper have beem theory accounting for all these interactions is still out of
rigorously derived; they include the effects of the curva- reach, so that most of the present models mainly focus atten-
ture and torsion of the topography, generally for arbitrarily tjon to limiting casest(i) single phase dry cohesionless gran-
CUrVed and tW|Sted Channels Of Variable Channel W|dth Thq_iiar Continuum ofa body Consisting of particles ofa nominal
equations are put into a standard conservative form of parmean, representative size, a@ﬂ) saturated binary mixture
tial differential equations. From these one can easily inferconsisting of a solid constituent and a fluid that fills the entire
the importance and influence of the pore-fluid-pressure diSpore space.
tribution in debris flow dynamiCS. The Solid-phase is mod- Model (l) predicts the avalanching flow of dry granuiar
elled by applying a Coulomb dry friction law whereas the materials. Its most popular version seems to be the class of
fluid phase is assumed to be an incompressible NeWtonia@avage-Hutter type models (Savage and Hutter, 1989, 1991;
fluid. Input parameters of the equations are the internal anq;ray et al., 1999: Pudasaini and Hutter, 2003; Pudasaini
bed friction angles of the solid particles, the viscosity andet al., 2003, 2005a). It is based on the assumption that
volume fraction of the f|UId, the total mixture denSity and the rapidiy moving granuiar mass iS density preserving and
the pore pressure distribution of the fluid at the bed. GiVenthe internal] material and basal Sl|d|ng properties can be de-
the bed topography and initial geometry and the initial ve- scriped by cohesionless Mohr-Coulomb type frictional laws
locity profile of the debris mixture, the model equations arejnyolving as material parameters the internal and bed friction
able to describe the dynamics of the depth profile and beyngles. Supposing predominance of sliding over shearing a
pal’allel depth—avel’aged VeIOCity distribution from the initial depth averaging iS meaningfui Without |Oosing great accu-
pOSitiOI’l to the ﬁnal depOSit. A ShOCk Capturing, tOtal Varia.' racy Of the dynamical description as given by the emerging
tion diminishing numerical scheme is implemented to SOWeequations. These equations have been applied to different
the highly non-linear equations. Simulation results presentatastrophic flow configurations (see, e.g., Zwinger et al.,
the combined effects of curvature, torsion and pore pressurego3s: Pitman et al., 2003: Patra et al., 2003). Laboratory and
some field experiments have corroborated their validity for
Correspondence tdS. P. Pudasaini catastrophic land slide and avalanche events (see, e.g., Gray
(pudasain@mechanik.tu-darmstadt.de) et al., 1999; Denlinger and Iverson, 2001; Pudasaini, 2003;
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Iverson et al., 2004; and Pudasaini et al., 2005b). Their limits The physical foundation of this debris flow model is based
of applicability are discussed in Hutter et al. (2005). on the recognition that the fluid stress significantly con-

Many debris and mud flow events are triggered by heavytfibutes to the dynamics of the flow. In the soil mechanics
rain falls, so that the motion of the sliding mass of debris COntext, where the viscous properties of the fluid are ordinar-
or mud is better described by a mixture of a solid and ally ignored, this manifests itself as the significant role played
fluid phase under conditions of saturation. This is indeedPy the pore pressure; here the viscous contribution is added,
the underlying concept of all debris flow models known to us @nd it stabilises the numerics because the viscous stresses and
that go beyond a single phase description. The most promithe diffusion equation for the pressure introduce parabolic-
nent examples are the debris flow models of Hungr (1995)ity into the system. Mathematically, the present formulation
Iverson (1997), Iverson and Denlinger (2001), Iverson etddopts an orthogonal coordinate system along a curved and
al. (2004), Denlinger and Iverson (2001, 2004) and Pitmantwisted master curve (see Pudasaini and Hutter, 2003) that

and Le (2005), but pioneering work of Takahashi (1991) is suggested by the thalweg of the valley or corrie, through
should also be mentioned. which the debris flow takes place. This is advantageous and

preferable to the horizontal and vertical coordinates used by
others (see, e.g., Hungr, 1995; Iverson and Denlinger, 2001,
2004; Zwinger et al., 2003; Pitman et al., 2003; Patra et al.,

introduced as a variable that replaces the fluid velocity as ?%?fg*:ﬁgzl:; i'g;gﬁﬁ;@t?;ﬂgg:ﬁ%ﬁg to g:ﬁjgi??smn?(t)rrlgs
basic field. From the mass and momentum balance of th&" -

mixture as a whole and the implementation that the seepagt;if]u\::h(z Wizensxs:ejllo%isrvaerg ggf\fv_ﬁ) danltrj] tfgitm;l}l]:;h-
velocity is negligibly small, it then follows that the veloc- yisg y ' '

ity of the solid constituent is the only remaining kinematic ematically correct asymptotic analysis cannot rigorously be
field:. The momentum equation, formulated for the mixture performed if the coordinates are not following the topogra-

as a whole, contains then as constitutive quantities the soli h%/.he model equations include the effects of the curvature
and fluid partial stresses which, respectively, are modelled as q

a Coulomb material, just as in the Savage-Hutter theory am@nd torsion of the topography in the dynamics of the de-
as a Newtonian fluid with constant viscosity. So, formally, ris flow and influence of the pore fluid pressure distribution

. . . is made explicit. Important terms emerging from the cor-
this reduced two phase debris model appears as if it were Eriect treatment of the kinematic and dynamic boundary con-
one-constituent model with a fluid stress composed of a presaition and the variable basal 100 ray hv are s steme)llticall
sure and a dissipative stress. A Darcy type interaction forc% ' pograpny M y

does not enter.

The underlying simplifications are performed on two dif-
ferent levels. First, it is assumed that the mixture density
can be taken as constant. Moreover, the seepage velocity

aken into account. For vanishing fluid contribution and tor-
o o sion free bed topography our new model equations exactly
The second simplifying assumption is based on the shalyegenerate to the previous model equations of Savage and
low geometry of the debris masses. It motivates introduc-pyer (1989, 1991); this was not possible with the Iverson
tion of the thickness averaging to arrive at' model equqtlonsand Denlinger (2001) model, which in fact, aimed to gener-
for the depth and depth-integrated velocities tangential t0yjise the Savage-Hutter model. A shock capturing, total vari-
the basal surface. In this process the total traction of theyiion diminishing numerical scheme is implemented to solve
solid and fluid constituents perpendicular to the free sur-yq highly non-linear model equations. Simulation results
face must be divided into solid and fluid constituents, andpresent the combined effects of curvature, torsion and pore-
this is done, as in Iverson (1997) and Iverson and Denlingefy ig pressure on the dynamics of the debris flow over var-
(2001), by introducing a facton ; such that the normal g topography. These simulation results reveal the physics
stress(1-A £)T(zz) @nd A s T is composed of the partial  of the debris flows over such non-trivial topography which
solids and fluids stressea., is treated phenomenologically 5,1d not be achieved with previous model equations.
as an internal variable that may follow from a diffusion equa-  The model equations are examined by comparing their nu-
tion for the fluid pressure. The emerging equations are thennerical results with two different experiments (Denlinger
so structured that the limit ;=0 recovers the Pudasaini and 5,4 |verson, 2001):(i) Small-scale laboratory avalanche
Hutter (2003) model, whilst the limit ;=1 generates the o gry sand sliding down an inclined rectangular flume
purely viscous equations appropriate for a slush or a debrigha; merges continuously to the horizontal deposition zone:
avalanche. The former constitute a purely hyperbolic, the laty; ;) | arge-scale water-saturated debris flows in an out-door
ter a mixed hyperbolic-parabolic system of equations. Thes§yme. The former case deals with the dynamics of deforma-
equations contain a sc.ale dependent dimensionless quantifyy of avalanche from initiation to deposit, whilst the latter is
N (see Iverson, 1997; Iverson and Denlinger, 2001) whicheoncerned with the debris flow surge development and its hy-
is the fluid volume fraction weighted Reynolds number. drographs at different cross-sectional positions of the flume.
Very good agreement between theory and experiments is ob-

1The fluid velocity is set equal to the solid velocity whenever Served.
their difference arises; this appears formally to be tantamount to N what follows, we shall present in Sect. 2 the govern-
the neglection of the Darcy interaction force, but it manifests itself ing field equations and boundary conditions. In Sect. 3 the
through the formulation of the fluid constituent Cauchy stress. general coordinate system is presented and Sect. 4 repeats
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the model equations of Pudasaini and Hutter (2003) as an In order to simplify the momentum equations we focus
extension of the one-constituent Savage-Hutter model; thesen the motion of the solids and analyse the motion of the
equations are preparatory, but equally necessary for the forfluid relative to that of the solids. For this purpose, following
mulation of the general model. Section 5 then addresses thihe spirit of Iverson (1997), we need to define the relevant
peculiarities related to the fluid components. The final, depthfluid velocity which is the fluid specific discharge divided
integrated equations are summarised in Sect. 6, and the neby the fluid volume fractiomj/v s =u r —u,. Substituting this
features of the model are discussed in Sect. 7. Section &lation into the fluid momentum equation yields

briefly introduces the numerical method and Sect. 9 discusses

results obtained for flow configuratigns through cur\(ed andpfvf[a (q + us> + 9.y (q + us> UV (q + Us)]
twisted channels and some comparisons of these with flume ot \vs vy vy Vf

experiments of Denlinger and Iverson (2001). Section 10=V T+ psvsg—f. (5)
presents a discussion of the achievements and draws infer-
ences for further work. The ensuing analysis is based on the fact gt u ¢ |<|u].

Iverson (1997) justifies the estimatg' v s |« |u;|. Therefore,

Eqg. (6) reduces to
2 Field equations for a binary-mixture of a solid and a

fluid ou

prf[a—;Jrux-Vus} =V -Ty+pppg—t. ©)

2.1 Mass and momentum balance equations

Adding (@) for «=s and @) results in the simplified momen-
We start with the standard balance equations for binary mixtum equation for the solid-fluid mixture
tures. The mass balance equations for the solid and fluid are,

. dUg
respectively, p|: +uy - Vus] =V -(T;+Ty)+ pg. )

at
0(0aVa)
ot

wheres and f stand for “solid” and “fluid” andV is the
gradient operator/dt indicates partial differentiation with

respect to timep; andpy are the true mass density of the Equations 7) and @), originally proposed by Iverson (1997),
solid and fluid,v; andv s are the volume fraction of the solid  constitute the governing equations for debris flows. As can
and fluid, respectively. Similarly; andu are the solidand  pe seen, there are two main differences between these equa-
fluid velocities, respectively, and; andm ; are the respec-  tjons and analogous equations governing the motion of a
tive rates of solid and fluid mass production, per unit volume.gjngle-phase granular solid, e.g., Savage and Hutter (1989).
We consider only saturated debris material, so, the volumerpese arey;) they involve the total mixture density, and
fractions must obey the saturation conditiap-vy=1.We ;) the influence of the fluid stresk; is explicitly incor-
define the total mixture mass densjiyand the barycentric  porated into the momentum equation of the mixture. For

V- (Oavalla) = ma (@=s1) (1) Similarly, the mass balance EQ)(educes to

V-u; =0. (8

velocityu as simplicity, from now on we will write the velocity field as
p = Z PoVa u= Z (pauaua)/p' (2) u InStead Oﬁ.,ls
a=s, f a=s, f

2.2 Evolution of stresses
In the sequel we shall assume no mass exchange between
the solid and fluid constituents, i.e1,=m ;=0 and the con-  The solid phase is assumed to satisfy a Mohr-Coulomb yield
stituents are incompressible. So, by dividiig by o, and criterion in which the internal shear stré8snd the normal
adding the resulting equations fees anda=f we obtain  pressureV are related by
the mixture mass balance as

|S| = N tang, 9)
Vovp(Uy —Ug) +V-u; =0. 3)
where¢ is the internal angle of friction. Alternatively, the
Sluid stresses obey the conventional linear law that governs
the behaviour of incompressible Newtonian fluids, explicitly

From the mixture theory, we have the momentum balanc
equations for the solids and fluid

pava[aua/at + Uy - Vua] =V T4+ pavag""fa,
(@=s,f) (4)

whereg is the gravitational acceleratiof, andT ; are the

partial Cauchy stress tensors for the solid and fluid phase ; 3 -
respectively, anfl,, with f,=—f ;=f, is the interaction force tion vy because only this fraction of the mixture produces

per unit volume that results from momentum exchange be_visclous stresses, arld is the strain rate tensor given by
tween the solid and fluid constituents. D=3 [gradu+(gradU)T]-

Tr=—-pl+2vrusD, (10)

where p is the pressure| the unit tensor,u s the pore
Jluid viscosity which is multiplied by the fluid volume frac-
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2.3 Boundary conditions The dynamic boundary conditions at the free surface im-
ply that it is stress-free for both constituents, and so the mix-

Saturated debris flows possess two distinct surfaces thatire. For the fluid at the base a no-slip condition or a viscous

bound the domain of the moving material, i.¢) the free  gliding relation can be incorporated. Equatiois gnd @)

surface, andii) the bed. Kinematic and dynamic boundary together with the solid and fluid constitutive relatior@—

conditions must be formulated at these surfaces; theif10) and boundary conditiond {)—(14) constitute a basis for

complexity depends on the complexity of the theory as wellmodelling debris flow dynamics.

as on the physical processes one intends to include at these

boundaries. In general, the free surface is a material surface

of the solid, but not for the fluid. If saturated conditions are 3 Orthogonal general coordinate system

assumed this implies a surface run-off of water. This run-off

must be small and will henceforth be ignored. Similarly, Curved surfaces strongly influence the flow dynamics be-

we will also ignore any discharge of water into the ground cause transverse shearing and cross-stream momentum trans-

below the basal surface. port occur when the topography obstructs or redirects the
motion due to curvature and torsion. Resistance due to basal
Kinematic boundary conditions. friction is modified by “centrifugal forces” induced by bed

curvature and torsion. The channel topography and the ge-
ometry of the debris flow in the lateral and longitudinal di-
rections are illustrated in Fid.. Similarly, Fig.2 represents
FP 8 P the geometric description of the coordinate system and some
ot +u”-VFP =0, (B =s.b) (1) prototype channel geometries with uniform, diverging and
converging curved and twisted channels that can be used in

where the superscripts ‘and ‘b’ indicate that the respec- . .

. . : : the transportation of granular materials. In what follows, ex-

tive variable is evaluated at the surfa¢#,(x, r) =0, and the ; o . i , ;
cept in Sect. 9.4, every quantity in this paper is written in

b _ . .
base,F” (x, t) =0, respectively. EquatioriLl) may also be non-dimensional form.

The above simplifying assumptions imply the kinematic
boundary conditions for the solid phase

wrlt;en as Pudasaini and Hutter (2003) extended the Savage-Hutter
oF theory to flows of dry granular masses iman-uniformly
- . B _ BB B _ (4P — .np

ot +ulg-VE IVEZ|a”, a (u” —ulg) -0, curved and twisted channeFirst, we will outline the geo-
(B=s,b) (12) metric configurations they implemented for dry granular flow

that we will also adopt in this paper. Consider a debris flow-
prone landscape and a subregion of it where the topogra-
phy allows identification of the likely debris flow track. A

wherenf=V F#/|VFP| are the surface and basal outward
unit normals and? are accumulation and erosion/deposition

functions for f=s and =>b, respectively. They must be gnace curve parallel to the thalweg of the valley is singled
parameterised. If the normal component of the velocity of , \+ a5 a master curve (which can be obtained, e.g., by

the free-surfacey’, and of basal surfaca)”, agree with shifting the thalweg along its normal direction) from which
the normal velocities at the free and basal surfaogsand ¢ track topography will be modelled. The curvature and
ulp, respectively, t_hen accur_n_ulat|on of solid mass_ at the free(orsion of the master curve=« (x), =7 (x), are either as-
surface and erosion/deposition at the bed are ignored. I§,meq to be known or can be computed from digital elevation
a*=0, there is no run-off at the free-surface, andf=0, - Geographic-Information-Systems (GIS) data as functions of
there is no entrainment at the bed. Below we will limit ¢ 5rc lengthr of the master curve. Then, an orthogonal
attention to this case. coordinate system along the master curve is introduced; the
) » model equations are derived in this general coordinate sys-
Dynamic boundary conditions. tem. In the equations of this papet, ) form a curved ref-
The free surface of the debris flow is traction free for both erence surface, whereis the coordinate along the thalweg
constituents while the base satisfies a Coulomb dry—frictionof @ mountain valley, whiley is the circular arc length in a

sliding law for the solid constituent. That is, cross-sectional plane perpendicular to the thalweg of which
o . the value is determined by the relatipa-c0z7, wheres is
Tgn® =0, T%n" =0, (13)  the aspect ratio between the debris flow height and exent,

is the azimuthal angle which accounts for the cross-slope cur-
vature anctr (usuallyzz>>>1) is the radial distance between

| = N’ tans or ) .
IS ’ the master curve and the thalweg arid the coordinate per-

Ton? —n? (nb : Tfnb> = (ub/lubl) (nb -Tfnb> tang, (14)  pendicular to the reference topography.
The present theory is designed to model the flow of de-
wheres is the basal angle of friction. §°0 anda®+0, bris over channels having general curvature and torsion. Al-

then Eqgs. 13), (14) must be complemented by the impulse though there are other models that consider the problem of
contribution due to surface run-off and entrainment of massdebris flow motion over curved slopes (e.g., lverson and Den-
from the ground. linger, 2001; Pitman et al., 2003), the model equations of this
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talweg

N (%) T () X 4 Xy X

Fig. 1. Left: The debris flow domain in the lateral direction occupies a region in a circular section of a plane perpendicular to the thalweg of
the valley and is the azimuthal angle in this plan@ 0=z is the radial distance between the master curve and the tha{ell, B} is

the moving orthonormal unit triad following the thalwegis the slope angle of the thalweg with the horizontal. The depth of the avalanche

in this section is represented by a height functi@n, y, r) and is measured in the radial direction. Right: Debris flow passing through the
transition into the run-out zone in a vertical plane containing the thalweg of the valley. In this pigtaredx, are the left and right end

points of the continuous transition between the straight inclined upper part with inclinationzgragld the horizontal run-out in the valley.

Fig. 2. Left: A representation of a curved and twisted channel, a reference curve and the tangent vectors along the coordinate lines. The dark
line along the channel is the axis of the channel; following the notation ofIFig.~T (x), X,~N(x), Xg~B(x). Middle: Diverging, and
Right: converging curved and twisted channels that can be used in the transportation of the granular and debris flow materials.

paper explicitly include curvature and torsion effects in a sys-non-dimensionalised the equations and averaged them over
tematic manner. This makes the extended model amenable the depth of the avalanche. The final balance laws of mass,
realistic debris motions down arbitrary guiding topographies.and momentum in the down-slope and cross-slope directions
This can be accomplished by coordinate transformation. Dif-take the forms (correct t0 (¢117), 0<y <1)

ferent from and extending the original SH-theory and all their 5, P P
previous extensions (e.g., Gray et al., 1999; Pudasaini etal., 3, * 7 (h4) + o (hv) =0, (15)
2003) a moderately curved and twisted space curve is used
to define an orthogonal curvilinear coordinate system. The 9 9 2\, 9 3 [ Buh?
_ - The 2 hu)+—(hu )—I——(huv):hsx—— , (16)
governing balance laws of mass and momentum are written 97 0x dy 2
in these coordinates.
3 3 3/ 5 3 [ Byh?
— (h — (h — (A =hs,—— | —], (17
at(v)+ax(“”)+ay<”) Sy ay( > ) @0
4 Governing equations for single-phase dry granular  where# is the depth of the avalanche measured normal to the
avalanche reference surface and the factgrsandg, are defined as
Bx = —cg: Ky, By =—eg.K,. (18)

If the interstitial fluid stresS ¢ in (7) is zero then Eqgs.7j and ) s
(8) together with the solid stress Eq)(and the boundary The termss, ands, represent, respectively, the net driving
conditions of Sect. 2.3 describe the field equations for sin-2ccelerations in the down-slope and cross-slope directions
gle phase avalanching motion. In this section we present th@nd are given by
model equations for a single-phase dry granular avalanche. u 5 b

Pudasaini and Hutter (2003) formulated the balance laws Sx =& T |ul tans (—gz ERLE ) + 85 (19)
of mass and momentum as well as the boundary conditions v 2 b
in slope-fitted curvilinear coordinates of mountain surfaces, v = & ™~ | tang (_gz + Aenu ) + 831@’ (20)
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in which |u|=+u?+v? is the magnitude of the velocity the inclusion of the fluid stress into the model equations of

field tangential to the reference (basal) topography andSect. 4. The routine procedure for the coordinate transfor-

(—gz—i-)ucnuz) is the normal stress at the bed: is the local ~ mation, non-dimensionalisation, depth-integration, constitu-

curvature of the thalweg, whilst tive relations (for the solid phase) and assumption about the
nearly uniform velocity profile through the debris flow depth

n = oS +¢(x) +¢o), (21) o be found in Pudasami and Hutter (2003). We will follow

where ¢ (x)=— f;; (x")dx’ gives the accumulation of the the spirit of their paper.

torsion of the thalweg from an initial positiaty and ¢g is

a constant.g,, g, andg. are the projected components of 5.1 Contributions due to fluid stress

the gravitational acceleration along the down-slope, cross- ) ) o

slope and normal directions of the channel, for explicit com- Using the orthogonal coordinates displayed in Figsnd

putation see, Pudasaini and Hutter (2003). The aspect raz» and with a scaling and dimensional analysis as in Puda-

tio e, and the measure of curvature relative to the typicalSaini and Hutter (2003) the new contributions due to the fluid

debris flow length,, are both small numbers given by the Stress10) which we must add inthe down-slope, cross-slope
scalegL], [H], [R): e=[H]/[L], ~=[L]/[R), that are used and normal components of the momentum balance equations
to non-dimensionalise the equations. Héfs, is the typical ~ Of the single-phase dry granular material (see, Egs. (4.5)-
avalanche lengthi 1 is the typical avalanche heightap@] ~ (4.7) in Pudasaini and Hutter, 2003) are, respectively

is a typical radius of curvature of the channel. The basal to- 9~ . . 9~
pography (which is the elevation of the real topography from, p _ ial _ ii (3” + 8“) _ ial +0 (51+y) ,
the reference surface=0, and includes the small-scale ge- | 9% Nrdx?  Ngdy \dx = dy/ e2Ng dz? |
ometric features of the bed topography) will be denoted by (23)
z=b(x, y).

The first terms on the right-hand side 48 and @0) are o . . . A

o S p 290 19 (a0 o 1 9%

the gravitational accelerations in the down- and cross-slopg | _ < YV = 9 ( + ) L B <€l+y) 7
directions, respectively. The second terms represent the dry| 3y Nrdy?  Ngdx \dx = dy/ e2Ng 92? |

Coulomb friction in which the normal tractions comprise of (24)

the overburden pressu¢e g,) plus a contribution due to the

curvature and torsion of the master cu(\mnuz). Finally,

the third terms are the projections of the topographic vari-— + O (s””) . (25)
ations along the normal directionk, and K, in (18) are

called the earth pressure coefficients. Elementary geometrifhese are dimensionless local expressionsigndare the

cal arguments and Mohr’s circles may be used to determindocal dimensionless velocity components along the down-
these values as functions of the interng &nd basalq) an-  slope and cross-slope directions, respectiveig,the dimen-

gles of friction, (Hutter et al., 1993), viz., sionless fluid pressure amk is the quasi-Reynolds number
which is the fluid volume fraction weighted Reynolds num-

Ky = Kyaeypass= 2 se@q)(l F,/1-coF¢sed 8) -1, ber (as introduced by Iverson and Denlinger, 2001) defined
as

(0u/dx) 2 0,

1 _ «/gL pH
Ky = KYacvpaSS:E( 1T \/(Kx—l)2+4tar?— 5) : Ne== (26)
(dv/dy) 20, (22)  whereg is the gravity acceleratior, and H are scales used

whereK, andK, are active during dilatational motion (up- in the non-dimensiopalisation, the typipal extent and _height
per sign) and passive during compressional motion (lower©f the debris flowy ; is the volume fraction angl  the vis-
sign). We note that ignoring th@ (¢)-contributions in £5)— cosity of the fluid. A.typ_lcal value ofVy is on the_ ord_e_r of
(20) reduces the equations to a mass point model and doe%05—106- In the derivation of 23)—(25), some simplifica-

not allow determination of the deformation of the pile. The tions have been made, one being that the volume fraction of
dynamics of these equations will also be discussed in Sect. §1€ fluid, v is independent of. For complete list of these,

in the context of debris flows. To describe the debris flow, S€& Pudasaini and Hutter (2003).

this model must formally be altered only by adding the pore

fluid stress. 5.2 Fluid pressure at the bed

Due to the shallowness assumption the momentum equation
5 Evolution and inclusion of the pore fluid stress perpendicular to the reference surface is reduced to a balance
between the normal derivative of the total normal stress in
The evolution of the pore fluid stress is crucial in modelling the normal direction and the mixture (debris) weight in this
debris flow phenomena. Here we will not present the en-direction. Adding the fluid contribution26) to the normal
tire calculation but only write the most important steps for component of the local momentum equation for single-phase
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granular flow (Eq. (4.7), Pudasaini and Hutter, 2003) we ob-5.3 Modification of the friction law and earth pressure co-
tain the following equation for the pressure distribution in the efficients

mixture due to the solid and the fluid
We must modify the Coulomb friction law and the earth pres-

dp 9 _ -2 sure coefficient of the Mohr-Coulomb yield criterion accord-
2z "oz (Tsza)) = g2 = heni®+ O (e). 27) ing to the effect of the pore fluid pressure distribution. We
. ) identify the fluid normal stress as the pore fluid pressure. As
Integrating this from the surface=s(x, y, 1) to the depthe,  pefore, we assume that the pore fluid pressure and the solids
thereby setting~u+0(e), yields stressTy(..) both vary linearly from their maxima at the base
to zero at the free surface of the flow. Equati@i)(thus
P+ Tz = (—gZ + Afcnuz) (s—2)+0(¢e). (28) implies that the depth-averaged normal solid stress takes the
form

Therefore, the total pressure at the hedb(x, y, t), is =
P b 3. ) Ty = 20— Ap) (—ge + henu?) b+ 0 (o)

P+ 1! (—gZ + )\Knuz) h+0 (), (29) =-1g.(1—Aph+0 (). (32)

s(zz) —
Note that, as in Pudasaini and Hutter (2008% 0 (¢7),
wheren(x, y, t)=s(x, y,1)—b(x, y, t) isthe depth of the de- 0<y <1 is assumed to have equations correcOta1*?).
bris flow. We further assume that the down-slope and cross-slope solid
The fluid pressure is assumed to vary linearly throughstresses vary linearly with the normal solid stress through the
depth which is also consistent witR8) in the normal di- avalanche depth. This is achieved to leading order by the
rection. The total stress on the bed is now decomposed intexpressions

two parts, the fluid and solid pressures, as follows:
Ts(xx) = KxTs(zz) + O (Ey) )

pb = Ay (—gZ + )ucth) h+ 0 (e), (30) Tsyy) = KyTsee) + O (8]/) . (33)
From @2) it follows that the depth-averaged down-slope and
TP = (1—Ay)(—gc + rcnu?)h 31 ) ,
e = ) ( 8z T e ) + 0@, (31) cross-slope solid stresses are given by

corresponding to the fluid and solid phase pressures (seq; () = _% <8z (1 - Af) h+ 0 (g"),
e.g., lverson and Denlinger, 2001; Hubbert and Rubey— _ 1 . v
1959). Here,A; € (0,1) is a continuous parameter that T = ~2Kyg: (1= Ap)h+ 0 ). (34)
may depend on several factors such as the debris flow heighthis implies that the factorg, andg, in (18) must be mod-
time and diffusion of the basal pore pressure along the mix4fied by the expression

ture body from its front to tail. All these are functionsxaf

y ands but notz. So, A ;#A ¢(-,z). Moreover, the limit  Bv = —eg:Kx (1= Ay), By = —eg:Ky(1—Ay). (35)

A y=1implies zero basal effective stress or complete lique-_. . . .

faction (around the rear end of the debris body) And=0 Similarly, in (19—(20) the normal solid stress at the bed

2 . .
for dry granular flow (e.g. in the vicinity of the front of the (—8e+huenu®) must be replaced bya() for the solid-fluid

debris flow surge). This means that this parameter is mather—n'xmre' Furthermore, the detailed basal topographic ef-

matically analogous to the fluid volume fractiop. In ther- Lectslsgzab/ax andsgzab(/jayl in (19)_(202) must be rep[ac?d
modynamic nonclassical solid-fluid-mixture theories separa- Y (1=Ay) eg:9b/dx and (1-A ) eg:9b/dy, respectively

tions like 30) and 1) are referred to asnpositions of pres- (STf' IDI:Jdgsain(; and I-(|jgtte_g 200?])' hic eff d
sure equilibrium They are one possible imposition, but other inafly, in order to distribute the t_opograp'lc effects an
possibilities such aa”., (1—A”), p>0 are equally justified. gravitational driving forces to the solid and fluid components

The separation30), (31) of the total stress is of constitutive we decompose the components of gravitational accelerations

nature and bears the advantages and disadvantages which af follows:

fsuch equations exhibit. It is als_o evident froBO) that A ¢ v = 8eio) + 8x(p) = (1= Ay) gx + Asgn,
is the ratio between the pore fluid pressure at the bed and the
total normal pressure of the debris mass in the normal direc8? = 8y +8x() = (L—Af)gy+Asgy (36)

tion. Measurements at the base of experimental flows showgte that since we are using depth-integrated equations we
that coarse-grained surge fronts have little or no pore fluidys not need to decomposge.

pressure. In contrast, finer-grained thoroughly saturated de-

bris behind surge fronts is nearly liquefied by high pore pres-5.4  Depth integration

sure (see lverson, 1997; Iverson and Denlinger, 2001). So,

parameterisation oA ; is very crucial in the description of Integrating £3) and @4) by repeatedly applying the Leibniz
the dynamics of debris flow surges. Needless to say that hermule (to change the order of integration and differentiation)
as everywhere else grain size separation is neglected. through the debris flow depth yields the following stresses
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due to the fluid in the pores of the mixture material along thein which K, K, are given by 22). Note that, although
x andy coordinate directions, respectively the basic solid-fluid mixture mass and momentum balance
I, Egs. ¢) and 8) are not in conservative form, the final
2 pIb| kR v w3 Ly del equations presented here are in conservative form with
€|:{8x(ph/2>+p8x} NR[23x2+8yBx+dy2 th2”+0<5 ) moadeteq  prese ) ; .
source tern’ Dimensional analysis, depth integration and
@37 ordering processes made it possible to transform these equa-
tions from non-conservative to conservative form.
o P v B ” ‘0 (EW) Given the material parametetsndg and the elevation of
dy2 " oxdy  dx  e%h? " the basal topography=b(x, y), above the curved reference
(38) surface, the viscosity and the volume fraction of the pore
fluid, mixture density and fluid pressure distribution at the
bed, Eqgs.39)—(47) allow &, u andv to be computed as func-
tions of space and time, once appropriate initial and bound-
ary conditions are prescribefl.is the debris flow depth, and
(u, v) are the depth-averaged velocity components parallel

3y Lab)  h
— (ph/2 —t=—12
8“3y(p /)+p 3,\'} Ng

where p? is the fluid pressure at the bed defined B@)(
whilst u, v are the depth-averaged velocity components in
thex andy directions, respectively.

6 Model equations for two-phase debris flows to the flow surface. As initial condition one commonly pre-
scribes the geometry and velocity distributions of the debris
6.1 Initial boundary value problem flow at the initial time, usually for a mass at rest.

Incorporating all new effects emerging from the intersti- 6.2 The physics of debris flow described by the present
tial fluid and detailed by243)—(38), the granular avalanche model equations

Egs. ((5-(20) becomegeneralised model equations for two-

phase mixture debris flovadiding and deforming down arbi- The model equations presented in this section represent var-
trarily curved and twisted channels. The governing equationsous physical properties of debris flows. We outline some of

read them as follows:
oh d ad . . . . .
5> + P (hu) + % (hv) =0, (39) (i) By settingA ;=0 and Ng—oo (i.e., ignoring the vis-

cous terms), these model equations reduce to the ex-
) tended avalanche model equations of Pudasaini and
i(hu)—l—i(hu2>+i(huv) =hsx—i (ﬂxh ) (40) Hutter (2003). On the other hand, when setting=1
ot 0x dy ax \ 2 (i.e., complete liquefaction at the bed and thus zero
basal effective stress of the solid) these equations reduce
3 (,thz) to Boussinesqg-type hydraulic (shallow-water) equations
> (41

with a purely viscous dissipation, e.g., appropriate for
a slurry. For intermediate cases the equations indicate
a combination of Coulomb friction and viscous dissipa-
tion that changes in response to the spatial and temporal
changes of the pore pressure.

Dy )+ (?) =
— v — (nuv —_— v =nsy — —
dt dx dy Yoy \ 2

which remain formally the same as those for single-phase dry
granular avalanchel)—(17), but for two-phase debris flows

with the following specifications

Sx = Sx(s) F8x(f)s Sy = Syis) + Sy(p), (42) (i) Due to the viscous fluid stress effects the equations con-
tain viscous terms via,(r) andsys). Therefore, they
By = —¢ (1 — Af) g:Ke, By=—¢ (1 — Af) g:K,, (43) are no longer hyperbolic, but hyperbolic-parabolic; they

degenerate into hyperbolic equations for single-phase
u ) 9b avalanche flows of dry granular materials when the ef-
sxw) = (L= Ap) igx Tl tans (—gz + Mcnu ) + ngax}’ (44) fect of the pore fluid is ignored.

5 (iii) The model equations involve three non-dimensional
Sy(s) = (1—Af) igy—vtans (—gz+kl<77u2>+b“gz}, (45) parameters, viz.g, A and Ng. (a) The first two
ul dy are purely geometric parameters and indiaaescale
dependence (b) In contrast, the third parameter,

s =A g _g_Ei<Lbh> prob 1| ot ot oh B } Nr=pH+/gL/vsus, serves as a dynamical scaling
MDTRE T o\ 2 ) ax Ny |02 T ayax a2 22| ) factor that is analogous to the Reynolds number in New-
(46) tonian fluid. Thereforethe debris flow equations are

2strictly speaking, the expressions within the square brackets in
(46)—(47) are physically not source terms, but in order to maintain
the structure of the debris flow equations as those for dry granular
47 flows (15)—(20) we arranged these terms into the source terms.

W 0xdy ax2  e2n?

[10 (pbh\ pbtob 1
=L (),

% 2u R 3
Lhay\ 2 h dy Np ’
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(iv)

()

(vi)

(vii)
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scale-dependentMoreover, if we adopt an advection- 7 The new features of the model equations

diffusion equation (see Sect. 9.4.2) as done by Iver-
son and Denlinger (2001) for the determinationydf
(or A ) then, a new parametdd, the so-called pore

Equations 89)—(41) constitute &wo-dimensional conserva-
tive system of equationshich entails several advantages

pressure diffusivity, also enters into consideration as aover previous model equations of the Savage-Hutter (1989)
new dynamical parameter. In computations, in ordertype for dry granular materials and Iverson (1997) type for
not to distort the geometry of the slide, we shall choosemixtures. They are as follows:

e=A=1 and thu.=H=R.

(1) The equations systematically include the curvature and

The order of different terms in46) and @7) should
be understood as follows. First, let us consider
(46). Test simulations reveal that in debris flow dy-
namics the effect 0§292u/dx%+03%v/9ydx+0%u/dy?)
is negligible as compared tou®s?h?. On the
other hand, typically,Nge? is of O(1). Therefore,

= {(20%u/0x24+0%v/9ydx+0%u/0y?) —3u/e?h?) is (2

also of0 (1), consistent with the order of the other terms
of (46). A similar analysis holds true fod{).

For geophysical debris flows typical valueseadnd Nz

are 103 and 16, respectively. We have already seen
in single-phase avalanche equations that ordierms
must be retained in the final governing equations. This
request is even more intensified for debris flow mod-
elling. The lowest approximation (i.eQ (1)) excludes
the effect of the pore pressure, as is evident frd@),(
(47). lverson and Denlinger (2001) have also concluded
this fact.

An expression for the evolution of the basal pressure
p? can be obtained by an advection-diffusion equation
for p? that is responsible for the distribution of the pore
pressure along the bed of the debris flow. Iverson and
Denlinger (2001) expressed ; as a function of the
mixture height, time and the diffusivity of the mixture.

Alternatively, Savage and Iverson (2003), coupled the (3)

pore pressure evolution equation with the mass and mo-
mentum balance equation to describe debris flow surge
dynamics over a one-dimensional rough incline. Here,

first, we will take some constant values, and then a bilin- (4

ear parameterisation df  in time and space for simu-
lation. This simple parameterisation can also produce
debris flow surges as discussed by Iverson and Den-
linger (2001) and Savage and Iverson (2003). In ap-
plications, one may couple these or other parameteri-
sations or evolution equations for pore pressure of the
fluid (as done in Sect. 9.4.2) with the present model
equations to describe debris flow surges down more
general mountain terrains.

The curvature ik, and torsion,n, effects of the ge- (5)

ometry enter in the model equations directly via the
Coulomb friction terms in 44)—(45), but they are
equally indirectly contained in the viscous terr§)¢

(47) via the pressurep?, at the bed, see3(). Note
that the components of the gravitational accelerations
gx» 8y, 8¢ also include such effects due to the curvature
and torsion of the reference topography (see Pudasaini
and Hutter, 2003).

torsion of the channelised basal topography. They are
written in a slope-fitted general orthogonal curvilinear

coordinate system. Therefore, they can be utilised to
describe debris flows along non-uniformly curved and

twisted channels of general type.

There is a non-zero gravity tergy in the cross-slope
direction, see45) and @7), which takes into account
the global effect of topographic variation in the lateral
direction. Thus, the lateral motion is explicitly gravity
driven, not only indirectly via lateral confinement gra-
dient, i.e.,db/dy. This might be crucial in designing
defence structures and when debris flows hit obstruc-
tions or are deflected on their ways. The torsion effect,
n of the topography is included in the net driving force
components, ands,. The components of the gravi-
tational acceleration also depend on both the curvature
and the torsion of the basal topography, (see Pudasaini
and Hutter, 2003). The coordinate, which was just a
straight line in the previous models, is now curved in
the cross-slope direction and for a torsion-free master
curve (i.e.,n=1), which lies in a vertical plane, these
model equations exactly degenerate to previous exten-
sions (e.g., Gray et al., 1999).

Similarly, these equations can exactly be reduced to the
avalanche equations of Pudasaini and Hutter (2003) as
special cases for which the paramet&rs=0, Ng— oco.

) We can form a three-dimensionally curved and twisted

channel using down-slope and cross-slope coordinates
andy alone. In principle, it is thus possible to model a
given channel by considering its thalweg and by choos-
ing 6 appropriately as a function of the down- and cross-
slope coordinates. These are new flexibilities of the
model equations which are crucial to describe the mo-
tion of avalanching debris flows in curved and twisted
channels and mountain terrains in a more realistic man-
ner.

The equations of this paper are well structured and put
in a standard mathematical form. They enjoy two ad-
vantages: First, it is easy to write a numerical code
or to extend an existing numerical code available for
avalanche flows by including the new additional effects
of the viscous pore fluid. Next, from these model equa-
tions one can easily distinguish the friction contribution

of the solid grains and the viscous effect of the pore
fluid and their coupling. This coupling is represented by
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the parameten ;. Similarly, the structure of the equa- Savage-Hutter equations. For alternative numerical schemes
tions shows that the granular avalanche equations aralso see Denlinger and lverson (2001, 2004), Koschdon and
of hyperbolic type whereas, due to the pore fluid dif- Schafer (2003), Iverson et al. (2004), Patra et al. (2005) and

fusion, debris flow is governed by hyperbolic-parabolic Volimoller (2004).

type partial differential equations. This scheme requires the system to be written in terms of

conservative variables, which are the debris flow thickness,

. . h and the depth integrated down- and cross-slope momenta,
includes effects of curvature and torsion of the bed to—mxzhu andm,—hv. With the vector of conservative vari-

pography, see30). Numerical results show that such _ T N
an effects are substantial, for detailed discussion, se(\ai‘vtr)iltet;\l\;;(h’mx’my) , the model Egs.39)—(41) can be
Sect. 9.1 and Figh.

, . w of(w)  ag(w)
(7) The coordinates of these model equations follow the— + —— +
: dt ax ay
basal topography. So, a mathematically correct asymp-
totic analysis could rigorously be performed. The down-slope and cross-slope momentum flux vedtors
and the vector of the source tersiare given by

(6) In the present model the pore pressure at the péd,

= s(W). (48)

In this sense, one may infer that the above equation@nd9:
should be physically, geometrically and mathematically -
more suitable than previously proposed models (e.g., Ivery _ m2/h + Brh2/2
son, 1997; Iverson and Denlinger, 2001) for the description *

)

of debris flows down arbitrarily curved and twisted channels mmy/
with variable cross-sections. ny
g= mymy/h ,
m2/h + Byh?/2
8 Numerical integration techniques O
The debris flow equations39)—(41) comprise anonlinear S~ st : (49)
Sy

conservation systentShock formation, possibly diffusively

smoothed out, is an essential mechanism in debris flows 0R,4 termsg, and g, defined in 43) incorporate the ex-

. . . . . X Y
an inclined surface merging into a horizontal run-out zone Ol ding and contracting states of the avalanching debris mass
encountering an obstacle when the velocity becomes subcrity, . gh the active and passive earth pressures. Similarly, the

ical from its supercritical state. Note that the formation of . -~ terms, ands,, described in42), (44)—(47) are of

ghocks in debris flow depends strqngly on the volume frac-cjq| importance as they include the total driving force gen-
tion of the solid. Therefore, for high sediment concentra-

' g > - “ erated by gravity, friction, curvature, torsion and local details
tions debris flow surge fronts are most likely associated with¢ he pasal topography through its gradient terms and the
a jump in the height and velocity field although the rear part

AR . ! S ) “*pore pressure distribution of the viscous fluid. They jointly
of the debris is highly liquefied. This will be discussed in yotermine the dynamics of the flow.

more detail in Sects. 9.3 and 9.4. To produce more accu-

rate and physically reliable solutions of strongly convective

nonlinear conservation equations, it is therefore natural tog Debris flow down curved and twisted channels

apply conservative high-resolution numerical techniques that

are able to resolve the steep gradients of the unknown variThe model equations3)—(41) predict the flow of a debris
ables and moving fronts often observed in experiments andnaterial over a non-uniformly curved and twisted channel in
field events of avalanches and debris flows. The NOC (Nonwhich the cross-slope curvature (or the channel width) may
Oscillatory Central) scheme proposed first by Nessyahu an@équally be varying. We will focus on the numerical simula-
Tadmor (1990) and extended to higher dimensions by Jiangdions of such flows, their physical explanation and the anal-
and Tadmor (1998) is implemented to solve the model equaysis and interpretation of the results. The main target is the
tions. This is a high resolution shock capturing scheme. Theanalysis of the joint effects of curvature, torsion, cross-slope
necessary background and full details of this method can béopographic variation and “centrifugal” force and the effects
found in the literature (see, e.g., Harten, 1983; Harten et al.pf the pore fluid pressure in the dynamics of a debris flow
1986; Yee, 1987; Nessyahu and Tadmor, 1990; LeVequebody down more general channels and topographies. In the
1990; Kioner, 1997; Jiang and Tadmor, 1998; Toro, 2001) examples below, the form of the employed master curve and
and its application to avalanches is, e.g., given by Tai etthe variations of the cross sections are still somewhat ideal-
al. (2002), Pudasaini (2003), Pudasaini and Hutter (2003a)istic. Nevertheless, the examples will disclose features and
Wang et al. (2004) and Pudasaini et al. (2005a, b). We do nogffects that are quantitatively well understood but could, so
further elaborate here on the TVD (Total Variation Diminish- far not be explicitly quantised. What we mean here are ef-
ing) techniques and optimal choices of limiters and cell re-fects of combinations of pore pressure and geometric effects
constructions. Wang et al. (2004) made a careful study invesedue to, e.g., curvature and torsion of the thalweg. The re-
tigating its optimal use in avalanche studies of the extendedsults will allow us to judge about the applicability of the
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Fig. 3. Contour plots of an avalanching debris mass flowing down a curved chute that is flat in the lateral direction: granular-fluid mixture
with fluid component:A =0 (top), A y=0.2 (middle) andA =0.3 (bottom). The upper part of the chute250) is inclined at an angle of

45°, the middle part is a transition zone (250<350) and the final pattx>350) is horizontal and flat. Time slices=18, 38, 50, 70. The

mass is initially kept in a hemi-spherical cap of radius éentred at23, 0) and initial velocity is zero. Internal and bed friction angles of

the grains are 33and 27, respectively andvV g=3x 10°. All quantities are dimensionless.

new-model equations. On the other hand, they will open aOnly one curvature in the downhill direction is involved in
wide spectrum of possibilities for practitioners involved in this configuration. Hence, the chute is laterally flat and
hazard mapping, risk management and public safety. Fotorsion-free, i.en=1.

single-constituent dry granular avalanches, corresponding re- Figure3 depicts several contour plots of debris flows down
sults were obtained by Pudasaini et al. (2005a). This pasuch a curved chute in which the ratio between the pore
per aims to extend those simulations for two-phase debrigluid pressure at the bed and the total normal pressure of
flows. In the sequel, we will separately present simulationsthe debris mass perpendicular to it correspondAtp=0

(i) for a simply curved chute or a flume, aqd) for contin-  (top), A =0.2 (middle) andA y=0.3 (bottom). For all val-
uously curved and twisted channels. We will consider dif- ues of A ¢ (roughly speaking, the volume fraction of the
ferent (variable) volume fractions of the fluid component in fluid) the contours are plotted for four dimensionless time
order to study the explicit influence of the interstitial fluid in slices:r=18, 38, 50, 70. The mass is initially kept in a hemi-
debris flow dynamics. Another important aspect of this paperspherical cap of radius.B centred at23, 0) and the initial

is the coupling of the advection-diffusion equation, proposedvelocity is zero. The internal and bed friction angles of the
by Iverson and Denlinger (2001) for the determination of thegrains are 33and 27, respectively, and the quasi-Reynolds
bed fluid pressure, with the model Eq89%—-(41), and com-  number is taken to b&¥r =3x 10°, see Iverson and Denlinger
parison of model simulations with the laboratory and field (2001). These parameters will also be used in the remainder

experiments. of the paper whenever applicable.
9.1 Debris flows down a curved chute Discussion of results:
Geometry of the chute and parameters: Geometric effectsor a simply curved chute, as used here,

it is easier to understand the geometric effect on the dynam-
Let us consider a chute with a flat upper part<@50) ics of the debris flow. After the release of the mass from its
inclined at an angle of 45 continuous transition zone initial rest state the debris flow is accelerating primarily in
(250<x<350) and a horizontal, flat, final pattk>350). the longitudinal direction and only a little spread takes place
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Fig. 4. As in the last panel of Fi@ but neglecting the influence of the curvature in the pressure at the bed; manifesting substantial contribution
of the term including the curvature in the dynamics of the debris flow.

in the transversal direction, see forms of the masses at tim&ffects of the curvature on the pressure at the bed

t=18 in all three panels in Fig3. This is clearly because

the flow is driven by gravity. As soon as the mass enters thé=rom Egs. 80) and @1) one can infer that there is substan-
transition zone due to the longitudinal curvature of the chute tial contribution of the curvature and torsion on the pressure
due to the increased friction the body starts extending also irdt the bed by the terienu?, hence on the flow dynamics. To
the cross-slope direction. These effects are seen in all paneRge this effect quantitatively, we repeat the above simulation
at time+=38. In the run-out zone the height of the pile is With A y=0.3, but without inclusion of the curvature in the
always increasing (from=50 tor=70) and the body comes expression for the basal normal pressure, pf=—A sg:h

to a rest, as plotted for time=70. At all times the sliding and7};_,=— (1-Ay) g:h. This shows that the pore fluid
and deforming debris body is symmetric about the centralpressure at the bed is decreased by the am@yir(mnuz) h

line (y=0) of the chute. This is evident because the chute isbut at the same time the solid (normal) pressure at the bed is
torsion-free. also decreased bfi—A ;) (Axnu?) h. This means that, al-

) o . though the mobility due to the fluid component is decreased
Effects of the fluid: Our next aim is to study the influence of (relatively) by 30%, the relative 70% decrease in the solid

the fluid component in the dynamics of the debris flow. From 3| pressure reduces the Coulomb frictional resistance

jchg mechanism of the mixture of solid and quid.constituentsquite considerably, se@4) and @5), thus substantially in-
it is clear that as the value of the paramedef increases  (yeasing the reach of the debris body in the transition zone.
the contribution of the fluid increases. This is simply due gjg,re 4 displays the effect of the curvature on the pressure
to the fact that the Coulomb friction between the grains is 4t the hed. Parameters chosen for the simulation are as in the
decreased, a_nd _that the_z debris mass is more liquefied. Conygy panel of Fig3, but the curvature of the bed topography
sequently, with increasing values of the parameterthe g et 1 zero. The difference in the dynamics between these
travel distance of the flow increases dramatically. The fluidy,, pictures is substantial. Similarly, one can investigate the
presence also implies changes to the form of the body. Theact of the torsion on the pressure at the bed.
forms and positions of the fronts and tails and the curvature
of the geometry of the deforming body are explicitly depen-9.2  Debris flow down non-uniformly curved and twisted
dent on the value of ;. With increasing value of\ y the channels
increase of the speed of the tail is much faster than the speed
of the front (e.g., compare the three panels in Bigt time At first, we consider helically curved and twisted channels.
t=38). Further interesting phenomena are in the deposit and his is an academitest exampleahelixas a master curve so
in the run-out zone. The top panel shows that the final deposiés to form a helically curved and twisted channel with other-
(timer=70) for dry granular flow is convex with its center ly- wise circular and/or parabolic cross section. Let us consider
ing beforex=400, whilst for debris flow, e.g., with ;=0.3, a circular helix described by
the center of the body lies beyond=500, see the bottom
panel; and the form of the deposit has reverse “Barchan dun
type” geometry with two “horns” lying on either side of the where# is the azimuthal angle. The arc length, curvature,
central line of the chute facing the upstream direction. torsion and pitch of the helix are given by

From these observations one may draw the inferences that 12
the form and speed of debris flows are explicitly influenced x = (A2 + BZ) 9,
both by the geometry of the topography and the relative vol-
ume fractions of the fluid and solid constituents in the mix- x = A/ <A2 + Bz) ,
ture.

g(ﬁ) = (Acost, Asin®, —BY), (50)

t=—B/ (A2+32) :
P = 2B, (51)

respectively.



S. P. Pudasaini et al.: Modelling debris flows down general channels 811

T
100 R =
; Outside-Curvature
50 : _
T
y or t=38 ]
_50 I v N N —
Upper Part Transition Run-Out Zone A = 0

-100[~ | Inside—Curv‘ature | | | | !

0 100 200 300 400 500 600

I I I I I I

100 =
50 —
y o -
_50 — —
-1001 I I I I I . I i

0 100 200 300 400 500 600

T T T T T T
100 =
50 —
Y O _|
_50 I —
A =03

~1001 I I I I I I i

0 100 200 300 400 500 600

xT

Fig. 5. Contour plots of avalanching debris mass flowing down a curved and twisted channel: granular-fluid mixture with fluid compo-
nent: A ;=0 (top), A ;=0.2 (middle) andA y=0.3 (bottom). The upper part of the chute{250) is inclined at an angle of 45the

middle part is a transition zone (2&@ <350) and the final partx>350) is a horizontal channel. Parameter values atg=B=300,

y € [-120 120], z7=128. Time slicesr=18, 38, 50, 70. The mass is initially kept in a hemi-spherical cap of radi&scéntred at23, 0)

and initial velocity is zero. Internal and bed friction angles of the grains ateB8 27, respectively andvz=3 x 10°. All quantities are
dimensionless.

Based on the master curvé(j a helically curved and wherea determines the intensity of the decrease of the cur-
twisted channel is formed. The lateral section of the topogravature and torsion. For the simulations, we haveasel.
phy is the intersection of a plane perpendicular to the thalwed=quation 52) tells us that the radius of curvature and torsion
of the channel and the channel itself. In the sequel, we willof the channel increase rapidly as the arc-lengttecomes
deal with cases in which the transition and run-out zones ardarger thany;. Before this transition point, the channel has
included in the geometrical part of the model and that theuniform radius of curvature and torsion. This increase forces
cross-sectional geometry of the channel is also variable.  the channel quickly to merge (approximately) into a lesser

In reality channels may be arbitrarily curved and twisted and lesser curved and eventually horizontal channel. This
with variable cross-slope curvature and channel width. Realhorizontal portion of the channel also forms the run-out zone
istic flow tracks go from steep to flat regions where the mov-for the debris. There is a continuous decrease of the curva-
ing masses come to a halt. The geometry must play a cruciaure and torsion fromx;=250 tox,=350. Then, forx>x,
role to make the body stand still. The concave curvature ofthe curvature and torsion are always (almost) zero, and thus,
the mountain side increases the bed friction and consequentlghe subsequent channel is forming a channelised circular run-
forces the debris mass to slow down and eventually come t@mut. The parameter values auy=300, B=300, so that the
rest. In this subsection we will present debris flow simula- channel is inclined relative to the horizontal a49he ra-
tions through more general channels which possess run-oudius of curvature in the cross-slope directionis=128 and
Zones. y € [—-120,120.

9.2.1 \Variable curvature and torsion _ _
Discussion of resullts:

Consider a channel of which curvature and torsion are rede-

fined with a new expression fot in (51) as follows: Geometric effects:Figure5 displays thickness contours of

Ao, 0<x <ux, debris flows with three different values of;, respectively,
Ax) = { Agexpl(x —x)],  x; <x <ux, (52)  sliding down through a helically curved and twisted channel
Aoexpl(x, —x), x> x,, with non-uniform curvature and torsion given byl and
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force towards the central line) from the channelised bed to-
pography exceeds the force due to the radial acceleration. It
leads to a continuous rotation of the body towards the center
of the channel. This sidewise pressure is so strong that after
x=350 the mass comes back to the thalweg of the channel
(middle panel) and heads towards the opposite side of the
channel (bottom panel). Finally, the body comes to rest at a
time prior tor=70.

Effect of the fluid: The effect of the fluid is much more pro-
nounced here than in the previous case with debris sliding
over a curved but not twisted chute, see Bigwith increas-
ing value of the parametex ; the debris mass slides faster
throughout the channel and travels farther and farther in the
run-out zone. Similarly, with the increasing value/of the
center of mass of the final deposit comes closer and closer to
the central line of the channel (compare top and middle pan-
els) and ultimately it crosses the central line (bottom panel).
Fig. 6. Curved and twisted channel. The channel has a circularThIS behaviour of the motion of the body is doml_nated by
cross-section before the transition and merges continuously into th@0th the geometry of the channel and the contribution of
flat horizontal run-out zone. the fluid component in the mixture. Since the chute is uni-
formly channelised from initiation to the run-out zone in the
cross-section the mass can not spread in the lateral direction
(52) and a constant cross-slope channel widffihese con-  not even in the run-out zone. Instead, it is accumulated and
tours are plotted at the time steps 18, 38, 50, 70, respectivelglongated around and along the thalweg of the channel. The
As time increases, the debris mass is laterally getting lesghannelised topography also does not allow the formation of
spread, but, itis rapidly moving outwards from the center linethe Barchan type geometry of the debris mass in the run-out
of the channel in the front much more than in the back. Thiszone.
effect can clearly be seen in all three panels at tirael83 and
1=38. This is so because the speed of the front is much large?.2.2 Decreasing curvature & torsion, and variable cross-
than that of the tail. Such behaviour of the deforming mass is slope curvature
the joint effect of the curvature, torsion, and the radial accel- ) ] ) ]
eration that is modelled in the theory (Eqs5f~(17) for dry Real ghannels may be diverging or converging (with respect
avalanches, the top panel and EG€){(41) for debris flows, to the|r ch.ann(_el width or cross-slope curvature) glong the
the middle and bottom panels) through the gravitational acdownhill direction, see Fig2. .Therefore, the debris flow '
celeration components,, gy, g. and the net driving force theo_ry must be able to deal with more ge_neral ch_annels with
components,, sy, which include the curvature and torsion varying cross-slope curvature. At this point, we simulate the

of the thalweg, bed topography and the cross-slope curvaturd€Pris flow motion in a channel of which the parametes
of the channel. defined by 52) as in the previous case, but, now we vary the

Since the curvature and torsion of the channel are contin€hannel width starting from its left boundary of the transi-
uously decreasing far>x;=250, from =38 onward, the tion zone. This case is more important in geophysical appli-

debris mass tends to slow down and turn smoothly toward&ations because curvature and torsion decrease as one enters

the central line of the channel due to the confinement gra-'nto the horizontal run-out zone of a mountain valley. This

dient in the cross-slope. Corresponding to the decrease dt
the curvature and torsion, the inclination angle of the chute®

ffect can be achieved by defining a channel which merges
ontinuously into an open flat run-out zone according to

with the horizontal plane is also continuously decreased. v/zT, 0<x<ux,
Ultimately, the channel merges into a horizontal circularly 6(x, y) = § (v/z7) f(x), x <x < x;, (53)
curved channel, thus forming a gully-type channelised run- 0°, X > X,

out zone. Somewhere in the transition zone the Sidewisgynere; is the distance between the master curve and the
pressure (due to the lateral component of the grawtanona{hameg in the upper inclined part of the channel (hence a
2
3All figures shown for helical chutes are geometrically distorted. cpnstant) an(;.l”.(x)_ (1= (x=x1) / (X =x1))" Thu;, thg con-
The graphs are vertical projections of the chute and debris heapinuoUs transition of the parametric functieéfrom its higher
whose circular-annular geometry is stretched to become straight\./allue (v/zr) in the _upper part to 't$ zero.value in the opeh
Thus, a segment of the annular ring becomes a rectangle of whicfUN-out zone constitutes a three-dimensional channel which
the top edge is the chute outside and the bottom edge the chute at ths variable curvature both in the longitudinal and lateral di-
inside boundary. This graphical representation is chosen becauseliections. Other parameters are as in Sect. 9.2.1. A represen-
is relatively easy to program. tative example of such a channel is illustrated in Big.
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Fig. 7. Contour plots of avalanching debris flowing down a curved and twisted channel: granular-fluid mixture with fluid compgneat:
(top), A y=0.2 (middle) andA =0.3 (bottom). The upper part of the chute{250) is inclined at an angle of 45the middle part is a
transition zone (25@x <350) and the final pa«tx>350) is horizontal and flat. Parameter values a8e:300, A is redefined with4 =300,
the channel width is redefined with varialsley € [—120 120], z7=128. Time slicesr=18, 38,50, 70. The mass is initially kept in a
hemi-spherical cap of radius®Bcentred at23, 0) and initial velocity is zero. Internal and bed friction angles of the grains &a@B8 27,
respectively andvg=3x10P. All quantities are dimensionless.

Discussion of results: ilar. But, the form of the sliding body in the run-out zone
is completely different from that for the entirely channelised

Geometric effectsiFigure7 depicts the contours of the de- topography (Fig5). Since the channel is gradually opened in

bris flow motion after its release to the open run-out zone.the run-out zone the radial acceleration makes it possible to

The graphs describe the deformation of the debris disclosform the Barchan type geometry as in Fig®nd4, but now

ing the subtle reaction of it to the different geometry of the with the horns pointing obliquely-upstream. Note that with

transition and run-out region. Although the inclination of the increasing value of the fluid component the aerial coverage

channel is decreasing after reaching the transition zone, thef the deposit is also increasing.

debris body is heading radially outwards of the flat run-out

zone until it comes to rest close to the outside edge of the9.3 Variable pore pressure distribution

open channel. The main mechanism for this is that, as soon

as the mass enters the runout zone the radial acceleration d&-simple parameterisation for pore fluid pressure. The

creases rapidly, but, since the chute is flattening in the crossstructure of Egs.39)—(47) indicates that\  plays a signif-

slope direction, after the transition zone, the material bodyicant role in the description of the debris flow (see, Iverson

moves in the direction of the velocity at the moment directly @nd Denlinger, 2001; Savage and Iverson, 2003 for further

after the transition, departing away from the central line, andexplanation). Therefore, a proper parameterisation or de-

the velocity is decreasing with time due to the bed friction Scription of A ¢ is necessary. In reality, the pore-fluid pres-

until the debris body comes to rest. The direction and thesure is not constant but varies with time and along the debris

process of the deposition is in conformity with our physical body, usually its value being smaller in the front and larger
intuition and expectation. in the rear part. As a first attempt, to investigate the effect of

the variable pore pressure to the dynamics of debris flow we
Effects of the fluid: The most interesting effect of the fluid parameterise\ s as
component can be observed in this figure. Before the tran-
sition zone, the dynamics of the flow is exactly the same as
in Fig. 5, travel distances in the run-out zones are also sim- !

(x = r +x£)/2) (t —10)
()Cf — xr) (fmax— 10)

(54)

— A;‘nean_ AAf
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Fig. 8. Contour plots of avalanching debris flowing down curved and twisted channels: granular-fluid mixture with variable pore fluid
pressure that varies (increases) linearly from the front to the tail side of the debris body. Top, middle and bottom panels correspond to bottom
panels of Figs3, 5 and7, respectively, that were plotted for constant pore fluid pressure throughout the body. The upper part of the chute
(x<250) is inclined at an angle of 45the middle part is a transition zone (250<350) and the final partx>350) is the run-out zone.

Time slices:r=18, 38, 50, 70. The mass is initially kept in a hemi-spherical cap of radiGiscgéntred at23, 0) and initial velocity is zero.

Internal and bed friction angles of the grains aré 88d 27, respectively andvp=3x 10°.

where,Ar}“ea”is the mean value of ; in the longitudinal di-  flow surges, andi() run-out distances, mainly in the run-
rection between its front and rear valuas) ; the difference  out zones. In each case, it is seen that the fronts move a bit
of A at the rear end and the front of the body for the final slower and the rears move faster than those for constant pore
time, 7o the initial time andrmax the maximum time for nu-  pressure distribution. The reason for this is the decreasing
merical computation. For the simulation we tak@€2"=0.3 bed friction angle as one moves towards the tail of the body
andAA y=0.3. So,A; is a bilinear function of space and from its front. Another interesting effect is seen around the
time with its largest value at the rear and smallest value afront of the body, where the surface gradient increases with
the front of the debris body. Whemn=rnax the maximum increasing time and increasing value of the fluid component
value of A ; at the rear end is 50% larger (i.e., 0.45), and at(compare the graphs in all three panels/feB88). Similarly,

the front 50% smaller (i.e.,.05) than its value at the center the travel distances of debris bodies are also shorter than be-
(i.e., 03) of the body. Equationbd) thus describes a simple fore. These phenomena can be explained somehow with ref-
mechanism for the diffusion of the pore fluid pressure from erence to observations. Measurements at the base of experi-
the rear to the front of the debris body. mental flows show that coarse-grained surge fronts have little
: . , . or no pore fluid pressure. In contrast, the finer-grained thor-
Effects of variable pore fluid pressure. Figure8 depicts oughly saturated debris behind surge fronts is highly lique-

three panels for the debris flow simulation over the simply . . :
curved chute (top), the curved and twisted channel with uni-ﬂed by high pore pressure (Iverson and Denlinger, 2001). As

form cross-section from initiation to the deposit (middle), we will see, the present model, when coupled with a reason-

and the curved and twisted channel with open flat run—outable pore pressure distribution which may be determined by

zone (bottom), corresponding to the last panels of Fg. an appropriately postulated equation, is able to address these
and7, respectively. In these simulations the other parameteré) roblems.

are as before, but with variable pore pressure distribution ag 4 Comparison with experiments

parameterised byb@). Compared with their previous coun-

terparts, one observes two significant influences of the variy, this subsection we will present comparisons of simulation
able pore pressure at the bed, (i the forms of the debris  resyits with our model equations with two types of laboratory
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Fig. 9. Comparison between experimental data and model predictions for flow of dry sand released instantaneously from behind the gate of
a 20 cm wide rectangular flume (USGS), left panels data from Denlinger and Iverson (2001), right panels predicted results from our model.
The gate was opened at time zero. Contours are plotted normal to the bed with 1 mm isopaches of sand thickness for both right and left
panels.

and out-door flume experiments for dry granular and debris9.4.1  Dry granular flow

flow, respectively. For this purpose, all data and scales are

presented in dimensional units. In this paper we compare simulation results of our equations
with the data of a simple flume experiment of Denlinger and
Iverson (2001). The reason is that we want to compare our
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2 i i i i i i i fused upslope; and the sharp gradient in the height seen in
Predicted debris—flow surge development last two panels, both in the experiment and in our model per-

t=0s formance, could not be resolved in Volidter's simulation.
1.5F 1

9.4.2 Debris flow surges and hydrographs

Advection-diffusion equation

0.5p In order to compare numerical simulations of our model

equations for debris flow with flume experiments we first
need to present a short discussion on the advection-diffusion
equation that will be used to determine the fluid pressure
at the bedp®(x, y, t). Assuming the dominant role of the

Fig. 10. Predicted profiles of debris flow surges along the longitudi- pore fiuid pressure distribution in the dynamics of water-

nal section at four successive times on an inclined rectangular ﬂumgaFurated d(_abrls flow it is |mp0_rtant to mco_rporate an evo-
with inclination angle 324°. lution equation for the pore fluid pressure into the system

of balance Eqs.39)—(47). Following Iverson and Denlinger
(2001), we use a simple approach in connection with the
computational findings with their results and some other nu-r?g?si?teu? dsgg;t'g:ls' ;25:/ Zlalglkg)?]rs tireglfﬁvt,hgitr:;isa:]glwd
merical schemes which also employed their data. P > Only pa y along . ans,
and y, and that it also diffuses simultaneously in the nor-

Consider the small-scale granular avalanche experiment of, ) °. girection leading to the advection-diffusion equation
Denlinger and Iverson (2001) over a 20 cm wide, 5¢cm hlghapb/8t+uapb/ax+vapb/ay_D (azp/azz) | where D
. bed’

and 120 cmlong rectangular flume inclined atan anglé31 5 we hore pressure diffusivity in the mixture. We will em-

The flume merges continuously to the horizontal run-out andp|Oy this equation in our simulation with=10"% as em-
deposition zone. A volume of 290 énof dry quartz sand

was used in the experiment with internal and bed friction an-

gles, 40 and 29, respectively. Except for small boundary Comparison of the model with flume experiments

layer effects, due to the initial inflow condition and confining

parallel vertical walls, the flow mainly is unaffected by these Next, we consider a relatively large debris flow flume exper-
boundary layers and takes place in a vertical plane paralleiment with about 10 h of water-saturated sand and gravel.
to these vertical walls. This means that the depth integrated he rectangular flume which is inclined at angle%is 2m

deformation can be assumed to be one-dimensional along th&ide and 95m long and is connected with an additional flat
slope direction. run-out surface with slope.2’. The flume geometry, initial

conditions and parameter values are taken from Denlinger
and Iverson (2001).

Flow depth normal to flume surface, m

I n A n L
-10 0 10 20 30 40 50 60 70
Distance down-slope from gate, m

ployed by Iverson and Denlinger (2001).

Figure9 represents a comparison between the experimen
tal (left panels) and our simulation results (right panels)

of the avalanche height, respectively, with 1 mm contour pepyis flow surges:Figure 10 depicts the evolution of the
isopaches plotted normal to the bed surface. Comparison igyeed and shape of the debris flow surge after its release
made at five time slices which include the entire avalanch&rom the gate. Predicted results indicate that a blunt snout
motion. Most important aspects of model performance Cans quickly developed and is only modestly changed as the
be seen while comparing the panels on the left and rightyepyris front advanced farther downslope. The snout is al-
columns. It took 1.5s for the mass to complete depositionyays accelerating on the uniform slope, but the liquefied
in both cases. Predicted timing, depth, geometry, front andg;| phehind the snout is highly elongated and accelerated less
tail positions, and final deposit of granular sand flow fit al- rapidly than the snout itself. It was the reason for the surge
most accurately with measured data of Denlinger and IVersoryhape to stretch in length and decrease in height with time
(2001). Some boundary layer effects, mainly in the tail sidegnq travel distance. These phenomena are quite common in
of the debris body, can be seen at tim@s in the exper-  natyre and in experiments. These results are similar to those
imental result. Otherwise, this effect is negligible. Shocks presented in Iverson (1997) but more convincing than those

are.formed at the tail sidg of the body_in the deposits as seefresented in Savage and Iverson (2003). Alternatively, sim-
attimes 093 s and 150 s in the experimental panels. They ations with no pore pressure (i.e., dry granular flow) would

are accurately predicted by our model simulations. Qualita|yroquce only a finely tapered (smooth) leading edge.
tively, similar results were also obtained by Denlinger and

Iverson (2001). However, the overall dynamics predictedDebris flow hydrographs:Figure 11 presents a test of the
by our model simulations are obviously more accurate tharmodel simulations against the measured debris flow hydro-
those of Vollndller (2004) in which it took a relatively large graph (i.e., the flow depth as a function of time at fixed loca-
time (20 s) for the mass to come to stand still, the mass trav-tion). We assume that the flow is uniform in the cross-section
elled significantly farther in the deposition zone, also dif- in the inclined portion of the flume. The left panels in Fig.
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Fig. 11. Comparison between measurements and two model predictions. Left: Experimental data of flow depth at three cross sections of a
water-saturated debris flow at USGS flume, 24 July, 1995 and numerical results predicted by Denlinger and Iverson (2001). Right: Numerical
results predicted by our model.

compare time series of measured depths at three downstreawith the supposition that the pore space suffers only negligi-
locations with the simulated results of Denlinger and Iversonble variations, allowed the drastic simplification to reduce
(2001), whilst the right panels are results from our modelthe binary mixture model equations to alternative balance
simulation. Comparison of the data and model predictionsequations with one-constituent properties. Mass balance of
reveal that both models predict the speed of the debris flowthis reduced continuum requires the solids velocity field to
surge reasonably well, and rather well with our simulation. be solenoidal, and the momentum balance equation takes its
In the Denlinger and Iverson (2001) model simulation the common one-constituent form with a Cauchy stress tensor
most significant prediction error occurred for the location that is the sum of the solids stress and the interstitial flu-
at 2m down-slope from the gate. Their model predictionsids stress. The interaction force disappears as a dynamical
are getting better farther down-slope. Our model simulationquantity from this reduced formulation. Closure conditions
can more convincingly predict the attenuation of the surgeare therefore only needed for the two peculiar stresses, and
front, but does not show any backup of the surge into mul-we proposed a cohesionless Coulomb type dry friction law
tiple surges, that can be seen in their simulation. Reliablefor the solids stress and a Newtonian viscous type postulate
simulation of the instability that causes a single surge to defor the interstitial fluid. The equations differ from the earlier
velop into multiple surges is still poorly understood, it re- equations of the dynamics of dry granular avalanches exhibit-
quires more accurate knowledge of physical instabilities. Ining Coulomb type friction only by the fluid presence and the
both simulations, as debris flow surges (fronts) reach crossviscous fluid deviator stress.
sections 33m and 66 m from the gate their “primary wave- The non-dimensionalisation of the equations and the
forms” have markedly accelerated, elongated and attenuategjerivation of the reduced depth-integrated two-dimensional
final equations are based on the introduction of an orthog-
onal curvilinear coordinate system following the thalweg of
10 Discussion and conclusions the channel and polar coordinates in the cross sections per-
pendicular to it, and the geometric assumption that the mov-
In this paper a reduced two-phase solid-fluid model was preing masses are thin and long. The corresponding asymp-
sented that is capable to describe the dynamics of the catasetic analysis has not been repeated because it would re-
trophic motion of water saturated soil down arbitrary chan- produce earlier computations done for the extended Savage-
nelised topographies from initiation to run-out. The basic Hutter model (see Pudasaini and Hutter, 2003). We re-
equations are those of classical binary mixture, however withstricted this analysis only to those terms which are new and
the simplifying first assumption imposed that the fluid con- are stated in43)—(47). For vanishing fluid contribution
stituent velocity differs only by a negligible amount from the (A =0, Nrp—o00) and torsion free bed topography=1)
constituent velocity of the solids phase. It is paired with aour new model equations exactly degenerate to the previ-
second ad-hoc assumption an which is of constitutive na-  ous model equations of Savage-Hutter-type (e.g., Savage and
ture explicitly given by us algebraically. Both assumptions Hutter, 1989, 1991; Gray et al., 1999) which was not possi-
are essentially due to Iverson (1997) and are the strengtble by Iverson and Denlinger (2001) model, which in fact,
and weakness of the model. The latter assumption, pairedimed to generalise the Savage-Hutter model.
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In this process it turned out that the component of the mo-Edited by: G. Wieczorek
mentum balance perpendicular to the basal surface reducdgeviewed by: one referee
to a balance of normal fluid-pressure gradient, normal solid
stress gradient, gravity force and “centrifugal” force com-
ponents (see ER7). This required an additional closure References
relation that would not be needed in a full theory, namely ) o o
a postulate how the gravity plus “centrifugal” force compo- de Boer, R.: Theory of Porous Medlg: Highlights in Historical De-
nent would be split among the fluid pressure and the solid velopment and Current State, Springer, 2000. .

. o dell'lsola, F. and Hutter, K.: A qualitative analysis of the dynamics
normal stress perpendicular ?O the base. An additive d_ecom' of a sheared and pressurized layer of saturated soil, Proc. R. Soc.
position was suggested assigning the part to the fluid A 454, 3105-3120, 1998.
pressure andl—A ) part to the solid normal stress. This penlinger, R. P. and Iverson, R. M.: Flow of variably fluidised gran-
division is the weakness of this formulation, because it is ular masses across three-dimensional terrain. 2. Numerical pre-
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soil physics where the normal fluid-pressupe,is divided 2001.
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