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Abstract. This paper is an extension of the single-phase
cohesionless dry granular avalanche model over curved and
twisted channels proposed by Pudasaini and Hutter (2003).
It is a generalisation of the Savage and Hutter (1989, 1991)
equations based on simple channel topography to a two-
phase fluid-solid mixture of debris material. Important terms
emerging from the correct treatment of the kinematic and
dynamic boundary condition, and the variable basal topog-
raphy are systematically taken into account. For vanish-
ing fluid contribution and torsion-free channel topography
our new model equations exactly degenerate to the previ-
ous Savage-Hutter model equations while such a degenera-
tion was not possible by the Iverson and Denlinger (2001)
model, which, in fact, also aimed to extend the Savage and
Hutter model. The model equations of this paper have been
rigorously derived; they include the effects of the curva-
ture and torsion of the topography, generally for arbitrarily
curved and twisted channels of variable channel width. The
equations are put into a standard conservative form of par-
tial differential equations. From these one can easily infer
the importance and influence of the pore-fluid-pressure dis-
tribution in debris flow dynamics. The solid-phase is mod-
elled by applying a Coulomb dry friction law whereas the
fluid phase is assumed to be an incompressible Newtonian
fluid. Input parameters of the equations are the internal and
bed friction angles of the solid particles, the viscosity and
volume fraction of the fluid, the total mixture density and
the pore pressure distribution of the fluid at the bed. Given
the bed topography and initial geometry and the initial ve-
locity profile of the debris mixture, the model equations are
able to describe the dynamics of the depth profile and bed
parallel depth-averaged velocity distribution from the initial
position to the final deposit. A shock capturing, total varia-
tion diminishing numerical scheme is implemented to solve
the highly non-linear equations. Simulation results present
the combined effects of curvature, torsion and pore pressure
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on the dynamics of the flow over a general basal topography.
These simulation results reveal new physical insight of debris
flows over such non-trivial topography. Model equations are
applied to laboratory avalanche and debris-flow-flume tests.
Very good agreement between the theory and experiments is
established.

1 Introduction

Debris and mud flows are multiphase, gravity driven flows
consisting of randomly dispersed interacting phases. In the
geophysical context they consist of solid components with
different grain size and shape, of liquid and possibly air.
A theory accounting for all these interactions is still out of
reach, so that most of the present models mainly focus atten-
tion to limiting cases:(i) single phase dry cohesionless gran-
ular continuum of a body consisting of particles of a nominal
mean, representative size, and(ii) saturated binary mixture
consisting of a solid constituent and a fluid that fills the entire
pore space.

Model (i) predicts the avalanching flow of dry granular
materials. Its most popular version seems to be the class of
Savage-Hutter type models (Savage and Hutter, 1989, 1991;
Gray et al., 1999; Pudasaini and Hutter, 2003; Pudasaini
et al., 2003, 2005a). It is based on the assumption that
the rapidly moving granular mass is density preserving and
the internal, material and basal sliding properties can be de-
scribed by cohesionless Mohr-Coulomb type frictional laws
involving as material parameters the internal and bed friction
angles. Supposing predominance of sliding over shearing a
depth averaging is meaningful without loosing great accu-
racy of the dynamical description as given by the emerging
equations. These equations have been applied to different
catastrophic flow configurations (see, e.g., Zwinger et al.,
2003; Pitman et al., 2003; Patra et al., 2003). Laboratory and
some field experiments have corroborated their validity for
catastrophic land slide and avalanche events (see, e.g., Gray
et al., 1999; Denlinger and Iverson, 2001; Pudasaini, 2003;
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Iverson et al., 2004; and Pudasaini et al., 2005b). Their limits
of applicability are discussed in Hutter et al. (2005).

Many debris and mud flow events are triggered by heavy
rain falls, so that the motion of the sliding mass of debris
or mud is better described by a mixture of a solid and a
fluid phase under conditions of saturation. This is indeed
the underlying concept of all debris flow models known to us
that go beyond a single phase description. The most promi-
nent examples are the debris flow models of Hungr (1995),
Iverson (1997), Iverson and Denlinger (2001), Iverson et
al. (2004), Denlinger and Iverson (2001, 2004) and Pitman
and Le (2005), but pioneering work of Takahashi (1991)
should also be mentioned.

The underlying simplifications are performed on two dif-
ferent levels. First, it is assumed that the mixture density
can be taken as constant. Moreover, the seepage velocity is
introduced as a variable that replaces the fluid velocity as a
basic field. From the mass and momentum balance of the
mixture as a whole and the implementation that the seepage
velocity is negligibly small, it then follows that the veloc-
ity of the solid constituent is the only remaining kinematic
field1. The momentum equation, formulated for the mixture
as a whole, contains then as constitutive quantities the solid
and fluid partial stresses which, respectively, are modelled as
a Coulomb material, just as in the Savage-Hutter theory and
as a Newtonian fluid with constant viscosity. So, formally,
this reduced two phase debris model appears as if it were a
one-constituent model with a fluid stress composed of a pres-
sure and a dissipative stress. A Darcy type interaction force
does not enter.

The second simplifying assumption is based on the shal-
low geometry of the debris masses. It motivates introduc-
tion of the thickness averaging to arrive at model equations
for the depth and depth-integrated velocities tangential to
the basal surface. In this process the total traction of the
solid and fluid constituents perpendicular to the free sur-
face must be divided into solid and fluid constituents, and
this is done, as in Iverson (1997) and Iverson and Denlinger
(2001), by introducing a factor3f such that the normal
stress(1−3f )T(zz) and3f T(zz) is composed of the partial
solids and fluids stresses.3f is treated phenomenologically
as an internal variable that may follow from a diffusion equa-
tion for the fluid pressure. The emerging equations are then
so structured that the limit3f =0 recovers the Pudasaini and
Hutter (2003) model, whilst the limit3f =1 generates the
purely viscous equations appropriate for a slush or a debris
avalanche. The former constitute a purely hyperbolic, the lat-
ter a mixed hyperbolic-parabolic system of equations. These
equations contain a scale dependent dimensionless quantity
NR (see Iverson, 1997; Iverson and Denlinger, 2001) which
is the fluid volume fraction weighted Reynolds number.

1The fluid velocity is set equal to the solid velocity whenever
their difference arises; this appears formally to be tantamount to
the neglection of the Darcy interaction force, but it manifests itself
through the formulation of the fluid constituent Cauchy stress.

The physical foundation of this debris flow model is based
on the recognition that the fluid stress significantly con-
tributes to the dynamics of the flow. In the soil mechanics
context, where the viscous properties of the fluid are ordinar-
ily ignored, this manifests itself as the significant role played
by the pore pressure; here the viscous contribution is added,
and it stabilises the numerics because the viscous stresses and
the diffusion equation for the pressure introduce parabolic-
ity into the system. Mathematically, the present formulation
adopts an orthogonal coordinate system along a curved and
twisted master curve (see Pudasaini and Hutter, 2003) that
is suggested by the thalweg of the valley or corrie, through
which the debris flow takes place. This is advantageous and
preferable to the horizontal and vertical coordinates used by
others (see, e.g., Hungr, 1995; Iverson and Denlinger, 2001,
2004; Zwinger et al., 2003; Pitman et al., 2003; Patra et al.,
2005), because it is more naturally adjusted to the geometries
which one often encounters in debris flows – and it is more
accurate whenever slopes are large (30◦–50◦) and the moun-
tain valley is generally curved and twisted. In fact, a math-
ematically correct asymptotic analysis cannot rigorously be
performed if the coordinates are not following the topogra-
phy.

The model equations include the effects of the curvature
and torsion of the topography in the dynamics of the de-
bris flow and influence of the pore fluid pressure distribution
is made explicit. Important terms emerging from the cor-
rect treatment of the kinematic and dynamic boundary con-
dition, and the variable basal topography are systematically
taken into account. For vanishing fluid contribution and tor-
sion free bed topography our new model equations exactly
degenerate to the previous model equations of Savage and
Hutter (1989, 1991); this was not possible with the Iverson
and Denlinger (2001) model, which in fact, aimed to gener-
alise the Savage-Hutter model. A shock capturing, total vari-
ation diminishing numerical scheme is implemented to solve
the highly non-linear model equations. Simulation results
present the combined effects of curvature, torsion and pore-
fluid pressure on the dynamics of the debris flow over var-
ied topography. These simulation results reveal the physics
of the debris flows over such non-trivial topography which
could not be achieved with previous model equations.

The model equations are examined by comparing their nu-
merical results with two different experiments (Denlinger
and Iverson, 2001):(i) Small-scale laboratory avalanche
of dry sand sliding down an inclined rectangular flume
that merges continuously to the horizontal deposition zone;
(ii) Large-scale water-saturated debris flows in an out-door
flume. The former case deals with the dynamics of deforma-
tion of avalanche from initiation to deposit, whilst the latter is
concerned with the debris flow surge development and its hy-
drographs at different cross-sectional positions of the flume.
Very good agreement between theory and experiments is ob-
served.

In what follows, we shall present in Sect. 2 the govern-
ing field equations and boundary conditions. In Sect. 3 the
general coordinate system is presented and Sect. 4 repeats
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the model equations of Pudasaini and Hutter (2003) as an
extension of the one-constituent Savage-Hutter model; these
equations are preparatory, but equally necessary for the for-
mulation of the general model. Section 5 then addresses the
peculiarities related to the fluid components. The final, depth
integrated equations are summarised in Sect. 6, and the new
features of the model are discussed in Sect. 7. Section 8
briefly introduces the numerical method and Sect. 9 discusses
results obtained for flow configurations through curved and
twisted channels and some comparisons of these with flume
experiments of Denlinger and Iverson (2001). Section 10
presents a discussion of the achievements and draws infer-
ences for further work.

2 Field equations for a binary-mixture of a solid and a
fluid

2.1 Mass and momentum balance equations

We start with the standard balance equations for binary mix-
tures. The mass balance equations for the solid and fluid are,
respectively,

∂(ρανα)

∂t
+ ∇ · (ραναuα) = mα, (α = s, f ) (1)

where s and f stand for “solid” and “fluid” and∇ is the
gradient operator,∂/∂t indicates partial differentiation with
respect to time,ρs andρf are the true mass density of the
solid and fluid,νs andνf are the volume fraction of the solid
and fluid, respectively. Similarly,us anduf are the solid and
fluid velocities, respectively, andms andmf are the respec-
tive rates of solid and fluid mass production, per unit volume.
We consider only saturated debris material, so, the volume
fractions must obey the saturation conditionνs+νf =1. We
define the total mixture mass densityρ and the barycentric
velocityu as

ρ =

∑
α=s,f

ρανα, u =

∑
α=s,f

(ραναuα)/ρ. (2)

In the sequel we shall assume no mass exchange between
the solid and fluid constituents, i.e.,ms=mf =0 and the con-
stituents are incompressible. So, by dividing (1) by ρα and
adding the resulting equations forα=s andα=f we obtain
the mixture mass balance as

∇ · νf (uf − us) + ∇ · us = 0. (3)

From the mixture theory, we have the momentum balance
equations for the solids and fluid

ρανα

[
∂uα/∂t + uα · ∇uα

]
= ∇ · Tα + ραναg + fα,

(α = s, f ) (4)

whereg is the gravitational acceleration,Ts andTf are the
partial Cauchy stress tensors for the solid and fluid phases,
respectively, andfα, with fs=−ff =f, is the interaction force
per unit volume that results from momentum exchange be-
tween the solid and fluid constituents.

In order to simplify the momentum equations we focus
on the motion of the solids and analyse the motion of the
fluid relative to that of the solids. For this purpose, following
the spirit of Iverson (1997), we need to define the relevant
fluid velocity which is the fluid specific discharge divided
by the fluid volume fractionq/νf =uf −us . Substituting this
relation into the fluid momentum equation yields

ρf νf

[
∂

∂t

(
q
νf

+ us

)
+

q
νf

· ∇

(
q
νf

+ us

)
+ us · ∇

(
q
νf

+ us

)]
= ∇ · Tf + ρf νf g − f. (5)

The ensuing analysis is based on the fact that|us−uf |�|us |.
Iverson (1997) justifies the estimate|q/νf |�|us |. Therefore,
Eq. (5) reduces to

ρf νf

[
∂us

∂t
+ us · ∇us

]
= ∇ · Tf + ρf νf g − f. (6)

Adding (4) for α=s and (6) results in the simplified momen-
tum equation for the solid-fluid mixture

ρ

[
∂us

∂t
+ us · ∇us

]
= ∇ · (Ts + Tf ) + ρg. (7)

Similarly, the mass balance Eq. (3) reduces to

∇ · us = 0. (8)

Equations (7) and (8), originally proposed by Iverson (1997),
constitute the governing equations for debris flows. As can
be seen, there are two main differences between these equa-
tions and analogous equations governing the motion of a
single-phase granular solid, e.g., Savage and Hutter (1989).
These are:(i) they involve the total mixture densityρ, and
(ii) the influence of the fluid stressTf is explicitly incor-
porated into the momentum equation of the mixture. For
simplicity, from now on we will write the velocity field as
u instead ofus .

2.2 Evolution of stresses

The solid phase is assumed to satisfy a Mohr-Coulomb yield
criterion in which the internal shear stressS and the normal
pressureN are related by

|S| = N tanφ, (9)

whereφ is the internal angle of friction. Alternatively, the
fluid stresses obey the conventional linear law that governs
the behaviour of incompressible Newtonian fluids, explicitly

Tf = −pI + 2νf µf D, (10)

where p is the pressure,I the unit tensor,µf the pore
fluid viscosity which is multiplied by the fluid volume frac-
tion νf because only this fraction of the mixture produces
viscous stresses, andD is the strain rate tensor given by

D=
1
2

[
gradu+(gradu)T

]
.
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2.3 Boundary conditions

Saturated debris flows possess two distinct surfaces that
bound the domain of the moving material, i.e.,(i) the free
surface, and(ii) the bed. Kinematic and dynamic boundary
conditions must be formulated at these surfaces; their
complexity depends on the complexity of the theory as well
as on the physical processes one intends to include at these
boundaries. In general, the free surface is a material surface
of the solid, but not for the fluid. If saturated conditions are
assumed this implies a surface run-off of water. This run-off
must be small and will henceforth be ignored. Similarly,
we will also ignore any discharge of water into the ground
below the basal surface.

Kinematic boundary conditions.

The above simplifying assumptions imply the kinematic
boundary conditions for the solid phase

∂F β

∂t
+ uβ

· ∇F β
= 0, (β = s, b) (11)

where the superscripts ‘s’ and ‘b’ indicate that the respec-
tive variable is evaluated at the surface,F s (x, t)=0, and the
base,F b (x, t) =0, respectively. Equation (11) may also be
written as

∂F β

∂t
+ u|β · ∇F β

= |∇F β
|aβ , aβ

=
(
uβ

− u|β

)
· nβ ,

(β = s, b) (12)

wherenβ
=∇F β/|∇F β

| are the surface and basal outward
unit normals andaβ are accumulation and erosion/deposition
functions forβ=s and β=b, respectively. They must be
parameterised. If the normal component of the velocity of
the free-surface,us , and of basal surface,ub, agree with
the normal velocities at the free and basal surfaces,u|s and
u|b, respectively, then accumulation of solid mass at the free
surface and erosion/deposition at the bed are ignored. If
as

=0, there is no run-off at the free-surface, and ifab
=0,

there is no entrainment at the bed. Below we will limit
attention to this case.

Dynamic boundary conditions.

The free surface of the debris flow is traction free for both
constituents while the base satisfies a Coulomb dry–friction
sliding law for the solid constituent. That is,

Ts
sn

s
= 0, Ts

f ns
= 0, (13)

|Sb
| = Nb tanδ, or

Tb
s nb

− nb
(
nb

· Tb
s nb

)
=

(
ub/|ub

|

) (
nb

· Tb
s nb

)
tanδ, (14)

whereδ is the basal angle of friction. Ifas
6=0 andab

6=0,
then Eqs. (13), (14) must be complemented by the impulse
contribution due to surface run-off and entrainment of mass
from the ground.

The dynamic boundary conditions at the free surface im-
ply that it is stress-free for both constituents, and so the mix-
ture. For the fluid at the base a no-slip condition or a viscous
sliding relation can be incorporated. Equations (7) and (8)
together with the solid and fluid constitutive relations (9)–
(10) and boundary conditions (11)–(14) constitute a basis for
modelling debris flow dynamics.

3 Orthogonal general coordinate system

Curved surfaces strongly influence the flow dynamics be-
cause transverse shearing and cross-stream momentum trans-
port occur when the topography obstructs or redirects the
motion due to curvature and torsion. Resistance due to basal
friction is modified by “centrifugal forces” induced by bed
curvature and torsion. The channel topography and the ge-
ometry of the debris flow in the lateral and longitudinal di-
rections are illustrated in Fig.1. Similarly, Fig.2 represents
the geometric description of the coordinate system and some
prototype channel geometries with uniform, diverging and
converging curved and twisted channels that can be used in
the transportation of granular materials. In what follows, ex-
cept in Sect. 9.4, every quantity in this paper is written in
non-dimensional form.

Pudasaini and Hutter (2003) extended the Savage-Hutter
theory to flows of dry granular masses in anon-uniformly
curved and twisted channel. First, we will outline the geo-
metric configurations they implemented for dry granular flow
that we will also adopt in this paper. Consider a debris flow-
prone landscape and a subregion of it where the topogra-
phy allows identification of the likely debris flow track. A
space curve parallel to the thalweg of the valley is singled
out as a master curveC (which can be obtained, e.g., by
shifting the thalweg along its normal direction) from which
the track topography will be modelled. The curvature and
torsion of the master curve,κ=κ(x), τ=τ (x), are either as-
sumed to be known or can be computed from digital elevation
Geographic-Information-Systems (GIS) data as functions of
the arc lengthx of the master curve. Then, an orthogonal
coordinate system along the master curve is introduced; the
model equations are derived in this general coordinate sys-
tem. In the equations of this paper, (x, y) form a curved ref-
erence surface, wherex is the coordinate along the thalweg
of a mountain valley, whiley is the circular arc length in a
cross-sectional plane perpendicular to the thalweg of which
the value is determined by the relationy=εθzT , whereε is
the aspect ratio between the debris flow height and extent,θ

is the azimuthal angle which accounts for the cross-slope cur-
vature andzT (usuallyzT �1) is the radial distance between
the master curve and the thalweg andz is the coordinate per-
pendicular to the reference topography.

The present theory is designed to model the flow of de-
bris over channels having general curvature and torsion. Al-
though there are other models that consider the problem of
debris flow motion over curved slopes (e.g., Iverson and Den-
linger, 2001; Pitman et al., 2003), the model equations of this
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paper explicitly include curvature and torsion effects in a sys-
tematic manner. This makes the extended model amenable to
realistic debris motions down arbitrary guiding topographies.
This can be accomplished by coordinate transformation. Dif-
ferent from and extending the original SH-theory and all their
previous extensions (e.g., Gray et al., 1999; Pudasaini et al.,
2003) a moderately curved and twisted space curve is used
to define an orthogonal curvilinear coordinate system. The
governing balance laws of mass and momentum are written
in these coordinates.

4 Governing equations for single-phase dry granular
avalanche

If the interstitial fluid stressTf in (7) is zero then Eqs. (7) and
(8) together with the solid stress Eq. (9) and the boundary
conditions of Sect. 2.3 describe the field equations for sin-
gle phase avalanching motion. In this section we present the
model equations for a single-phase dry granular avalanche.

Pudasaini and Hutter (2003) formulated the balance laws
of mass and momentum as well as the boundary conditions
in slope-fitted curvilinear coordinates of mountain surfaces,

non-dimensionalised the equations and averaged them over
the depth of the avalanche. The final balance laws of mass,
and momentum in the down-slope and cross-slope directions
take the forms (correct toO(ε1+γ ), 0<γ<1)

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (15)

∂

∂t
(hu)+

∂

∂x

(
hu2

)
+

∂

∂y
(huv)=hsx −

∂

∂x

(
βxh

2

2

)
, (16)

∂

∂t
(hv)+

∂

∂x
(huv)+

∂

∂y

(
hv2

)
=hsy −

∂

∂y

(
βyh

2

2

)
, (17)

whereh is the depth of the avalanche measured normal to the
reference surface and the factorsβx andβy are defined as

βx = −εgzKx, βy = −εgzKy . (18)

The termssx andsy represent, respectively, the net driving
accelerations in the down-slope and cross-slope directions
and are given by

sx = gx −
u

|u|
tanδ

(
−gz + λκηu2

)
+ εgz

∂b

∂x
, (19)

sy = gy −
v

|u|
tanδ

(
−gz + λκηu2

)
+ εgz

∂b

∂y
, (20)
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in which |u|=
√

u2+v2 is the magnitude of the velocity
field tangential to the reference (basal) topography and(
−gz+λκηu2

)
is the normal stress at the bed.λκ is the local

curvature of the thalweg, whilst

η = cos(θ + ϕ(x) + ϕ0) , (21)

whereϕ(x)=−
∫ x

x0
τ(x′)dx′ gives the accumulation of the

torsion of the thalweg from an initial positionx0 andϕ0 is
a constant.gx , gy andgz are the projected components of
the gravitational acceleration along the down-slope, cross-
slope and normal directions of the channel, for explicit com-
putation see, Pudasaini and Hutter (2003). The aspect ra-
tio ε, and the measure of curvature relative to the typical
debris flow length,λ, are both small numbers given by the
scales[L], [H ], [R]: ε=[H ]/[L], λ=[L]/[R], that are used
to non-dimensionalise the equations. Here,[L] is the typical
avalanche length,[H ] is the typical avalanche height and[R]

is a typical radius of curvature of the channel. The basal to-
pography (which is the elevation of the real topography from
the reference surfacez=0, and includes the small-scale ge-
ometric features of the bed topography) will be denoted by
z=b(x, y).

The first terms on the right-hand side of (19) and (20) are
the gravitational accelerations in the down- and cross-slope
directions, respectively. The second terms represent the dry
Coulomb friction in which the normal tractions comprise of
the overburden pressure(−gz) plus a contribution due to the
curvature and torsion of the master curve

(
λκηu2

)
. Finally,

the third terms are the projections of the topographic vari-
ations along the normal direction.Kx and Ky in (18) are
called the earth pressure coefficients. Elementary geometri-
cal arguments and Mohr’s circles may be used to determine
these values as functions of the internal (φ) and basal (δ) an-
gles of friction, (Hutter et al., 1993), viz.,

Kx = Kxact/pass=2 sec2 φ

(
1 ∓

√
1−cos2 φ sec2 δ

)
− 1,

(∂u/∂x) ≷ 0,

Ky = Kyact/pass=
1

2

(
Kx +1 ∓

√
(Kx −1)2

+4 tan2 δ

)
,

(∂v/∂y) ≷ 0, (22)

whereKx andKy are active during dilatational motion (up-
per sign) and passive during compressional motion (lower
sign). We note that ignoring theO(ε)-contributions in (15)–
(20) reduces the equations to a mass point model and does
not allow determination of the deformation of the pile. The
dynamics of these equations will also be discussed in Sect. 6
in the context of debris flows. To describe the debris flow,
this model must formally be altered only by adding the pore
fluid stress.

5 Evolution and inclusion of the pore fluid stress

The evolution of the pore fluid stress is crucial in modelling
debris flow phenomena. Here we will not present the en-
tire calculation but only write the most important steps for

the inclusion of the fluid stress into the model equations of
Sect. 4. The routine procedure for the coordinate transfor-
mation, non-dimensionalisation, depth-integration, constitu-
tive relations (for the solid phase) and assumption about the
nearly uniform velocity profile through the debris flow depth
can be found in Pudasaini and Hutter (2003). We will follow
the spirit of their paper.

5.1 Contributions due to fluid stress

Using the orthogonal coordinates displayed in Figs.1 and
2, and with a scaling and dimensional analysis as in Puda-
saini and Hutter (2003) the new contributions due to the fluid
stress (10) which we must add in the down-slope, cross-slope
and normal components of the momentum balance equations
of the single-phase dry granular material (see, Eqs. (4.5)–
(4.7) in Pudasaini and Hutter, 2003) are, respectively

ε

[
∂p

∂x
−

2

NR

∂2ũ

∂x2
−

1

NR

∂

∂y

(
∂ṽ

∂x
+

∂ũ

∂y

)
−

1

ε2NR

∂2ũ

∂z2

]
+ O

(
ε1+γ

)
,

(23)

ε

[
∂p

∂y
−

2

NR

∂2ṽ

∂y2
−

1

NR

∂

∂x

(
∂ṽ

∂x
+

∂ũ

∂y

)
−

1

ε2NR

∂2ṽ

∂z2

]
+ O

(
ε1+γ

)
,

(24)

∂p

∂z
+ O

(
ε1+γ

)
. (25)

These are dimensionless local expressions andũ, ṽ are the
local dimensionless velocity components along the down-
slope and cross-slope directions, respectively,p is the dimen-
sionless fluid pressure andNR is the quasi-Reynolds number
which is the fluid volume fraction weighted Reynolds num-
ber (as introduced by Iverson and Denlinger, 2001) defined
as

NR =

√
gL ρH

νf µf

, (26)

whereg is the gravity acceleration,L andH are scales used
in the non-dimensionalisation, the typical extent and height
of the debris flow,νf is the volume fraction andµf the vis-
cosity of the fluid. A typical value ofNR is on the order of
105

−106. In the derivation of (23)–(25), some simplifica-
tions have been made, one being that the volume fraction of
the fluid,νf is independent ofz. For complete list of these,
see Pudasaini and Hutter (2003).

5.2 Fluid pressure at the bed

Due to the shallowness assumption the momentum equation
perpendicular to the reference surface is reduced to a balance
between the normal derivative of the total normal stress in
the normal direction and the mixture (debris) weight in this
direction. Adding the fluid contribution (25) to the normal
component of the local momentum equation for single-phase
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granular flow (Eq. (4.7), Pudasaini and Hutter, 2003) we ob-
tain the following equation for the pressure distribution in the
mixture due to the solid and the fluid

∂p

∂z
+

∂

∂z

(
Ts(zz)

)
= gz − λκηũ2

+ O (ε) . (27)

Integrating this from the surfacez=s(x, y, t) to the depthz,
thereby setting̃u'u+O(ε), yields

p + Ts(zz) =

(
−gz + λκηu2

)
(s − z) + O (ε) . (28)

Therefore, the total pressure at the bed,z=b(x, y, t), is

pb
+ T b

s(zz) =

(
−gz + λκηu2

)
h + O (ε) , (29)

whereh(x, y, t)=s(x, y, t)−b(x, y, t) is the depth of the de-
bris flow.

The fluid pressure is assumed to vary linearly through
depth which is also consistent with (28) in the normal di-
rection. The total stress on the bed is now decomposed into
two parts, the fluid and solid pressures, as follows:

pb
= 3f

(
−gz + λκηu2

)
h + O (ε) , (30)

T b
s(zz) =

(
1 − 3f

) (
−gz + λκηu2

)
h + O (ε) , (31)

corresponding to the fluid and solid phase pressures (see,
e.g., Iverson and Denlinger, 2001; Hubbert and Rubey,
1959). Here,3f ∈ (0, 1) is a continuous parameter that
may depend on several factors such as the debris flow height,
time and diffusion of the basal pore pressure along the mix-
ture body from its front to tail. All these are functions ofx,
y and t but not z. So, 3f 6=3f (·, z). Moreover, the limit
3f =1 implies zero basal effective stress or complete lique-
faction (around the rear end of the debris body) and3f =0
for dry granular flow (e.g. in the vicinity of the front of the
debris flow surge). This means that this parameter is mathe-
matically analogous to the fluid volume fractionνf . In ther-
modynamic nonclassical solid-fluid-mixture theories separa-
tions like (30) and (31) are referred to asimpositions of pres-
sure equilibrium. They are one possible imposition, but other
possibilities such as3p

f , (1−3
p
f ), p>0 are equally justified.

The separation (30), (31) of the total stress is of constitutive
nature and bears the advantages and disadvantages which all
such equations exhibit. It is also evident from (30) that3f

is the ratio between the pore fluid pressure at the bed and the
total normal pressure of the debris mass in the normal direc-
tion. Measurements at the base of experimental flows show
that coarse-grained surge fronts have little or no pore fluid
pressure. In contrast, finer-grained thoroughly saturated de-
bris behind surge fronts is nearly liquefied by high pore pres-
sure (see Iverson, 1997; Iverson and Denlinger, 2001). So,
parameterisation of3f is very crucial in the description of
the dynamics of debris flow surges. Needless to say that here
as everywhere else grain size separation is neglected.

5.3 Modification of the friction law and earth pressure co-
efficients

We must modify the Coulomb friction law and the earth pres-
sure coefficient of the Mohr-Coulomb yield criterion accord-
ing to the effect of the pore fluid pressure distribution. We
identify the fluid normal stress as the pore fluid pressure. As
before, we assume that the pore fluid pressure and the solids
stressTs(zz) both vary linearly from their maxima at the base
to zero at the free surface of the flow. Equation (31) thus
implies that the depth-averaged normal solid stress takes the
form

T s(zz) =
1
2(1 − 3f )

(
−gz + λκηu2

)
h + O (ε)

= −
1
2gz(1 − 3f )h + O (εγ ) . (32)

Note that, as in Pudasaini and Hutter (2003),λ=O(εγ ),
0<γ<1 is assumed to have equations correct toO(ε1+γ ).
We further assume that the down-slope and cross-slope solid
stresses vary linearly with the normal solid stress through the
avalanche depth. This is achieved to leading order by the
expressions

Ts(xx) = KxTs(zz) + O
(
εγ
)
,

Ts(yy) = KyTs(zz) + O
(
εγ
)
. (33)

From (32) it follows that the depth-averaged down-slope and
cross-slope solid stresses are given by

T s(xx) = −
1
2Kxgz

(
1 − 3f

)
h + O (εγ ) ,

T s(yy) = −
1
2Kygz

(
1 − 3f

)
h + O (εγ ) . (34)

This implies that the factorsβx andβy in (18) must be mod-
ified by the expression

βx = −εgzKx

(
1 − 3f

)
, βy = −εgzKy

(
1 − 3f

)
. (35)

Similarly, in (19)–(20) the normal solid stress at the bed(
−gz+λκηu2

)
must be replaced by (31) for the solid-fluid

mixture. Furthermore, the detailed basal topographic ef-
fectsεgz∂b/∂x andεgz∂b/∂y in (19)–(20) must be replaced
by
(
1−3f

)
εgz∂b/∂x and

(
1−3f

)
εgz∂b/∂y, respectively

(see, Pudasaini and Hutter, 2003).
Finally, in order to distribute the topographic effects and

gravitational driving forces to the solid and fluid components
we decompose the components of gravitational accelerations
as follows:

gx = gx(s) + gx(f ) =
(
1 − 3f

)
gx + 3f gx,

gy = gy(s) + gy(f ) =
(
1 − 3f

)
gy + 3f gy . (36)

Note that since we are using depth-integrated equations we
do not need to decomposegz.

5.4 Depth integration

Integrating (23) and (24) by repeatedly applying the Leibniz
rule (to change the order of integration and differentiation)
through the debris flow depth yields the following stresses
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due to the fluid in the pores of the mixture material along the
x andy coordinate directions, respectively

ε

[{
∂

∂x

(
pbh/2

)
+ pb ∂b

∂x

}
−

h

NR

{
2
∂2u

∂x2
+

∂2v

∂y∂x
+

∂2u

∂y2
−

3u

ε2h2

}]
+ O

(
ε1+γ

)
,

(37)

ε

[{
∂

∂y

(
pbh/2

)
+ pb ∂b

∂y

}
−

h

NR

{
2
∂2v

∂y2
+

∂2u

∂x∂y
+

∂2v

∂x2
−

3v

ε2h2

}]
+ O

(
ε1+γ

)
,

(38)

wherepb is the fluid pressure at the bed defined by (30)
whilst u, v are the depth-averaged velocity components in
thex andy directions, respectively.

6 Model equations for two-phase debris flows

6.1 Initial boundary value problem

Incorporating all new effects emerging from the intersti-
tial fluid and detailed by (23)–(38), the granular avalanche
Eqs. (15)–(20) becomegeneralised model equations for two-
phase mixture debris flowssliding and deforming down arbi-
trarily curved and twisted channels. The governing equations
read

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (39)

∂

∂t
(hu) +

∂

∂x

(
hu2

)
+

∂

∂y
(huv) = hsx −

∂

∂x

(
βxh

2

2

)
, (40)

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y

(
hv2

)
= hsy −

∂

∂y

(
βyh

2

2

)
, (41)

which remain formally the same as those for single-phase dry
granular avalanche, (15)–(17), but for two-phase debris flows
with the following specifications

sx = sx(s) + sx(f ), sy = sy(s) + sy(f ), (42)

βx = −ε
(
1 − 3f

)
gzKx, βy = −ε

(
1 − 3f

)
gzKy, (43)

sx(s) =
(
1 − 3f

) {
gx −

u

|u|
tanδ

(
−gz + λκηu2

)
+ εgz

∂b

∂x

}
, (44)

sy(s) =
(
1 − 3f

) {
gy −

v

|u|
tanδ

(
−gz + λκηu2

)
+ εgz

∂b

∂y

}
, (45)

sx(f ) =3f gx −ε

[
1

h

∂

∂x

(
pbh

2

)
+

pb

h

∂b

∂x
−

1

NR

{
2
∂2u

∂x2
+

∂2v

∂y∂x
+

∂2u

∂y2
−

3u

ε2h2

}]
,

(46)

sy(f ) =3f gy −ε

[
1

h

∂

∂y

(
pbh

2

)
+

pb

h

∂b

∂y
−

1

NR

{
2
∂2v

∂y2
+

∂2u

∂x∂y
+

∂2v

∂x2
−

3v

ε2h2

}]
,

(47)

in which Kx, Ky are given by (22). Note that, although
the basic solid-fluid mixture mass and momentum balance
Eqs. (7) and (8) are not in conservative form, the final
model equations presented here are in conservative form with
source terms2. Dimensional analysis, depth integration and
ordering processes made it possible to transform these equa-
tions from non-conservative to conservative form.

Given the material parametersδ andφ and the elevation of
the basal topography,b=b(x, y), above the curved reference
surface, the viscosity and the volume fraction of the pore
fluid, mixture density and fluid pressure distribution at the
bed, Eqs. (39)–(47) allow h, u andv to be computed as func-
tions of space and time, once appropriate initial and bound-
ary conditions are prescribed.h is the debris flow depth, and
(u, v) are the depth-averaged velocity components parallel
to the flow surface. As initial condition one commonly pre-
scribes the geometry and velocity distributions of the debris
flow at the initial time, usually for a mass at rest.

6.2 The physics of debris flow described by the present
model equations

The model equations presented in this section represent var-
ious physical properties of debris flows. We outline some of
them as follows:

(i) By setting3f =0 andNR→∞ (i.e., ignoring the vis-
cous terms), these model equations reduce to the ex-
tended avalanche model equations of Pudasaini and
Hutter (2003). On the other hand, when setting3f =1
(i.e., complete liquefaction at the bed and thus zero
basal effective stress of the solid) these equations reduce
to Boussinesq-type hydraulic (shallow-water) equations
with a purely viscous dissipation, e.g., appropriate for
a slurry. For intermediate cases the equations indicate
a combination of Coulomb friction and viscous dissipa-
tion that changes in response to the spatial and temporal
changes of the pore pressure.

(ii) Due to the viscous fluid stress effects the equations con-
tain viscous terms viasx(f ) andsy(f ). Therefore, they
are no longer hyperbolic, but hyperbolic-parabolic; they
degenerate into hyperbolic equations for single-phase
avalanche flows of dry granular materials when the ef-
fect of the pore fluid is ignored.

(iii) The model equations involve three non-dimensional
parameters, viz.,ε, λ and NR. (a) The first two
are purely geometric parameters and indicateno scale
dependence. (b) In contrast, the third parameter,
NR=ρH

√
gL/νf µf , serves as a dynamical scaling

factor that is analogous to the Reynolds number in New-
tonian fluid. Therefore,the debris flow equations are

2Strictly speaking, the expressions within the square brackets in
(46)–(47) are physically not source terms, but in order to maintain
the structure of the debris flow equations as those for dry granular
flows (15)–(20) we arranged these terms into the source terms.
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scale-dependent. Moreover, if we adopt an advection-
diffusion equation (see Sect. 9.4.2) as done by Iver-
son and Denlinger (2001) for the determination ofpb

(or 3f ) then, a new parameterD, the so-called pore
pressure diffusivity, also enters into consideration as a
new dynamical parameter. In computations, in order
not to distort the geometry of the slide, we shall choose
ε=λ=1 and thusL=H=R.

(iv) The order of different terms in (46) and (47) should
be understood as follows. First, let us consider
(46). Test simulations reveal that in debris flow dy-
namics the effect of(2∂2u/∂x2

+∂2v/∂y∂x+∂2u/∂y2)

is negligible as compared to 3u/ε2h2. On the
other hand, typically,NRε2 is of O(1). Therefore,

1
NR

{(
2∂2u/∂x2

+∂2v/∂y∂x+∂2u/∂y2
)
−3u/ε2h2

}
is

also ofO(1), consistent with the order of the other terms
of (46). A similar analysis holds true for (47).

(v) For geophysical debris flows typical values ofε andNR

are 10−3 and 106, respectively. We have already seen
in single-phase avalanche equations that orderε terms
must be retained in the final governing equations. This
request is even more intensified for debris flow mod-
elling. The lowest approximation (i.e.,O(1)) excludes
the effect of the pore pressure, as is evident from (46),
(47). Iverson and Denlinger (2001) have also concluded
this fact.

(vi) An expression for the evolution of the basal pressure
pb can be obtained by an advection-diffusion equation
for pb that is responsible for the distribution of the pore
pressure along the bed of the debris flow. Iverson and
Denlinger (2001) expressed3f as a function of the
mixture height, time and the diffusivity of the mixture.
Alternatively, Savage and Iverson (2003), coupled the
pore pressure evolution equation with the mass and mo-
mentum balance equation to describe debris flow surge
dynamics over a one-dimensional rough incline. Here,
first, we will take some constant values, and then a bilin-
ear parameterisation of3f in time and space for simu-
lation. This simple parameterisation can also produce
debris flow surges as discussed by Iverson and Den-
linger (2001) and Savage and Iverson (2003). In ap-
plications, one may couple these or other parameteri-
sations or evolution equations for pore pressure of the
fluid (as done in Sect. 9.4.2) with the present model
equations to describe debris flow surges down more
general mountain terrains.

(vii) The curvature,λκ, and torsion,η, effects of the ge-
ometry enter in the model equations directly via the
Coulomb friction terms in (44)–(45), but they are
equally indirectly contained in the viscous terms (46)–
(47) via the pressure,pb, at the bed, see (30). Note
that the components of the gravitational accelerations
gx , gy , gz also include such effects due to the curvature
and torsion of the reference topography (see Pudasaini
and Hutter, 2003).

7 The new features of the model equations

Equations (39)–(41) constitute atwo-dimensional conserva-
tive system of equationswhich entails several advantages
over previous model equations of the Savage-Hutter (1989)
type for dry granular materials and Iverson (1997) type for
mixtures. They are as follows:

(1) The equations systematically include the curvature and
torsion of the channelised basal topography. They are
written in a slope-fitted general orthogonal curvilinear
coordinate system. Therefore, they can be utilised to
describe debris flows along non-uniformly curved and
twisted channels of general type.

(2) There is a non-zero gravity termgy in the cross-slope
direction, see (45) and (47), which takes into account
the global effect of topographic variation in the lateral
direction. Thus, the lateral motion is explicitly gravity
driven, not only indirectly via lateral confinement gra-
dient, i.e.,∂b/∂y. This might be crucial in designing
defence structures and when debris flows hit obstruc-
tions or are deflected on their ways. The torsion effect,
η of the topography is included in the net driving force
componentssx and sy . The components of the gravi-
tational acceleration also depend on both the curvature
and the torsion of the basal topography, (see Pudasaini
and Hutter, 2003). They coordinate, which was just a
straight line in the previous models, is now curved in
the cross-slope direction and for a torsion-free master
curve (i.e.,η=1), which lies in a vertical plane, these
model equations exactly degenerate to previous exten-
sions (e.g., Gray et al., 1999).

(3) Similarly, these equations can exactly be reduced to the
avalanche equations of Pudasaini and Hutter (2003) as
special cases for which the parameters3f =0, NR→∞.

(4) We can form a three-dimensionally curved and twisted
channel using down-slope and cross-slope coordinatesx

andy alone. In principle, it is thus possible to model a
given channel by considering its thalweg and by choos-
ing θ appropriately as a function of the down- and cross-
slope coordinates. These are new flexibilities of the
model equations which are crucial to describe the mo-
tion of avalanching debris flows in curved and twisted
channels and mountain terrains in a more realistic man-
ner.

(5) The equations of this paper are well structured and put
in a standard mathematical form. They enjoy two ad-
vantages: First, it is easy to write a numerical code
or to extend an existing numerical code available for
avalanche flows by including the new additional effects
of the viscous pore fluid. Next, from these model equa-
tions one can easily distinguish the friction contribution
of the solid grains and the viscous effect of the pore
fluid and their coupling. This coupling is represented by
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the parameter3f . Similarly, the structure of the equa-
tions shows that the granular avalanche equations are
of hyperbolic type whereas, due to the pore fluid dif-
fusion, debris flow is governed by hyperbolic-parabolic
type partial differential equations.

(6) In the present model the pore pressure at the bed,pb,
includes effects of curvature and torsion of the bed to-
pography, see (30). Numerical results show that such
an effects are substantial, for detailed discussion, see
Sect. 9.1 and Fig.4.

(7) The coordinates of these model equations follow the
basal topography. So, a mathematically correct asymp-
totic analysis could rigorously be performed.

In this sense, one may infer that the above equations
should be physically, geometrically and mathematically
more suitable than previously proposed models (e.g., Iver-
son, 1997; Iverson and Denlinger, 2001) for the description
of debris flows down arbitrarily curved and twisted channels
with variable cross-sections.

8 Numerical integration techniques

The debris flow equations (39)–(41) comprise anonlinear
conservation system. Shock formation, possibly diffusively
smoothed out, is an essential mechanism in debris flows on
an inclined surface merging into a horizontal run-out zone or
encountering an obstacle when the velocity becomes subcrit-
ical from its supercritical state. Note that the formation of
shocks in debris flow depends strongly on the volume frac-
tion of the solid. Therefore, for high sediment concentra-
tions debris flow surge fronts are most likely associated with
a jump in the height and velocity field although the rear part
of the debris is highly liquefied. This will be discussed in
more detail in Sects. 9.3 and 9.4. To produce more accu-
rate and physically reliable solutions of strongly convective
nonlinear conservation equations, it is therefore natural to
apply conservative high-resolution numerical techniques that
are able to resolve the steep gradients of the unknown vari-
ables and moving fronts often observed in experiments and
field events of avalanches and debris flows. The NOC (Non-
Oscillatory Central) scheme proposed first by Nessyahu and
Tadmor (1990) and extended to higher dimensions by Jiang
and Tadmor (1998) is implemented to solve the model equa-
tions. This is a high resolution shock capturing scheme. The
necessary background and full details of this method can be
found in the literature (see, e.g., Harten, 1983; Harten et al.,
1986; Yee, 1987; Nessyahu and Tadmor, 1990; LeVeque,
1990; Kr̈oner, 1997; Jiang and Tadmor, 1998; Toro, 2001)
and its application to avalanches is, e.g., given by Tai et
al. (2002), Pudasaini (2003), Pudasaini and Hutter (2003a),
Wang et al. (2004) and Pudasaini et al. (2005a, b). We do not
further elaborate here on the TVD (Total Variation Diminish-
ing) techniques and optimal choices of limiters and cell re-
constructions. Wang et al. (2004) made a careful study inves-
tigating its optimal use in avalanche studies of the extended

Savage-Hutter equations. For alternative numerical schemes
also see Denlinger and Iverson (2001, 2004), Koschdon and
Scḧafer (2003), Iverson et al. (2004), Patra et al. (2005) and
Vollmöller (2004).

This scheme requires the system to be written in terms of
conservative variables, which are the debris flow thickness,
h and the depth integrated down- and cross-slope momenta,
mx=hu andmy=hv. With the vector of conservative vari-
ables,w=(h, mx, my)

T , the model Eqs. (39)–(41) can be
written as

∂w
∂t

+
∂f (w)

∂x
+

∂g(w)

∂y
= s(w). (48)

The down-slope and cross-slope momentum flux vectorsf
andg, and the vector of the source termssare given by

f =

 mx

m2
x/h + βxh

2/2
mxmy/h

 ,

g =

 my

mxmy/h

m2
y/h + βyh

2/2

 ,

s =

 0
hsx
hsy

 . (49)

The termsβx and βy , defined in (43) incorporate the ex-
tending and contracting states of the avalanching debris mass
through the active and passive earth pressures. Similarly, the
source termssx and sy , described in (42), (44)–(47) are of
crucial importance as they include the total driving force gen-
erated by gravity, friction, curvature, torsion and local details
of the basal topography through its gradient terms and the
pore pressure distribution of the viscous fluid. They jointly
determine the dynamics of the flow.

9 Debris flow down curved and twisted channels

The model equations (39)–(41) predict the flow of a debris
material over a non-uniformly curved and twisted channel in
which the cross-slope curvature (or the channel width) may
equally be varying. We will focus on the numerical simula-
tions of such flows, their physical explanation and the anal-
ysis and interpretation of the results. The main target is the
analysis of the joint effects of curvature, torsion, cross-slope
topographic variation and “centrifugal” force and the effects
of the pore fluid pressure in the dynamics of a debris flow
body down more general channels and topographies. In the
examples below, the form of the employed master curve and
the variations of the cross sections are still somewhat ideal-
istic. Nevertheless, the examples will disclose features and
effects that are quantitatively well understood but could, so
far not be explicitly quantised. What we mean here are ef-
fects of combinations of pore pressure and geometric effects
due to, e.g., curvature and torsion of the thalweg. The re-
sults will allow us to judge about the applicability of the
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manifesting substantial contribution of the term including the curvature in the dynamics of the debris flow.

y

x

t = 18 t = 38 t = 50 t = 70

Λf = 0.3

30
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mass is initially kept in a hemi-spherical cap of radius 6.5 centred at(23, 0) and initial velocity is zero. Internal and bed friction angles of
the grains are 33◦ and 27◦, respectively andNR=3×105. All quantities are dimensionless.

new-model equations. On the other hand, they will open a
wide spectrum of possibilities for practitioners involved in
hazard mapping, risk management and public safety. For
single-constituent dry granular avalanches, corresponding re-
sults were obtained by Pudasaini et al. (2005a). This pa-
per aims to extend those simulations for two-phase debris
flows. In the sequel, we will separately present simulations
(i) for a simply curved chute or a flume, and(ii) for contin-
uously curved and twisted channels. We will consider dif-
ferent (variable) volume fractions of the fluid component in
order to study the explicit influence of the interstitial fluid in
debris flow dynamics. Another important aspect of this paper
is the coupling of the advection-diffusion equation, proposed
by Iverson and Denlinger (2001) for the determination of the
bed fluid pressure, with the model Eqs. (39)–(41), and com-
parison of model simulations with the laboratory and field
experiments.

9.1 Debris flows down a curved chute

Geometry of the chute and parameters:

Let us consider a chute with a flat upper part (x<250)
inclined at an angle of 45◦, continuous transition zone
(250<x<350) and a horizontal, flat, final part(x>350).

Only one curvature in the downhill direction is involved in
this configuration. Hence, the chute is laterally flat and
torsion-free, i.e.η=1.

Figure3 depicts several contour plots of debris flows down
such a curved chute in which the ratio between the pore
fluid pressure at the bed and the total normal pressure of
the debris mass perpendicular to it correspond to3f =0
(top), 3f =0.2 (middle) and3f =0.3 (bottom). For all val-
ues of 3f (roughly speaking, the volume fraction of the
fluid) the contours are plotted for four dimensionless time
slices:t=18, 38, 50, 70. The mass is initially kept in a hemi-
spherical cap of radius 6.5 centred at(23, 0) and the initial
velocity is zero. The internal and bed friction angles of the
grains are 33◦ and 27◦, respectively, and the quasi-Reynolds
number is taken to beNR=3×105, see Iverson and Denlinger
(2001). These parameters will also be used in the remainder
of the paper whenever applicable.

Discussion of results:

Geometric effects:For a simply curved chute, as used here,
it is easier to understand the geometric effect on the dynam-
ics of the debris flow. After the release of the mass from its
initial rest state the debris flow is accelerating primarily in
the longitudinal direction and only a little spread takes place
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Fig. 4. As in the last panel of Fig.3 but neglecting the influence of the curvature in the pressure at the bed; manifesting substantial contribution
of the term including the curvature in the dynamics of the debris flow.

in the transversal direction, see forms of the masses at time
t=18 in all three panels in Fig.3. This is clearly because
the flow is driven by gravity. As soon as the mass enters the
transition zone due to the longitudinal curvature of the chute,
due to the increased friction the body starts extending also in
the cross-slope direction. These effects are seen in all panels
at time t=38. In the run-out zone the height of the pile is
always increasing (fromt=50 to t=70) and the body comes
to a rest, as plotted for timet=70. At all times the sliding
and deforming debris body is symmetric about the central
line (y=0) of the chute. This is evident because the chute is
torsion-free.

Effects of the fluid:Our next aim is to study the influence of
the fluid component in the dynamics of the debris flow. From
the mechanism of the mixture of solid and fluid constituents
it is clear that as the value of the parameter3f increases
the contribution of the fluid increases. This is simply due
to the fact that the Coulomb friction between the grains is
decreased, and that the debris mass is more liquefied. Con-
sequently, with increasing values of the parameter3f the
travel distance of the flow increases dramatically. The fluid
presence also implies changes to the form of the body. The
forms and positions of the fronts and tails and the curvature
of the geometry of the deforming body are explicitly depen-
dent on the value of3f . With increasing value of3f the
increase of the speed of the tail is much faster than the speed
of the front (e.g., compare the three panels in Fig.3 at time
t=38). Further interesting phenomena are in the deposit and
in the run-out zone. The top panel shows that the final deposit
(time t=70) for dry granular flow is convex with its center ly-
ing beforex=400, whilst for debris flow, e.g., with3f =0.3,
the center of the body lies beyondx=500, see the bottom
panel; and the form of the deposit has reverse “Barchan dune
type” geometry with two “horns” lying on either side of the
central line of the chute facing the upstream direction.

From these observations one may draw the inferences that
the form and speed of debris flows are explicitly influenced
both by the geometry of the topography and the relative vol-
ume fractions of the fluid and solid constituents in the mix-
ture.

Effects of the curvature on the pressure at the bed

From Eqs. (30) and (31) one can infer that there is substan-
tial contribution of the curvature and torsion on the pressure
at the bed by the termλκηu2, hence on the flow dynamics. To
see this effect quantitatively, we repeat the above simulation
with 3f =0.3, but without inclusion of the curvature in the
expression for the basal normal pressure, i.e.,pb

=−3f gzh

andT b
s(zz)=−

(
1−3f

)
gzh. This shows that the pore fluid

pressure at the bed is decreased by the amount3f

(
λκηu2

)
h

but at the same time the solid (normal) pressure at the bed is
also decreased by

(
1−3f

) (
λκηu2

)
h. This means that, al-

though the mobility due to the fluid component is decreased
(relatively) by 30%, the relative 70% decrease in the solid
normal pressure reduces the Coulomb frictional resistance
quite considerably, see (44) and (45), thus substantially in-
creasing the reach of the debris body in the transition zone.
Figure4 displays the effect of the curvature on the pressure
at the bed. Parameters chosen for the simulation are as in the
last panel of Fig.3, but the curvature of the bed topography
is set to zero. The difference in the dynamics between these
two pictures is substantial. Similarly, one can investigate the
effect of the torsion on the pressure at the bed.

9.2 Debris flow down non-uniformly curved and twisted
channels

At first, we consider helically curved and twisted channels.
This is an academictest example, ahelixas a master curve so
as to form a helically curved and twisted channel with other-
wise circular and/or parabolic cross section. Let us consider
a circular helix described by

R(ϑ) = (A cosϑ, A sinϑ,−Bϑ) , (50)

whereϑ is the azimuthal angle. The arc length, curvature,
torsion and pitch of the helix are given by

x =

(
A2

+ B2
)1/2

ϑ,

κ = A/
(
A2

+ B2
)

,

τ = −B/
(
A2

+ B2
)

,

P = 2πB, (51)

respectively.
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Figure 5: Contour plots of avalanching debris mass flowing down a curved and twisted channel: granular-fluid

mixture with fluid component: Λf = 0 (top), Λf = 0.2 (middle) and Λf = 0.3 (bottom). The upper part of

the chute (x < 250) is inclined at an angle of 45◦, the middle part is a transition zone (250 < x < 350) and the

final part (x > 350) is a horizontal channel. Parameter values are: A0 = B = 300, y ∈ [−120, 120], zT = 128.

Time slices: t = 18, 38, 50, 70. The mass is initially kept in a hemi-spherical cap of radius 6.5 centred at (23, 0)

and initial velocity is zero. Internal and bed friction angles of the grains are 33◦ and 27◦, respectively and

NR = 3× 105. All quantities are dimensionless.
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Fig. 5. Contour plots of avalanching debris mass flowing down a curved and twisted channel: granular-fluid mixture with fluid compo-
nent: 3f =0 (top), 3f =0.2 (middle) and3f =0.3 (bottom). The upper part of the chute (x<250) is inclined at an angle of 45◦, the
middle part is a transition zone (250<x<350) and the final part(x>350) is a horizontal channel. Parameter values are:A0=B=300,
y ∈ [−120, 120], zT =128. Time slices:t=18, 38, 50, 70. The mass is initially kept in a hemi-spherical cap of radius 6.5 centred at(23, 0)

and initial velocity is zero. Internal and bed friction angles of the grains are 33◦ and 27◦, respectively andNR=3 × 105. All quantities are
dimensionless.

Based on the master curve (50) a helically curved and
twisted channel is formed. The lateral section of the topogra-
phy is the intersection of a plane perpendicular to the thalweg
of the channel and the channel itself. In the sequel, we will
deal with cases in which the transition and run-out zones are
included in the geometrical part of the model and that the
cross-sectional geometry of the channel is also variable.

In reality channels may be arbitrarily curved and twisted
with variable cross-slope curvature and channel width. Real-
istic flow tracks go from steep to flat regions where the mov-
ing masses come to a halt. The geometry must play a crucial
role to make the body stand still. The concave curvature of
the mountain side increases the bed friction and consequently
forces the debris mass to slow down and eventually come to
rest. In this subsection we will present debris flow simula-
tions through more general channels which possess run-out
zones.

9.2.1 Variable curvature and torsion

Consider a channel of which curvature and torsion are rede-
fined with a new expression forA in (51) as follows:

A(x) =

A0, 0 ≤ x ≤ xl,

A0 exp[(x − xl)
a
], xl ≤ x ≤ xr ,

A0 exp[(xr − xl)
a
], x ≥ xr ,

(52)

wherea determines the intensity of the decrease of the cur-
vature and torsion. For the simulations, we have seta=1.
Equation (52) tells us that the radius of curvature and torsion
of the channel increase rapidly as the arc-lengthx becomes
larger thanxl . Before this transition point, the channel has
uniform radius of curvature and torsion. This increase forces
the channel quickly to merge (approximately) into a lesser
and lesser curved and eventually horizontal channel. This
horizontal portion of the channel also forms the run-out zone
for the debris. There is a continuous decrease of the curva-
ture and torsion fromxl=250 toxr=350. Then, forx≥xr

the curvature and torsion are always (almost) zero, and thus,
the subsequent channel is forming a channelised circular run-
out. The parameter values are:A0=300,B=300, so that the
channel is inclined relative to the horizontal at 45◦. The ra-
dius of curvature in the cross-slope direction iszT =128 and
y ∈ [−120, 120].

Discussion of results:

Geometric effects:Figure5 displays thickness contours of
debris flows with three different values of3f , respectively,
sliding down through a helically curved and twisted channel
with non-uniform curvature and torsion given by (51) and
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Figure 6: Curved and twisted channel. The channel has a circular cross-section before the transition and merges

continuously into the flat horizontal run-out zone.
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kept in a hemi-spherical cap of radius 6.5 centred at (23, 0) and initial velocity is zero. Internal and bed friction

angles of the grains are 33◦ and 27◦, respectively and NR = 3× 105. All quantities are dimensionless.

y

y

y

x

=⇒

Λf = 0

Λf = 0.2

Λf = 0.3

Upper Part Transition Run-Out Zone
Inside-Curvature

Outside-Curvature

t = 18

t = 38
t = 50 t = 70

t = 18
t = 38

t = 50
t = 70

t = 18
t = 38

t = 50 t = 70

32

Fig. 6. Curved and twisted channel. The channel has a circular
cross-section before the transition and merges continuously into the
flat horizontal run-out zone.

(52) and a constant cross-slope channel width3. These con-
tours are plotted at the time steps 18, 38, 50, 70, respectively.
As time increases, the debris mass is laterally getting less
spread, but, it is rapidly moving outwards from the center line
of the channel in the front much more than in the back. This
effect can clearly be seen in all three panels at timest=18 and
t=38. This is so because the speed of the front is much larger
than that of the tail. Such behaviour of the deforming mass is
the joint effect of the curvature, torsion, and the radial accel-
eration that is modelled in the theory (Eqs. (15)–(17) for dry
avalanches, the top panel and Eqs. (39)–(41) for debris flows,
the middle and bottom panels) through the gravitational ac-
celeration componentsgx , gy , gz and the net driving force
componentssx , sy , which include the curvature and torsion
of the thalweg, bed topography and the cross-slope curvature
of the channel.

Since the curvature and torsion of the channel are contin-
uously decreasing forx>xl=250, from t=38 onward, the
debris mass tends to slow down and turn smoothly towards
the central line of the channel due to the confinement gra-
dient in the cross-slope. Corresponding to the decrease of
the curvature and torsion, the inclination angle of the chute
with the horizontal plane is also continuously decreased.
Ultimately, the channel merges into a horizontal circularly
curved channel, thus forming a gully-type channelised run-
out zone. Somewhere in the transition zone the sidewise
pressure (due to the lateral component of the gravitational

3All figures shown for helical chutes are geometrically distorted.
The graphs are vertical projections of the chute and debris heaps
whose circular-annular geometry is stretched to become straight.
Thus, a segment of the annular ring becomes a rectangle of which
the top edge is the chute outside and the bottom edge the chute at the
inside boundary. This graphical representation is chosen because it
is relatively easy to program.

force towards the central line) from the channelised bed to-
pography exceeds the force due to the radial acceleration. It
leads to a continuous rotation of the body towards the center
of the channel. This sidewise pressure is so strong that after
x=350 the mass comes back to the thalweg of the channel
(middle panel) and heads towards the opposite side of the
channel (bottom panel). Finally, the body comes to rest at a
time prior tot=70.

Effect of the fluid: The effect of the fluid is much more pro-
nounced here than in the previous case with debris sliding
over a curved but not twisted chute, see Fig.3. With increas-
ing value of the parameter3f the debris mass slides faster
throughout the channel and travels farther and farther in the
run-out zone. Similarly, with the increasing value of3f the
center of mass of the final deposit comes closer and closer to
the central line of the channel (compare top and middle pan-
els) and ultimately it crosses the central line (bottom panel).
This behaviour of the motion of the body is dominated by
both the geometry of the channel and the contribution of
the fluid component in the mixture. Since the chute is uni-
formly channelised from initiation to the run-out zone in the
cross-section the mass can not spread in the lateral direction
not even in the run-out zone. Instead, it is accumulated and
elongated around and along the thalweg of the channel. The
channelised topography also does not allow the formation of
the Barchan type geometry of the debris mass in the run-out
zone.

9.2.2 Decreasing curvature & torsion, and variable cross-
slope curvature

Real channels may be diverging or converging (with respect
to their channel width or cross-slope curvature) along the
downhill direction, see Fig.2. Therefore, the debris flow
theory must be able to deal with more general channels with
varying cross-slope curvature. At this point, we simulate the
debris flow motion in a channel of which the parameterA is
defined by (52) as in the previous case, but, now we vary the
channel width starting from its left boundary of the transi-
tion zone. This case is more important in geophysical appli-
cations because curvature and torsion decrease as one enters
into the horizontal run-out zone of a mountain valley. This
effect can be achieved by defining a channel which merges
continuously into an open flat run-out zone according to

θ(x, y) =

y/zT , 0 ≤ x ≤ xl,

(y/zT )f (x), xl ≤ x ≤ xr ,

0◦, x ≥ xr ,

(53)

wherezT is the distance between the master curve and the
thalweg in the upper inclined part of the channel (hence a
constant) andf (x)= (1− (x−xl) / (xr−xl))

2. Thus, the con-
tinuous transition of the parametric functionθ from its higher
value (y/zT ) in the upper part to its zero value in the open
run-out zone constitutes a three-dimensional channel which
has variable curvature both in the longitudinal and lateral di-
rections. Other parameters are as in Sect. 9.2.1. A represen-
tative example of such a channel is illustrated in Fig.6.
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width is redefined with variable θ, y ∈ [−120, 120], zT = 128. Time slices: t = 18, 38, 50, 70. The mass is initially

kept in a hemi-spherical cap of radius 6.5 centred at (23, 0) and initial velocity is zero. Internal and bed friction
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Fig. 7. Contour plots of avalanching debris flowing down a curved and twisted channel: granular-fluid mixture with fluid component:3f =0
(top), 3f =0.2 (middle) and3f =0.3 (bottom). The upper part of the chute (x<250) is inclined at an angle of 45◦, the middle part is a
transition zone (250<x<350) and the final part(x>350) is horizontal and flat. Parameter values are:B=300,A is redefined withA0=300,
the channel width is redefined with variableθ , y ∈ [−120, 120], zT =128. Time slices:t=18, 38, 50, 70. The mass is initially kept in a
hemi-spherical cap of radius 6.5 centred at(23, 0) and initial velocity is zero. Internal and bed friction angles of the grains are 33◦ and 27◦,
respectively andNR=3×105. All quantities are dimensionless.

Discussion of results:

Geometric effects:Figure7 depicts the contours of the de-
bris flow motion after its release to the open run-out zone.
The graphs describe the deformation of the debris disclos-
ing the subtle reaction of it to the different geometry of the
transition and run-out region. Although the inclination of the
channel is decreasing after reaching the transition zone, the
debris body is heading radially outwards of the flat run-out
zone until it comes to rest close to the outside edge of the
open channel. The main mechanism for this is that, as soon
as the mass enters the runout zone the radial acceleration de-
creases rapidly, but, since the chute is flattening in the cross-
slope direction, after the transition zone, the material body
moves in the direction of the velocity at the moment directly
after the transition, departing away from the central line, and
the velocity is decreasing with time due to the bed friction
until the debris body comes to rest. The direction and the
process of the deposition is in conformity with our physical
intuition and expectation.

Effects of the fluid: The most interesting effect of the fluid
component can be observed in this figure. Before the tran-
sition zone, the dynamics of the flow is exactly the same as
in Fig. 5, travel distances in the run-out zones are also sim-

ilar. But, the form of the sliding body in the run-out zone
is completely different from that for the entirely channelised
topography (Fig.5). Since the channel is gradually opened in
the run-out zone the radial acceleration makes it possible to
form the Barchan type geometry as in Figs.3 and4, but now
with the horns pointing obliquely-upstream. Note that with
increasing value of the fluid component the aerial coverage
of the deposit is also increasing.

9.3 Variable pore pressure distribution

A simple parameterisation for pore fluid pressure. The
structure of Eqs. (39)–(47) indicates that3f plays a signif-
icant role in the description of the debris flow (see, Iverson
and Denlinger, 2001; Savage and Iverson, 2003 for further
explanation). Therefore, a proper parameterisation or de-
scription of3f is necessary. In reality, the pore-fluid pres-
sure is not constant but varies with time and along the debris
body, usually its value being smaller in the front and larger
in the rear part. As a first attempt, to investigate the effect of
the variable pore pressure to the dynamics of debris flow we
parameterise3f as

3f = 3mean
f − 13f

(
x − (xr + xf )/2

)(
xf − xr

) (t − t0)

(tmax − t0)
, (54)
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Figure 8: Contour plots of avalanching debris flowing down curved and twisted channels: granular-fluid mixture

with variable pore fluid pressure that varies (increases) linearly from the front to the tail side of the debris body.

Top, middle and bottom panels correspond to bottom panels of Figs. 3, 5 and 7, respectively, that were plotted

for constant pore fluid pressure throughout the body. The upper part of the chute (x < 250) is inclined at an

angle of 45◦, the middle part is a transition zone (250 < x < 350) and the final part (x > 350) is the run-out

zone. Time slices: t = 18, 38, 50, 70. The mass is initially kept in a hemi-spherical cap of radius 6.5 centred at

(23, 0) and initial velocity is zero. Internal and bed friction angles of the grains are 33◦ and 27◦, respectively

and NR = 3× 105.
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Fig. 8. Contour plots of avalanching debris flowing down curved and twisted channels: granular-fluid mixture with variable pore fluid
pressure that varies (increases) linearly from the front to the tail side of the debris body. Top, middle and bottom panels correspond to bottom
panels of Figs.3, 5 and7, respectively, that were plotted for constant pore fluid pressure throughout the body. The upper part of the chute
(x<250) is inclined at an angle of 45◦, the middle part is a transition zone (250<x<350) and the final part(x>350) is the run-out zone.
Time slices:t=18, 38, 50, 70. The mass is initially kept in a hemi-spherical cap of radius 6.5 centred at(23, 0) and initial velocity is zero.
Internal and bed friction angles of the grains are 33◦ and 27◦, respectively andNR=3×105.

where,3mean
f is the mean value of3f in the longitudinal di-

rection between its front and rear values,13f the difference
of 3f at the rear end and the front of the body for the final
time, t0 the initial time andtmax the maximum time for nu-
merical computation. For the simulation we take3mean

f =0.3
and13f =0.3. So,3f is a bilinear function of space and
time with its largest value at the rear and smallest value at
the front of the debris body. Whent=tmax the maximum
value of3f at the rear end is 50% larger (i.e., 0.45), and at
the front 50% smaller (i.e., 0.15) than its value at the center
(i.e., 0.3) of the body. Equation (54) thus describes a simple
mechanism for the diffusion of the pore fluid pressure from
the rear to the front of the debris body.

Effects of variable pore fluid pressure. Figure 8 depicts
three panels for the debris flow simulation over the simply
curved chute (top), the curved and twisted channel with uni-
form cross-section from initiation to the deposit (middle),
and the curved and twisted channel with open flat run-out
zone (bottom), corresponding to the last panels of Figs.3, 5
and7, respectively. In these simulations the other parameters
are as before, but with variable pore pressure distribution as
parameterised by (54). Compared with their previous coun-
terparts, one observes two significant influences of the vari-
able pore pressure at the bed, (i) in the forms of the debris

flow surges, and (ii) run-out distances, mainly in the run-
out zones. In each case, it is seen that the fronts move a bit
slower and the rears move faster than those for constant pore
pressure distribution. The reason for this is the decreasing
bed friction angle as one moves towards the tail of the body
from its front. Another interesting effect is seen around the
front of the body, where the surface gradient increases with
increasing time and increasing value of the fluid component
(compare the graphs in all three panels fort≥38). Similarly,
the travel distances of debris bodies are also shorter than be-
fore. These phenomena can be explained somehow with ref-
erence to observations. Measurements at the base of experi-
mental flows show that coarse-grained surge fronts have little
or no pore fluid pressure. In contrast, the finer-grained thor-
oughly saturated debris behind surge fronts is highly lique-
fied by high pore pressure (Iverson and Denlinger, 2001). As
we will see, the present model, when coupled with a reason-
able pore pressure distribution which may be determined by
an appropriately postulated equation, is able to address these
problems.

9.4 Comparison with experiments

In this subsection we will present comparisons of simulation
results with our model equations with two types of laboratory
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Fig. 9. Comparison between experimental data and model predictions for flow of dry sand released instantaneously from behind the gate of
a 20 cm wide rectangular flume (USGS), left panels data from Denlinger and Iverson (2001), right panels predicted results from our model.
The gate was opened at time zero. Contours are plotted normal to the bed with 1 mm isopaches of sand thickness for both right and left
panels.

and out-door flume experiments for dry granular and debris
flow, respectively. For this purpose, all data and scales are
presented in dimensional units.

9.4.1 Dry granular flow

In this paper we compare simulation results of our equations
with the data of a simple flume experiment of Denlinger and
Iverson (2001). The reason is that we want to compare our
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Fig. 10.Predicted profiles of debris flow surges along the longitudi-
nal section at four successive times on an inclined rectangular flume
with inclination angle 31.4◦.

computational findings with their results and some other nu-
merical schemes which also employed their data.

Consider the small-scale granular avalanche experiment of
Denlinger and Iverson (2001) over a 20 cm wide, 5 cm high
and 120 cm long rectangular flume inclined at an angle 31.4◦.
The flume merges continuously to the horizontal run-out and
deposition zone. A volume of 290 cm3 of dry quartz sand
was used in the experiment with internal and bed friction an-
gles, 40◦ and 29◦, respectively. Except for small boundary
layer effects, due to the initial inflow condition and confining
parallel vertical walls, the flow mainly is unaffected by these
boundary layers and takes place in a vertical plane parallel
to these vertical walls. This means that the depth integrated
deformation can be assumed to be one-dimensional along the
slope direction.

Figure9 represents a comparison between the experimen-
tal (left panels) and our simulation results (right panels)
of the avalanche height, respectively, with 1 mm contour
isopaches plotted normal to the bed surface. Comparison is
made at five time slices which include the entire avalanche
motion. Most important aspects of model performance can
be seen while comparing the panels on the left and right
columns. It took 1.5 s for the mass to complete deposition
in both cases. Predicted timing, depth, geometry, front and
tail positions, and final deposit of granular sand flow fit al-
most accurately with measured data of Denlinger and Iverson
(2001). Some boundary layer effects, mainly in the tail side
of the debris body, can be seen at time 0.93 s in the exper-
imental result. Otherwise, this effect is negligible. Shocks
are formed at the tail side of the body in the deposits as seen
at times 0.93 s and 1.50 s in the experimental panels. They
are accurately predicted by our model simulations. Qualita-
tively, similar results were also obtained by Denlinger and
Iverson (2001). However, the overall dynamics predicted
by our model simulations are obviously more accurate than
those of Vollm̈oller (2004) in which it took a relatively large
time (2.0 s) for the mass to come to stand still, the mass trav-
elled significantly farther in the deposition zone, also dif-

fused upslope; and the sharp gradient in the height seen in
last two panels, both in the experiment and in our model per-
formance, could not be resolved in Vollmöller’s simulation.

9.4.2 Debris flow surges and hydrographs

Advection-diffusion equation

In order to compare numerical simulations of our model
equations for debris flow with flume experiments we first
need to present a short discussion on the advection-diffusion
equation that will be used to determine the fluid pressure
at the bed,pb(x, y, t). Assuming the dominant role of the
pore fluid pressure distribution in the dynamics of water-
saturated debris flow it is important to incorporate an evo-
lution equation for the pore fluid pressure into the system
of balance Eqs. (39)–(47). Following Iverson and Denlinger
(2001), we use a simple approach in connection with the
momentum equations. These authors argue that basal fluid
pressure advects only passively along the flow directions,x

and y, and that it also diffuses simultaneously in the nor-
mal, z, direction leading to the advection-diffusion equation
∂pb/∂t+u∂pb/∂x+v∂pb/∂y=D

(
∂2p/∂z2

) ∣∣
bed

, where D

is the pore pressure diffusivity in the mixture. We will em-
ploy this equation in our simulation withD=10−4 as em-
ployed by Iverson and Denlinger (2001).

Comparison of the model with flume experiments

Next, we consider a relatively large debris flow flume exper-
iment with about 10 m3 of water-saturated sand and gravel.
The rectangular flume which is inclined at angle 31.4◦ is 2 m
wide and 95 m long and is connected with an additional flat
run-out surface with slope 2.5◦. The flume geometry, initial
conditions and parameter values are taken from Denlinger
and Iverson (2001).

Debris flow surges:Figure10 depicts the evolution of the
speed and shape of the debris flow surge after its release
from the gate. Predicted results indicate that a blunt snout
is quickly developed and is only modestly changed as the
debris front advanced farther downslope. The snout is al-
ways accelerating on the uniform slope, but the liquefied
tail behind the snout is highly elongated and accelerated less
rapidly than the snout itself. It was the reason for the surge
shape to stretch in length and decrease in height with time
and travel distance. These phenomena are quite common in
nature and in experiments. These results are similar to those
presented in Iverson (1997) but more convincing than those
presented in Savage and Iverson (2003). Alternatively, sim-
ulations with no pore pressure (i.e., dry granular flow) would
produce only a finely tapered (smooth) leading edge.

Debris flow hydrographs:Figure 11 presents a test of the
model simulations against the measured debris flow hydro-
graph (i.e., the flow depth as a function of time at fixed loca-
tion). We assume that the flow is uniform in the cross-section
in the inclined portion of the flume. The left panels in Fig.11
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Fig. 11. Comparison between measurements and two model predictions. Left: Experimental data of flow depth at three cross sections of a
water-saturated debris flow at USGS flume, 24 July, 1995 and numerical results predicted by Denlinger and Iverson (2001). Right: Numerical
results predicted by our model.

compare time series of measured depths at three downstream
locations with the simulated results of Denlinger and Iverson
(2001), whilst the right panels are results from our model
simulation. Comparison of the data and model predictions
reveal that both models predict the speed of the debris flow
surge reasonably well, and rather well with our simulation.
In the Denlinger and Iverson (2001) model simulation the
most significant prediction error occurred for the location
at 2 m down-slope from the gate. Their model predictions
are getting better farther down-slope. Our model simulation
can more convincingly predict the attenuation of the surge
front, but does not show any backup of the surge into mul-
tiple surges, that can be seen in their simulation. Reliable
simulation of the instability that causes a single surge to de-
velop into multiple surges is still poorly understood, it re-
quires more accurate knowledge of physical instabilities. In
both simulations, as debris flow surges (fronts) reach cross-
sections 33 m and 66 m from the gate their “primary wave-
forms” have markedly accelerated, elongated and attenuated.

10 Discussion and conclusions

In this paper a reduced two-phase solid-fluid model was pre-
sented that is capable to describe the dynamics of the catas-
trophic motion of water saturated soil down arbitrary chan-
nelised topographies from initiation to run-out. The basic
equations are those of classical binary mixture, however with
the simplifying first assumption imposed that the fluid con-
stituent velocity differs only by a negligible amount from the
constituent velocity of the solids phase. It is paired with a
second ad-hoc assumption on3f which is of constitutive na-
ture explicitly given by us algebraically. Both assumptions
are essentially due to Iverson (1997) and are the strength
and weakness of the model. The latter assumption, paired

with the supposition that the pore space suffers only negligi-
ble variations, allowed the drastic simplification to reduce
the binary mixture model equations to alternative balance
equations with one-constituent properties. Mass balance of
this reduced continuum requires the solids velocity field to
be solenoidal, and the momentum balance equation takes its
common one-constituent form with a Cauchy stress tensor
that is the sum of the solids stress and the interstitial flu-
ids stress. The interaction force disappears as a dynamical
quantity from this reduced formulation. Closure conditions
are therefore only needed for the two peculiar stresses, and
we proposed a cohesionless Coulomb type dry friction law
for the solids stress and a Newtonian viscous type postulate
for the interstitial fluid. The equations differ from the earlier
equations of the dynamics of dry granular avalanches exhibit-
ing Coulomb type friction only by the fluid presence and the
viscous fluid deviator stress.

The non-dimensionalisation of the equations and the
derivation of the reduced depth-integrated two-dimensional
final equations are based on the introduction of an orthog-
onal curvilinear coordinate system following the thalweg of
the channel and polar coordinates in the cross sections per-
pendicular to it, and the geometric assumption that the mov-
ing masses are thin and long. The corresponding asymp-
totic analysis has not been repeated because it would re-
produce earlier computations done for the extended Savage-
Hutter model (see Pudasaini and Hutter, 2003). We re-
stricted this analysis only to those terms which are new and
are stated in (43)–(47). For vanishing fluid contribution
(3f =0, NR→∞) and torsion free bed topography (η=1)
our new model equations exactly degenerate to the previ-
ous model equations of Savage-Hutter-type (e.g., Savage and
Hutter, 1989, 1991; Gray et al., 1999) which was not possi-
ble by Iverson and Denlinger (2001) model, which in fact,
aimed to generalise the Savage-Hutter model.
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In this process it turned out that the component of the mo-
mentum balance perpendicular to the basal surface reduced
to a balance of normal fluid-pressure gradient, normal solid
stress gradient, gravity force and “centrifugal” force com-
ponents (see Eq.27). This required an additional closure
relation that would not be needed in a full theory, namely
a postulate how the gravity plus “centrifugal” force compo-
nent would be split among the fluid pressure and the solid
normal stress perpendicular to the base. An additive decom-
position was suggested assigning the3f part to the fluid
pressure and(1−3f ) part to the solid normal stress. This
division is the weakness of this formulation, because it is
ad-hoc, but the introduced split is a common assumption in
soil physics where the normal fluid-pressure,p, is divided
among the constituents according to some proportion, (see,
Iverson and Denlinger, 2001; De Boer, 2000; Ehlers et al.,
2004; Vulliet and Laloui, 2001; dell’Isola, 1998). Indeed, it
is dynamically important: because without this assumption
the model equations cannot be closed as a set of depth in-
tegrated equations. The separation parameter3f enters as
a new field variable of the depth integrated equations, for
which a phenomenological closure condition must be pos-
tulated. This does not make the model very appealing and
succeptable to poor constitutive guessing. Nevertheless, the
computational results performed for avalanching debris flows
down curved and twisted channels, show a drastic influence
of the fluid pressure via the parameter3f . For large fluid
pressure, i.e., large values of3f , the travelled distances of
the debris masses are considerably larger than for small val-
ues. It is interesting to note and physically due to the fact
that the fluid pressure in the interior of the bodies is larger
than at the unconstrained boundaries. The geometries of the
deposits of these flows therefore show Barchan type forms
when channel compactions to the sides are absent but other-
wise do not.

Since3f has evidently been shown to be the decisive pa-
rameter it is important that this parameter is given attention
for its proper parameterisation. To assign to it only a constant
value is too rough to generate reliable results. We have there-
fore also provided suggestions for its evolution as in Iver-
son and Denlinger (2001) and Savage and Iverson (2003) but
have postulated a simple bilinear function in this paper.

More importantly, we have also compared numerical
simulations of our model equations with a small-scale lab-
oratory dry granular flow and a large-scale water-saturated
debris flow over rectangular flumes by employing an
advection-diffusion equation for the determination of the
pore fluid pressure distribution along the avalanching debris
flow (Iverson, 1997; Denlinger and Iverson, 2001; Savage
and Iverson, 2003). Very good agreement between the
theory and experiments is established.
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Koschdon, K. and Scḧafer, M.: A Lagrangian-Eulerian finite-
volume method for simulating free surface flows of granular
avalanches, in: Dynamic Response of Granular and Porous Ma-
terials under Large and Catastrophic Deformation, edited by:
Hutter, K., Kirchner, N., Lecture Notes in Applied and Com-
putational Mechanics, 11, 83–108, Springer, Berlin Heidelberg
New York, 2003.
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Vollmöller, P.: A shock-capturing wave-propagation method for dry
and saturated granular flows, J. Comput. Phys., 199, 150–174,
2004.

Vulliet, L. and Laloui, L.: Mechanics of multiphase porous
media-application to unsaturated soils, in: Continuum mechan-
ics and applications in geophysics and environment, edited by:
Straughan. B., Greve, R., Ehrentraut, H. and Wang, Y. Springer,
Berlin, pp. 153–180, 2001.

Wang, Y., Hutter, K., and Pudasaini, S. P.: The Savage-Hutter The-
ory: a System of Partial Differential Equations for Avalanche
Flows of Snow, Debris and Mud, J. App. Math. Mech., 84(8),
507–527, 2004.

Yee, H. C.: Construction of explicit and implicit symmetric TVD
schemes and their applications, J. Comput. Phys., 68, 151–179,
1987.

Zwinger, T., Kluwick, A., and Sampl, P.: Numerical Simulation
of Dry-Snow Avalanche Flow over Natural Terrain, in: Lecture
Notes in Applied and Computational Mechanics – LNACM, Dy-
namic Response of Granular and Porous Materials under Large
and Catastrophic Deformations, edited by: Hutter, K. and Kirch-
ner, N., Springer Verlag, 11, 161–194, 2003.


