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Abstract. We present the results of the application of a re-
cently proposed model to determine landslide hazard. The
model predicts where landslides will occur, how frequently
they will occur, and how large they will be in a given area.
For the Collazzone area, in the central Italian Apennines,
we prepared a multi-temporal inventory map through the in-
terpretation of multiple sets of aerial photographs taken be-
tween 1941 and 1997 and field surveys conducted in the pe-
riod between 1998 and 2004. We then partitioned the 79
square kilometres study area into 894 slope units, and ob-
tained the probability of spatial occurrence of landslides by
discriminant analysis of thematic variables, including mor-
phology, lithology, structure and land use. For each slope
unit, we computed the expected landslide recurrence by di-
viding the total number of landslide events inventoried in
the terrain unit by the time span of the investigated period.
Assuming landslide recurrence was constant, and adopting
a Poisson probability model, we determined the exceedance
probability of having one or more landslides in each slope
unit, for different periods. We obtained the probability of
landslide size, a proxy for landslide magnitude, by analysing
the frequency-area statistics of landslides, obtained from the
multi-temporal inventory map. Lastly, assuming indepen-
dence, we determined landslide hazard for each slope unit
as the joint probability of landslide size, of landslide tempo-
ral occurrence, and of landslide spatial occurrence.

1 Introduction

Prediction of landslide hazard involves determining “where”
landslides are expected, “when” or how frequently they will
occur, and the “magnitude” of the landslides, i.e., how large
or destructive the slope failures will be. Several methods
have been proposed to evaluate where landslides are ex-
pected (e.g., Carrara, 1983; Carrara et al., 1991, 1995; van
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Westen, 1994; Soeters and van Westen, 1996; Chung and
Fabbri, 1999; Guzzetti et al., 1999, and references herein).
To predict the location of future landslides, these meth-
ods use statistical classification techniques and exploit the
known, inferred, or expected relationship between past land-
slides in an area and a set of geo-environmental thematic
variables in the same area. Attempts have been made to pre-
dict “when” landslides will occur by determining the proba-
bility of landslide occurrence in a given period (e.g., Keaton
et al., 1988; Lips and Wieczorek, 1990; Coe et al., 2000;
Crovelli, 2000; Guzzetti et al., 2003). Most commonly, the
temporal probability of landslide occurrence is obtained from
catalogues of historical landslide events or multi-temporal
landslide inventory maps. No single measure of landslide
“magnitude” exists (Hungr, 1997). For some landslide types,
landslide area is a reasonable proxy for landslide magnitude.
The frequency-area statistics of landslides can be obtained
from accurate landslide inventory maps (Stark and Hovius,
2001; Guzzetti et al., 2002; Malamud et al., 2004), and this
information can be used as a proxy for the distribution of
landslide magnitude in an area.

In this paper, we apply a recently proposed model for
the probabilistic assessment of landslide hazard (Guzzetti et
al., 2005). The model exploits information obtained from
a multi-temporal inventory map to predict where landslides
will occur, how frequently they will occur, and how large
they will be. We test the model in the Collazzone area, in
the central Apennines of Italy, and we discuss the results ob-
tained.

2 The study area

The Collazzone area extends for 78.89 km2 in Umbria, cen-
tral Italy, with elevations ranging between 145 m along the
Tiber River flood plain and 634 m at Monte di Grutti (Fig. 1).
The study area is bounded to the W by the Tiber River flood
plain, and to the E and SE by the divides of minor tribu-
taries of the Tiber River, including the Piedicolle, Bagno and
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Fig. 1. Location map.(A) Shaded relief image of the Umbria Re-
gion. (B) Shaded relief image showing morphology in the Col-
lazzone area.(C) Lithological map for the Collazzone area: (1)
Alluvial deposits, Holocene in age, (2) Continental deposits, Plio-
Pleistocene in age, (3) Travertine, Pleistocene in age, (4) Layered
sandstone and marl, Miocene in age, (5) Thinly layered limestone,
Lias to Oligocene in age.(D) Image showing a three-dimensional
view of the study area seen from West.

Rio creeks. Landscape is predominantly hilly, and lithology
and the attitude of bedding planes control the morphology
of the slopes. Valleys oriented N–S are shorter, asymmetri-
cal, and parallel to the main direction of the bedding plains,
whereas valleys oriented E–W are longer, symmetrical, and
mostly perpendicular to the direction of the bedding planes.
In the area crop out sedimentary rocks, including (Fig. 1c):
(i) recent fluvial deposits, chiefly along the main valley bot-
toms, (ii) continental gravel, sand and clay, Plio-Pleistocene
in age, (iii) travertine deposits, Pleistocene in age, (iv) lay-
ered sandstone and marl in various percentages, Miocene in
age, and (v) thinly layered limestone, Lias to Oligocene in
age (Conti et al., 1977; Servizio Geologico Nazionale, 1980;
Cencetti, 1990; Barchi et al., 1991). Soils in the area range
in thickness from a few decimetres to more than one meter,
they have a fine or medium texture, and exhibit a xenic mois-
ture regime, typical of the Mediterranean climate. Annual
rainfall averages 885 mm, and is most abundant in the period
from September to December. Landslides are abundant in
the area, and range in type and volume from very old and
partly dismantled large deep-seated slides to shallow slides
and flows).

3 Probabilistic model of landslide hazard

We have recently proposed a probabilistic model for the as-
sessment of landslide hazard (Guzzetti et al., 2005). The
model is based on the definition given by Guzzetti et
al. (1999), who defined landslide hazard as “the probability
of occurrence within a specified period and within a given
area of a potentially damaging landslide of a given magni-
tude”. Guzzetti et al. (1999) amended the definition of land-

slide hazard given by Varnes and the IAEG Commission on
Landslides and other Mass-Movements (1984) to include the
magnitude (i.e., the size, intensity or destructiveness) of the
expected landslide event (Einstein, 1988; Canuti and Casagli,
1994; Hungr, 1997; Guzzetti et al., 2005).

In mathematical terms, the adopted definition of landslide
hazard can be written:

HL = P [AL ≥ aL in a time interval t, given

{morphology, lithology, structure, land use,. . .}] (1)

where,AL is the area of a landslide greater or equal than a
minimum size,aL, measured e.g., in square meters. For any
given area, proposition (1) can be written as:

HL = P (AL) × P(NL) × P(S) (2)

that expresses landslide hazardHL as the conditional prob-
ability of landslide sizeP(AL), of landslide occurrence in
an established periodP(NL), and of landslide spatial occur-
renceP(S), given the local environmental setting.

Equation (2) assumes independence of the three individ-
ual probabilities, i.e., of the three components of landslide
hazard. From a geomorphological point of view, this as-
sumption is severe and may not hold, always and everywhere
(Guzzetti et al., 2005). In many areas we expect slope fail-
ures to be more frequent (time component) where landslides
are more abundant and landslide area is large (spatial com-
ponent). However, given the lack of understanding of the
landslide phenomena, independence is an acceptable approx-
imation that makes the problem mathematically tractable and
easier to work with. In the discussion, we will examine the
validity of this assumption for the study area.

In a previous work, we have proposed a method to obtain
all the relevant information needed to apply the probabilis-
tic model (Guzzetti et al., 2005). The method is based on
the systematic interpretation of multiple sets of aerial pho-
tographs of different dates, aided by historical investigations
and field surveys, to obtain a detailed multi-temporal land-
slide inventory map. The multi-temporal inventory is then
exploited to: (i) obtain the spatial probability of landslide oc-
currence, given the local environmental setting, (ii) estimate
the temporal probability of landslides, from the empirical re-
currence of slope failures, and (iii) determine the probabil-
ity of landslide size (area), considered a proxy for landslide
magnitude.

In the following, we first describe how we have collected
the landslide information in the Collazzone area. Next, we
demonstrate how the landslide information can be used to
determine landslide hazard. Lastly, we discuss the problems
encountered and the limitations of the obtained hazard as-
sessment.

4 Multi-temporal landslide inventory map

For the Collazzone area, we prepared a detailed multi-
temporal landslide inventory map, at 1:10 000 scale, through
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Table 1. Collazzone study area, central Umbria. Aerial pho-
tographs used to prepare the multi-temporal landslide inventory
map shown in Fig. 2.

Code Year Period Type Nominal Scale

A 1941 Summer Panchromatic 1: 18 000
B 1954 Spring–Summer Panchromatic 1: 33 000
C 1977 Summer Colour 1: 13 000
D 1985 July Panchromatic 1: 15 000
E 1997 April Panchromatic 1: 20 000

the interpretation of multiple sets of aerial photographs
and detailed geological and geomorphological field mapping
(Fig. 2). To prepare the landslide inventory, we used five
sets of aerial photographs ranging in scale from 1:13 000 to
1:33 000 and covering unsystematically the period from 1941
to 1997 (Table 1). A team of two geomorphologists car-
ried out the interpretation of the aerial photographs in the 5-
month period from July to November 2002. The interpreters
analyzed each pair of aerial photographs using a mirror stere-
oscope (4× magnification) and a continue-zoom stereoscope
(3× to 20× magnification). Both stereoscopes allowed the
interpreters to map contemporaneously on the same stereo
pair. The interpreters used all morphological, geological and
landslide information available from published maps, and
previous works carried out in the same area (e.g., Servizio
Geologico Nazionale, 1980, Guzzetti and Cardinali, 1989,
1990; Antonini et al., 20021). Care was taken in identifying
areas where morphology had changed in response to individ-
ual or multiple landslides, and to avoid interpretation errors
due to land use modifications or to different views provided
by aerial photographs taken at different dates.

The inventory map obtained from the analysis of the
aerial photographs was successively updated to cover the
period from 1998 to 2004 through field surveys conducted
chiefly following periods of prolonged rainfall. Due to lack
of aerial photographs taken after recent rainfall events, the
rainfall-induced landslides were mapped directly in the field
at 1:10 000 scale. Colour photographs taken in the field with
a handheld digital camera were used to aid the mapping and
the classification of the landslides locally.

Adopting an established procedure in Umbria (Cardinali et
al., 2002b; Reichenbach et al., 2005), in the multi-temporal

1Antonini, G., Ardizzone, F., Cacciano, M., Cardinali, M.,
Castellani, M., Galli, M., Guzzetti, F., Reichenbach, P., and Sal-
vati, P.: Rapporto Conclusivo Protocollo d’Intesa fra la Regione
dell’Umbria, Direzione Politiche Territoriali Ambiente e Infrastrut-
ture, ed il CNR-IRPI di Perugia per l’acquisizione di nuove infor-
mazioni sui fenomeni franosi nella regione dell’Umbria, la realiz-
zazione di una nuova carta inventario dei movimenti franosi e dei
siti colpiti da dissesto, l’individuazione e la perimetrazione delle
aree a rischio da frana di particolare rilevanza, e l’aggiornamento
delle stime sull’incidenza dei fenomeni di dissesto sul tessuto inse-
diativo, infrastrutturale e produttivo regionale, (in Italian), Unpub-
lished report, May 2002, 140 p., 2002.
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Fig. 2. Multi-temporal landslide inventory map for the Collazone
area. See Fig. 1 for location. Colours show landslides of different
age, inferred from the date of the aerial photographs and of field
surveys. A0, very old relict landslide; A1, landslides older than
1941; A2, active landslides in 1941; B1–B2, landslides in the period
from 1941 to 1954; C1–C2, landslides in the period from 1954 to
1977; D1–D2, landslides in the period from 1977 to 1985; E1–E2,
landslides in the period from 1985 to 1997; F1–F2–F3; landslides in
the period from 1998 to 2004. See Table 2 and text for explanation.

inventory landslides were classified according to the type
of movement, and the estimated age, activity and depth.
Landslide type was defined according to Cruden and Varnes
(1996) and the WP/WLI (1990). For deep-seated slope fail-
ures, the landslide crown was mapped separately from the
deposit. The distinction was not made for shallow land-
slides. Uncertainty exists in the determination of landslide
depth based on the morphological appearance of the land-
slide terrain ascertained from the aerial photographs. Land-
slide age, activity, and depth were estimated based on the
type of movement, the morphological characteristics and ap-
pearance of the landslides on the aerial photographs, the local
lithological and structural setting, and the date of the aerial
photographs or the field surveys. Landslide age was defined
as very old (relict), old (predating 1941) or recent (in the pe-
riod from 1941 to 2004), using photo-interpretation criteria
and field evidence, despite ambiguity in the definition of the
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age of a mass movement based on its appearance (McCalpin,
1984).

In each of the five sets of aerial photographs used to pre-
pare the multi-temporal inventory, we separated landslides
that appeared “fresh” on the aerial photographs, from the
other landslides. We assigned the “fresh” slope failures the
date (i.e., year) of the aerial photographs used to identify
the landslides. The other slope failures (i.e., the “non-fresh”
landslides) were attributed to the period between two suc-
cessive sets of aerial photographs. The latter groups include
landslides that exhibited morphological changes with respect
to one or more of the older sets of aerial photographs. Land-
slides mapped in the field after rainfall events in the period
between 1998 and 2004 were attributed to three different
dates, depending on the dates of the field surveys.

In the multi-temporal inventory (Fig. 2), very old (relict)
landslides include deep-seated slope failures with an area
AL>6.3×104 m2 (i.e., >6.3 ha) and an estimated volume
VL>×106 m3. These very old failures are present mostly
in the head section of minor catchments, and are largely con-
trolled by lithology, structure and the attitude of the bedding
planes. In places, the very old landslides are covered by mul-
tiple generations of younger landslides that have dismantled
and cancelled the older landslides, making their recognition
problematic. Old landslides include deep-seated and shal-
low slope failures. The old, deep-seated failures are mostly
rock/earth slides and complex earth slides – earth flows,
extending from less than 1.0×104 m2 (1 ha) to more than
1.7×105 m2 (17 ha). The morphology of the old landslides is
similar to the morphology of the relict landslides, but the old
failures are less affected by more recent slope failures. For
this reason, recognition of old landslides is easier, in the field
and from the aerial photographs. The old shallow landslides
are mostly slide and flow, extending in area from less than
1.0×103 m2 to 2.8×104 m2 (2.8 ha). Recent landslides in the
multi-temporal inventory consist chiefly of shallow failures
that occurred in the 64-year period from 1941 to 2004, and
include active slope failures at the date of the field surveys.

Table 2 summarizes statistics for the landslides in the
multi-temporal inventory map. The entire inventory, cov-
ering an undetermined period from pre-1941 to 2004 (A0–
F3 in Table 2), shows 2787 landslides, including 27 very
old and relict landslides, for a total mapped landslide area
of 22.79 km2, which corresponds to a landslide density of
35.32 slope failures per square kilometre. Due to geographi-
cal overlap of landslides of different periods, the total area af-
fected by landslides is 16.69 km2, 21.16% of the studied area.
Mapped landslides extend in size from 51 m2 to 1.45 km2,
and the most represented (i.e., numerous, abundant) failures
shown in the map have an area of about 8.15×102 m2. The
inventory lists 2490 landslides (89.34%) for which the date
or the period of occurrence was determined (A2–F3 in Ta-
ble 2). These landslides have an average landslide size of
4.19×103 m2, for a total landslide area of 10.24 km2, cover-
ing 7.81 km2 (9.89% of the study area). These figures com-
pare with 297 (10.66%) old and very old landslides whose
age remained undetermined but was older than 1941. The old

and very old landslides have an average area of 4.15×104 m2,
for a total landslide area of 12.34 km2, covering 11.43 km2

(14.48% of the study area). We attribute the largest abun-
dance of landslides in the period from 1941 to 2004 to in-
completeness of the multi-temporal map before 1941. We
further attribute the large average landslide area of the very
old and old landslides to amalgamation of smaller landslides
into larger landslide areas. Very old and relict landslides may
have also formed under different and more severe climatic or
seismic conditions (Carrara et al., 1995).

5 Landslide hazard assessment

The Collazzone study area was first subdivided into slope
units to determine landslide hazard. Slope units are terrain
units bounded by drainage and divide lines (Carrara et al.,
1991). Starting from a digital terrain model with a ground
resolution of 10 m×10 m and a simplified representation of
the main drainage lines, specific software partitioned the
study area into 894 slope units. For each slope unit, the soft-
ware computed 21 morphometric and hydrological parame-
ters useful to explain the spatial distribution of landslides.
To better represent the distinct limit between the hills and the
Tiber River flood plain, avoiding the problem of slope units
characterized by two distinct terrain types (e.g., sloping ter-
rain and the flat terrain in the flood plain), a synthetic river
channel was drawn in correspondence to the brake in slope.

5.1 Probability of landslide size

We ascertained the probability of landslide area, a proxy for
landslide magnitude, for two datasets: (i) the entire multi-
temporal inventory listing 2787 landslides (A0–F3 in Ta-
ble 2), and (ii) the multi-temporal inventory covering the
64-year period from 1941 to 2004, listing 2490 landslides
(A2–F3 in Table 2). We obtained the area of the individual
landslides in the GIS. Care was taken to calculate the ex-
act size of each landslide, avoiding topological and graphical
problems related to the presence of smaller landslides inside
larger mass movements. For the deep-seated landslides, we
merged the crown area and the deposit, and we used the total
landslide area in the analysis.

Fig. 3I shows the obtained probability densities of land-
slide area in the Collazzone area. Four estimates are shown:
two for the entire landslide dataset (A0–F3), and two for the
reduced landslide dataset (A2–F3). To determine the prob-
ability densities we adopted the double-Pareto distribution
of Stark and Hovius (2001) and the inverse Gamma distri-
bution of Malamud et al. (2004). Inspection of Fig. 3I and
Table 3 reveals that in the Collazzone area the two proba-
bility distributions provide similar results, differing chiefly
for landslides smaller than∼500 m2. Further inspection of
Fig. 3I indicates that a significant difference exists in the
slope of the tail of the distribution, when landslides of the
two considered periods are compared. Based on the en-
tire multi-temporal inventory (A0–F3), the inverse Gamma
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Table 2. Collazzone study area, central Umbria. Landslide size and abundance. Figures obtained from the multi-temporal inventory map
shown in Fig. 2. Inventory type: P, obtained from the systematic interpretation of stereoscopic aerial photographs; F, obtained through direct
field mapping. See Table 1 for date of the aerial photographs used to complete the inventory. * Landslide age estimated from the date of the
aerial photographs and the morphological appearance of the landslide. ** Percentage of landslide area with respect to the total area covered
by landslides (A0–F3).

Inventory
Estimated landslide age*

Landslide Landslide Area
Ref. Type Number Density Total Percent** Min Mean Max

# #/km2 km2 % m2 m2 m2

A0 P very old, relict 27 0.34 5.72 34.27 63 092 211 949 1 459 949
A1 P older than 1941 270 3.42 6.62 39.66 831 24 555 173 518
A2 P 1941 713 9.04 4.09 24.50 215 6005 75 256
B1 P 1941–1954 63 0.79 0.42 2.52 864 6722 22 780
B2 P 1954 97 1.23 0.71 4.25 772 7288 49 706
C1 P 1954–1977 409 5.18 1.49 8.93 225 3649 38 712
C2 P 1977 252 3.19 0.69 4.13 156 2761 18 407
D1 P 1977–1985 105 1.33 0.62 3.71 782 5892 33 351
D2 P 1985 135 1.71 0.45 2.69 103 3342 27 018
E1 P 1985–1997 63 0.79 0.27 1.62 320 4253 35 733
E2 P 1998 413 5.23 0.78 4.67 78 1880 44 335
F1 F 1997–2003 17 0.21 0.07 0.42 136 4134 26 011
F2 F May 2004 70 0.89 0.27 1.62 97 3811 31 909
F3 F Dec 2004 153 1.94 0.38 2.28 51 2517 47 884

A0–A1 very old and older than 1941 297 3.76 11.43 68.48 831 41 500 1 459 949
A0–F3 very old to Dec 2004 2787 35.32 16.69 100 51 8177 1 459 949
A1–F3 older than 1941 to Dec 2004 2760 34.98 12.51 74.95 51 6184 173 518
A2–E2 1941 to April 1997 2250 28.52 7.42 44.45 78 4318 75 256
F1–F3 1998 to Dec 2004 240 3.04 0.69 4.13 51 3009 47 884
A2–F3 1941 to Dec 2004 2490 31.56 7.81 46.79 51 4193 75 256

Table 3. Collazzone study area, central Umbria. DP, double Pareto distribution (Stark and Hovius, 2001); IG, inverse Gamma distribution
(Malamud et al., 2004).

Data set Period
α Size of most abundant landslide (m2)

DP IG DP IG

A0−F3 very old to Dec 2004 2.15 2.18 816 816
A2−F3 1941 to Dec 2004 2.48 2.54 881 1019

and the double Pareto distributions predict a significantly
larger proportion of large (AL>1×104 m2) and very large
(AL>1×106 m2) landslides, when compared to the estimates
obtained from the reduced landslide dataset (A2–F3). We at-
tribute the difference to the presence of a few very large and
relict landslides in dataset A0–F3, which are not present in
dataset A2–F3.

Figure 3II shows the probability of landslide size, i.e., the
probability that a landslide will have an area smaller than
a given size (left axis), or the probability that a landslide
will have an area that exceeds a given size (right axis). Us-
ing dataset A2–F3, the probability that a landslide exceeds
1×103 m2 (i.e., slightly larger than the area of the most abun-
dant landslide mapped in the multi-temporal inventory) is
∼0.80, and the probability that a landslide exceeds 1×104 m2

is ∼0.10. We will use these statistics to ascertain landslide
hazard.

5.2 Frequency of landslide occurrence

The model adopted to assess landslide hazard requires an es-
timate of the temporal probability of slope failures (Guzzetti
et al., 2005). To obtain an estimate of the frequency of
landslide occurrence, we counted the number of landslides
shown in the multi-temporal inventory in each slope unit.
Considering only the recent landslides (A2–F3), we prepared
a map of the total number of landslide events (i.e., of land-
slide occurrences) in the 64-year period between 1941 and
2004, the dates of the oldest aerial photographs and the most
recent field survey. For each slope unit, based on the past rate
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Table 4. Number and percentage of slope units, and total area and percentage of slope units, in five classes of the probability of temporal
landslide occurrence (see Fig. 4). Square bracket indicates class limit is included; round bracket indicates class limit is not included.
Temporal probability of landslide occurrence obtained exploiting the multi-temporal landslide inventory map (Fig. 2) and adopting a Poisson
probability model. See text for explanation.

[0–0.2) [0.2–0.4) [0.4–0.6) [0.6–0.8) [0.8–1.0]
number area number area number area number area number area

years # % km2 % # % km2 % # % km2 % # % km2 % # % km2 %

5 581 64.99 36.37 46.10 279 31.21 34.03 43.14 34 3.80 8.49 10.76 – – – – – – – –
10 477 53.36 28.41 36.01 220 24.61 18.21 23.08 130 14.54 16.92 21.45 67 7.49 15.35 19.46 – – – –
25 302 33.78 16.37 20.75 175 19.57 12.04 15.26 104 11.63 7.96 10.09 187 20.92 19.30 24.46 126 14.09 23.22 29.43
50 235 26.28 12.89 16.34 67 7.49 3.48 4.41 175 19.57 12.04 15.26 104 16.63 7.95 10.08 313 35.01 45.52 53.90

Table 5. Variables entered into the seven discriminant models of landslide susceptibility (see Fig. 5). (A) Model obtained using landslides
identified in the period A1; (B) model obtained using landslides in the period A1–A2; (C) model obtained using landslides in the period A1–
B2; (D) model obtained using landslides in the period A1–C2; (E) model obtained using landslides in the period A1–D2; (F) model obtained
using landslides in the period A1–E2; (G) model obtained using landslides in the period A1–F3. Standard discriminant function coefficients
(SDFC) show the relative importance of each variable in the discriminant function. Coefficients shown in bold are strongly associated with
the presence/absence of landslides. Positive coefficients are correlated to the absence of landslides. Negative coefficients are correlated to
the presence of landslides.

Variable description Variable
Model SDFC

A B C D E F G

Drainage channel order ORDER .162 .280 .181 .148 .146 .138
Drainage channel length LINKLEN –.425 –.198
Slope unit area SLOAREA –.358 –.269 –.255 –.264 –.247
Slope unit mean elevation ELVM –.673
Slope unit terrain elevation standard dev. ELVSTD –.250 –.362 –.307 –.372 –.379 –.377
Slope unit mean terrain gradient SLOANG –.385 –.695 –.675 –.392
Slope unit terrain gradient standard dev. ANGSTD .310 .381 .308 .298 .355
Slope unit length SLOLEN –.230 –.210 –.213
Slope unit length standard deviation LENSTD .257
Slope unit terrain gradient (lower portion) ANGLE1 –.327 –.192
Slope unit terrain gradient (middle portion) ANGLE2 .343 .276
Slope unit terrain gradient (upper portion) ANGLE3 –.349 –.390 –.517 –.549 -.365
Concave profile down slope CONV .121
Convex-concave profile COCCOV .137
Complex slope profile CC .499 .471 .442 .583 .436
Recent alluvial deposits ALLUVIO .196 .324 .218 .283 .216
Sandstone AREN .164
Limestone CARBO .836 .623 .769 .699 .770 .784 .825
Travertine TREVERTI .372 .238 .126 .162 .152
Clay ARGILLA –.102 –.128 –.116
Gravel GHIAIA .100
Continental deposits CONTI –.144 –.178
Marl MARNE .109 .113
Sand SABBIA –.165 –.108
Forested area BOSCO .151 .227 .277 .355
Cultivated area SA –.190 –.101 .295
Fruit trees and vineyards FRUTT .101 .106
Bedding dipping into of the slope REG .260
Bedding dipping out of the slope FRA –.582 –.277 –.288 –.241 –.152 –.160
Bedding dipping across the slope TRA –.219 –.159
Slope unit facing S-SE TR2 .188 .325 .284 .186 .233 .273 .275
Very old (relict) landslide (A0) FRA OLD –.159 –.164

Number of variables in the model 13 16 13 17 14 15 16
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Fig. 3. Probability density(I) and probability(II) of landslide area.
Blue and orange lines show inverse Gamma distribution (blue line,
Malamud et al., 2004) and double Pareto distribution (orange line,
Stark and Hovius, 2001) for landslides in the period from very old
to 2004 (A0–F3). Green and pink lines are inverse Gamma distribu-
tion (green) and double Pareto distribution (pink) for the inventory
covering the period from 1941 to 2004 (A2–F3).

of landslide occurrence we obtained the landslide recurrence,
i.e., the expected time between successive failures. Know-
ing the mean recurrence interval of landslides in each map-
ping unit (from 1941 to 2004), assuming the rate of slope
failures will remain the same for the future, and adopting a
Poisson probability model (Crovelli, 2000; Guzzetti et al.,
2003, 2005), we then computed the exceedance probability
of having one or more landslides in each slope unit. Fig-

4

(b)

(d)

[0.0-0.2] (0.2-0.4] (0.4-0.6] (0.6-0.8] (0.8-1.0]

(c)

(a)

Fig. 4. Exceedance probability of landslide temporal occurrence
obtained computing the mean recurrence interval of past landslide
events from the multi-temporal inventory map (Fig. 2), assuming it
will remain the same for the future, and adopting a Poisson proba-
bility model. Exceedance probability shown for four periods:(a) 5
years,(b) 10 years,(c) 25 years, and(d) 50 years. Square bracket
indicates class limit is included; round bracket indicates class limit
is not included.

ure 4 shows the exceedance probability of landslide occur-
rence for four different periods, from 5 to 50 years. We will
use these statistics to ascertain landslide hazard. Table 4 lists
the number and total area of slope units in five classes of the
estimated probability of temporal landslide occurrence.

5.3 Landslide susceptibility

The adopted hazard model requires a probabilistic estimate
of the spatial occurrence of landslides (Guzzetti et al., 2005).
We obtained landslide susceptibility through discriminant
analysis of 46 thematic variables, including morphology (26
variables derived from a 10 m×10 m DTM), lithology (9
variables), structure (3 variables), land use (7 variables), and
the presence of large relict landslides (1 variable). In a GIS,
we computed the percentage of the individual thematic vari-
ables in each slope unit. The obtained values became the in-
dependent (explanatory) variables in the multivariate statisti-
cal analysis. We then computed the percentage of landslide
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Fig. 5. Landslide susceptibility models obtained through discrimi-
nate analysis of the same set of independent thematic variables (Ta-
ble 5) and changing the landslide inventory map (dependent vari-
able, Fig. 2 and Table 2).(a) Model obtained using landslides iden-
tified in the period A1; (b) model obtained using landslides in the
period A1–A2; (c) model obtained using landslides in the period
A1–B2; (d) model obtained using landslides in the period A1–C2;
(e)model obtained using landslides in the period A1–D2; (f) model
obtained using landslides in the period A1–E2; (g) model obtained
using landslides in the period A1–F3. Colours indicate spatial prob-
ability in 5 classes. Square bracket indicates class limit is included;
round bracket indicates class limit is not included.

area in each slope unit. We selected a threshold of 3% of
landslide area to determine if a slope unit was: (i) free of
landslides (≤3%) group 0, or (ii) contained slope failures
(>3%) group 1. We selected this threshold to account for
possible mapping, drafting and digitizing errors in the com-
pilation of the landslide inventory map.

Figure 5 shows seven susceptibility maps obtained from
seven statistical models prepared using the same set of envi-
ronmental variables, and changing incrementally the land-
slide inventory map. We prepared the first susceptibility
model (Fig. 5a) using only the old landslides (A1 in Ta-
ble 2). We then added to the inventory the landslides identi-
fied as active in the 1941 aerial photographs and we obtained

a new estimate of the probability of spatial landslide occur-
rence (Fig. 5b). We repeated the same procedure adding the
slope failures that we identified and mapped using the 1954,
1977, 1985, and 1997 aerial photographs (Figs. 5c–f). To
prepare the last model (Fig. 5g), we added all the slope fail-
ures mapped in the field in the period from 1998 to 2004.

At each step, we obtained a different susceptibility map,
i.e., a different estimate of the probability of landslide spa-
tial occurrence,P(S). At each step, a different discriminant
function selected different variables as the best predictors of
landslide occurrence. Table 5 lists the variables entered in
the seven discriminant models. In this table, the standard
discriminant function coefficients (SDFC) show the relative
importance of each variable in the discriminant function as
a predictor of slope stability or instability. Variables with
large coefficients, in absolute value, (shown in bold), are
strongly associated with the presence/absence of landslides.
In particular, positive coefficients are correlated to the ab-
sence of landslides, and negative coefficients are correlated
to the presence of landslides.

Inspection of Table 5 reveals that two variables (CARBO
and TR2) entered all seven discriminant models, and five
variables (ORDER, ELVSTD, CARBO, FRA, TR2) entered
six discriminant models. Further inspection of Table 5 in-
dicates that eleven of the 46 thematic variables (23.9%) en-
tered at least five susceptibility models, confirming their im-
portance in explaining the geographical distribution of past
landslides. These variable include morphological (ORDER,
SLO AREA, ELV STD, ANG STD, ANGLE3, CC, TR2),
lithological (ALLUVIO, CARBO, TRAVERTI), and struc-
tural (FRA) conditions. Five variables entered at least five
models with large standard discriminant function coefficients
(SDFC>|0.300|). Of the latter variables, three are associ-
ated with stable conditions (ANGSTD, CC, CARBO), and
two variables are associated with unstable slope conditions
(ELV STD, ANGLE3).

Figure 6 compares the fitting performances of the seven
susceptibility models. By upgrading the landslide inventory,
the total number of mapping units correctly classified – a
measure of model fit – increased from 73.8% to 83.0%. This
confirms that a more complete inventory improves the model
fit (Guzzetti et al., 2005). Further inspection of Fig. 6 reveals
that the two most significant improvements in terms of fitting
performance occurred: (i) when the 713 landslides identified
as active in the 1941 aerial photographs (A2) were added to
the inventory A1, and (ii) when the 413 landslides identified
as active in the 1997 (E2) aerial photographs were added to
the inventory A1–E1. These new landslides represent an in-
crease of 70.59% in number and 18.92% in area (A2), and
16.21% in number and 1.58% in area (E2), with respect to
the previous inventories, respectively.

Overall, by adding new landslides, the number of unsta-
ble terrain units correctly classified by the models increased
9.7%, and the number of unstable slope units wrongly at-
tributed to the stable class decreased 10.3%. By adding the
240 landslides mapped in the field in the period from 1998
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Fig. 6. Degree of fit for seven landslide susceptibility models. x-
axis identifies the model, and y-axis shows percentage of mapping
units in each model. Large red squares: overall percentage of map-
ping units correctly classified by the 7 susceptibility models. Black
and open symbols show mapping units correctly and incorrectly
classified, respectively. Black diamonds show percentage of map-
ping units free of landslides classified as stable. Black squares show
percentage of mapping units having landslides classified as unsta-
ble. Open circles show percentage of mapping units free of land-
slides misclassified as unstable (type 1 error). Open triangles show
percentage of mapping units having landslides misclassified as sta-
ble (type 2 error).

to 2004, the model fitting performance did not improve; it
decreased 0.3% (from 83.3% to 83.0%).

Based on the results shown in Fig. 6, we selected model E
(Fig. 5e) as the predictor of landslide susceptibility in the
Collazzone area, and we adopted this model to determine
landslide hazard. We selected model E as a compromise be-
tween model performance and the amount of landslide infor-
mation used to construct the model. Model E was prepared
using 2044 landslides (74.1%) in the period from pre-1941 to
1985 (A1–D2), which allowed using a considerable number
of landslides (716, 25.9%) occurred in the period from 1985
to 2004 (E1–F3) for the validation of the prediction skill of
the susceptibility model.

For the selected susceptibility model, we attempted an as-
sessment of the uncertainty (i.e., the error) associated with
the susceptibility estimate. To accomplish this, we prepared
an ensemble of 50 susceptibility models obtained from the
same set of 46 independent thematic variables and the same
multi-temporal landslide map (A1–E2), but using 50 differ-
ent and randomly selected subsets of slope units. Each subset
contained 760 slope units, i.e., 85% of the entire set of slope
units. Next, we prepared a landslide susceptibility model
for each subset, obtaining 50 different susceptibility models,
i.e., 50 forecasts of landslide susceptibility for the Collaz-
zone area.
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Fig. 7. Red dots show the relationship between the average value
of 50 probability estimates obtained using randomly selected sub-
sets of 760 mapping units (85% of total number of map units) (x-
axis), and the single probability value obtained for the susceptibility
model shown in Fig. 5e (y-axis). Correlation coefficient, r2=0.9876.
See text for explanation.
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Fig. 8. Landslide susceptibility model error. The graph shows,
for each of the 894 mapping units, the mean value of 50 prob-
ability estimates (x-axis) against two standard deviations (2σ) of
the probability estimate (y-axis). Along x-axis mapping units are
ranked from low (left, green) to high (right, red) spatial probability
of landslide occurrence. Colours indicate spatial probability in the
same 5 classes shown in Fig. 5. Thick blue line shows estimated
model error obtained by linear regression fit. Correlation coeffi-
cient, r2=0.8416. See text for explanation.

We exploited the large number of susceptibility forecasts
to estimate the error associated with the landslide susceptibil-
ity model shown in Fig. 5e. For each slope unit, Fig. 7 com-
pares the mean value of the 50 probability estimates (x-axis)
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Fig. 9. Map showing estimated model error (2σ) for the suscepti-
bility model shown in Fig. 5e. Model error computed using Eq. (3)
is shown in 5 classes. Square bracket indicates class limit is in-
cluded; round bracket indicates class limit is not included. See text
for explanation.

with the single probability estimate obtained for the model
shown in Fig. 5e (y-axis), which was prepared using the en-
tire set of 894 slope units. The correlation between the two
estimates of landslide susceptibility is very high (r2=0.9876).
This is indication that the two classifications – despite some
scatter – are very similar. Based on this result, we prepared
Fig. 8 that shows, for the 894 slope units, the relationship
between the ranking of landslide susceptibly (x-axis) and 2
standard deviations (2σ) of the probability estimate (y-axis).
Inspection of Fig. 8 reveals that the measure of 2σ is low
(<0.05) for slope units classified as highly susceptible (prob-
ability >0.80) and as largely stable (probability<0.20). The
scatter in the probability estimate is larger for intermediate
values of the probability (i.e., between 0.40 and 0.60). This
indicates that for slope units having intermediate values of
probability, not only is model E incapable of satisfactorily
classifying the terrain as stable or unstable, but also that the

10
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Fig. 10. Examples of landslide hazard maps for four periods, from
5 to 50 years (from top to bottom), and for two landslide sizes,AL≥

1000 m2 (left) andAL≥10 000 m2, i.e. 1 ha (right). Colours show
different joint probabilities of landslide size, of landslide temporal
occurrence, and of landslide spatial occurrence (susceptibility).

obtained estimate is highly variable and, most probably, un-
reliable. The variation in the probability estimate of landslide
susceptibility can be approximated by the following equa-
tion, obtained by linear regression fit (least square method):

y = −0.3218x2
+ 0.3212x 0 ≤ x ≤ 1 (r2

= 0.8416)(3)

where,x is the estimated value of the probability of pertain-
ing to an unstable slope unit, andy is the corresponding 2σ
of the probability estimate.

We considered the value of 2σ of the probability estimate
a proxy for the model error, and we used Eq. (3) to estimate
the model error for each slope unit, based on the computed
probability estimate. For each slope unit, Fig. 9 shows the
error associated with the probability estimate of landslide
susceptibility computed using Eq. (3), and provides a quan-
titative measure of the error associated with the quantitative
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Fig. 11. Exceedance probability of landslide temporal occurrence
in the 7-year period from 1998 to 2004 (F1–F3) based on the record
of landslide occurrence in the period between 1941 and 1997 (A2–
E2) obtained from the multi-temporal inventory. Square bracket
indicates class limit is included; round bracket indicates class limit
is not included.

landslide susceptibility assessment provided by model E, and
shown in Fig. 5e.

5.4 Landslide hazard

We now have all the information required to determine quan-
titatively landslide hazard in the study area. We use:

(i) the probability of landslide size, a proxy for landslide
magnitude, obtained from the statistical analysis of the
frequency-area distribution of the mapped landslides
(Fig. 3),

(ii) the probability of landslide occurrence for established
periods, obtained by computing the mean recurrence in-
terval between successive failures in each mapping unit,
and adopting a Poisson probability model (Fig. 4, Ta-
ble 4), and
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Fig. 12. Estimate of the prediction skill of the temporal forecast
shown in Fig. 11. x-axis shows classes of the temporal probability
obtained considering landslides in the period from 1941 to 1997
(A2–E2). y-axis shows cumulative percentage of landslide area and
landslide number in the period from 1998 to 2004 (F1–F3). Red
line shows cumulative percentage of landslide area. Blue line shows
cumulative percentage of landslide number.

(iii) the spatial probability of slope failures (i.e., susceptibil-
ity) obtained through discriminant analysis of 46 envi-
ronmental variables (Fig. 5).

Assuming independence, we multiply the three probabilities
and we obtain landslide hazard, i.e., the joint probability that
a mapping unit will be affected by future landslides that ex-
ceed a given size, in a given time, and because of the lo-
cal environmental setting. Figure 10 shows examples of the
obtained landslide hazard assessment. This figure portrays
landslide hazard for four periods (i.e., 5, 10, 25 and 50 years),
and for two different landslide sizes, greater or equal than
1×103 m2, and greater or equal than 1×103 m4 (1 ha).

6 Model validation

The adopted probability model allows for its temporal and
spatial verification. We first attempted a validation of the
forecast of the temporal occurrence of landslides. For the
purpose, we split the multi-temporal inventory covering the
period from 1941 to 2004 (A2–F3) in to two sub-sets: (i)
the 2250 landslides (90.4%) in the period from 1941 to 1997
(A2–E2), and (ii) the 240 landslides (9.6%) occurred in the
period from 1998 to 2004 (F1–F3). Using the first sub-set, we
estimated the exceedance probability of landslide temporal
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Fig. 13. Comparison of the susceptibility model fit and prediction performance. In the graphs, x-axes show the percentage of study area
in each susceptibility class, ranked from most (left) to least (right) susceptible, and y-axes show the percentage of landslide area in each
susceptibility class. Filled symbols measure the degree of model fit and open symbols measure the prediction skill of the susceptibility
models. Red lines show 0.5 probability threshold, separating unstable (P(S)<0.5) and stable (P(S)>0.5) slope units.

occurrence in the 7-year period from 1998 to 2004 (Fig. 11).
We then counted the number of landslides occurred in the pe-
riod in each probability class. Results are shown in Fig. 12.
In the 7-year considered period, the largest expected proba-
bility of landslide occurrence is 0.7, indicating that nowhere
in the study area landslides are expected to be “certain” in
the period. Most of the mapped landslides (∼79%) and most
of the landslide areas (∼81%) occurred in slope units with
an expected probability of experiencing landslides ranging
between 0.3 and 0.6. This is not a bad result, considering
the difficulty of the task, and in particular considering: (i)
the comparatively limited number of landslides occurred in
the short validation period, (ii) the simplicity of the adopted
Poisson model, and (iii) the temporal variability of landslide
phenomena in the examined period.

Next, we attempted a validation of the spatial forecast of
landslide occurrence, i.e., of landslide susceptibility. To ac-
complish this, we computed the total area of new landslides

(at the date of the photographs) in each slope unit, and we
compared the obtained values with the susceptibility zonings
obtained by the seven different discriminant models (Fig. 5).
Results are summarized in Fig. 13. In this figure, the graphs
show on the x-axis the percentage of the study area in each
susceptibility class, ranked from most (left) to least (right)
susceptible, and on the y-axis the percentage of landslide
area in each susceptibility class. In each graph, the filled
squares show the proportion of landslides used to construct
the susceptibility model, and the open squares show the pro-
portion of new landslides, i.e., the slope failures that occurred
after the date of the landslides used to construct the mod-
els. Hence, the filled symbols measure the degree of model
fit (i.e., the ability of a model to predict the location of the
known landslides used to construct the model), whereas the
open symbols measure the prediction skill of the susceptibil-
ity models (i.e., the ability of a model to predict the location
of new landslides). The red lines show the 0.5 probability
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threshold, i.e., the limit between slope units classified as un-
stable (P(S)<0.5) or stable (P (S)>0.5) by the discriminant
functions.

Inspection of Fig. 13 reveals that for models A, B and C,
prepared using landslides A1, A1–A2 and A1–B2, respec-
tively, model fit (filled symbols) is significantly better than
model prediction skill (open symbols). The difference be-
tween degree of model fit and model prediction skill de-
creases for the other models. We attribute the reduced differ-
ence to the increased number of landslides used to prepare
the models, which corresponds to a larger proportion of the
study area affected by slope failures. The percentage of terri-
tory classified as unstable by the seven susceptibility models
increases from 55.6% (model A, A1) to 76.6% (model F, A1–
E2). Table 6 shows similar results. In this table, each block
row corresponds to a susceptibility model and lists the per-
centage and the total landslide area mapped in a given period
that falls in five classes of landslide susceptibility, from very
high (VH) to very low (VL) susceptibility. The figures indi-
cate how well a model was capable of predicting future land-
slides. All the models correctly classified as landslide prone
more than 50% of the areas where “future” (with respect to
the model) landslides occurred. As an example, model A
(first block row in Table 6), which was prepared using only
270 landslides older than 1941 (A1), was capable of predict-
ing 63.6% of all the landslides recognized as active in 1941
(A2) and which occurred within high (H, 41.4%) and very
high (VH, 22.2%) susceptibility classes. Model A misclas-
sified 23.5% of the landslide areas occurred in 1941 in slope
units classified of low (L, 20.6%) or very low (VL, 2.9%)
susceptibility. Model A performed less efficiently in pre-
dicting landslides occurred in the period from 1955 to 1977
(C1–C2). For this period, the model was capable of correctly
predicting 57.7% of the new landslides, and failed to predict
31.3% of the slope failures that occurred in low (24.4%) and
in very low (6.9%) susceptibility areas. It is useful to check
the ability of Model A to predict the location of the most
recent landslides occurred in the Collazzone area, i.e., the
landslides mapped in the period from 1998 to 2004 (F1–F3).
For this period, model A was capable of correctly predicting
58.1% of the new landslides, and failed to predict 30.6% of
the slope failures that occurred in low (25.0%) and in very
low (5.6%) susceptibility areas. Considering that model A
was prepared using only 270 landslides, and considering the
time elapsed from model “prediction” (1941) to model “ver-
ification” (2004), performance of the model should be con-
sidered satisfactory.

Data listed in Table 6 can also be used to determine the
contribution of new landslides to the model prediction skills.
Considering the last column, one can see that model A was
capable of predicting 58.1% of the landslides occurred in the
period from 1998 to 2004 (F1–F3), whereas model E cor-
rectly predicted 89.7% of the landslides in the same period,
with the majority of the slope failures (61.4%) falling in the
very high susceptibility class and only 2.0% of the landslides
occurring in the very low susceptibility class.

7 Discussion

The adopted landslide hazard model holds under a set of as-
sumptions (Guzzetti et al., 2005), namely that: (i) landslides
will occur in the future under the same circumstances and
because of the same factors that produced them in the past,
(ii) landslide events are independent (uncorrelated) random
events in time, (iii) the mean recurrence of slope failures will
remain the same in the future as it was observed in the past,
(iv) the statistics of landslide area do not change in time, (v)
landslide area is a reasonable proxy for landslide magnitude,
and (vi) the probability of landslide size, the probability of
landslide occurrence for established periods, and the spatial
probability of slope failures, are all independent. We now
discuss the validity of these assumptions for the Collazzone
study area. We anticipate that the results are not significantly
different from the results obtained previously in the northern
Italian Apennines (Guzzetti et al., 2005).

That landslides will occur in the future under the same
conditions and because of the same factors that triggered
them in the past – a consequence of the principle of uni-
formitarianism – is a recognized postulate for all functional
susceptibility or hazard assessments (Carrara et al., 1991;
Hutchinson, 1995; Aleotti and Chowdhury, 1999; Chung and
Fabbri, 1999; Guzzetti et al., 1999). This assumption has ge-
omorphological limitations (Guzzetti et al., 2005). First-time
failures occur under conditions of peak resistance (friction
and cohesion), whereas landslide reactivations occur under
intermediate or residual conditions. Slope failures change
the morphology of the terrain where the failures occur, and
when a landslide moves, it may change the hydrological con-
ditions of the slope. Further, landslides can change their type
of movement and velocity with time. Lastly, landslide occur-
rence and abundance are a function of environmental condi-
tions that vary with time at different rates. Some of these
environmental variables are affected by human actions (e.g.,
land use, deforestation, irrigation, etc.), which are also highly
changeable. Because of these complications, each landslide
occurs in a distinct local environmental context. Despite the
inherent limitations, in this work we have assumed that in
the study area future landslides will occur on average under
the same circumstances and because of the same conditions
that triggered them in the past. We further assumed that our
knowledge of the distribution of past failures was reasonably
accurate and complete.

The difficulty with the adopted assumption lays in the fact
that the environmental conditions (predisposing factors) that
caused landslides must remain the same in the future in order
to cause similar slope failures. We can assume that our haz-
ard model has an expected validity of 50 years. The problem
is to investigate the possibility that the predisposing factors
will change in the 50-year period. In the study area, it is
safe to assume that geological factors (e.g., lithology, struc-
ture, seismicity) will not change significantly in such a short
geological time. Local morphological modifications are cer-
tainly possible, due chiefly to stream erosion, landslides and
human actions, but extensive (widespread) morphological
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Table 6. Validation of landslide susceptibility models prepared for the Collazzone area. Susceptibility classes are: VH, very high [1.0–0.8);
H, high [0.8–0.6); U, uncertain [0.6–0.4); L, low [0.4–0.2); and VL, very low [0.0–0.2]. Square bracket indicates class limit is included;
round bracket indicates class limit is not included. See text for explanation.

Landslides
Susceptibility A2 B1–B2 C1–C2 D1–D2 E1–E2 F1–F3

class m2 % m2 % m2 % m2 % m2 % m2 %

Model A VH 911 140.6 22.2 270 108.7 23.9 454 661.6 21.1 198 483.3 18.7 180 541.5 17.4 158 462.5 23.1
(A1) H 1 697 192.4 41.4 403 642.4 35.8 787 829.8 36.6 459 594.8 43.4 458 563.8 44.2 240 365.7 35.0

U 528 725.9 12.9 127 781.7 11.3 234 966.3 10.9 116 624.4 11.0 97 879.6 9.4 78 145.6 11.4
L 843 823.1 20.6 261 978.1 23.2 525 874.0 24.4 241 526.1 22.8 213 053.2 20.5 171 694.4 25.0

VL 117 690.9 2.9 65 517.8 5.8 147 766.3 6.9 42 881.7 4.0 87 558.2 8.4 38 142.0 5.6

Model B VH 541 984.9 48.0 992 951.9 46.2 542 926.3 51.3 480 519.6 46.3 308 755.7 45.0
(A1–A2) H 371 180.2 32.9 685 888.0 31.9 363 631.1 34.3 379 343.5 36.6 189 673.3 27.6

U 101 845.1 9.0 159 079.9 7.4 44 413.2 4.2 67 523.6 6.5 80 850.9 11.8
L 86 376.4 7.7 263 763.8 12.3 88 732.4 8.4 61 269.9 5.9 84 186.9 12.3

VL 27 642.0 2.4 49 414.4 2.3 19 407.4 1.8 48 939.8 4.7 23 343.3 3.4

Model C VH 1 016 348.7 47.2 535 420.5 50.6 562 019.0 54.2 309 502.5 45.1
(A1–B2) H 707 578.8 32.9 325 653.6 30.7 318 229.8 30.7 230 271.7 33.5

U 106 075.3 4.9 99 624.3 9.4 40 110.7 3.9 40 036.0 5.8
L 275 302.8 12.8 90 518.6 8.5 73 078.6 7.0 86 976.5 12.7

VL 45 792.3 2.1 7893.5 0.7 44 158.2 4.3 20 023.4 2.9

Model D VH 716 215.8 67.6 733 293.9 70.7 413 097.3 60.1
(A1–C2) H 252 034.5 23.8 191 491.7 18.5 199 123.4 29.0

U 21 060.9 2.0 17 116.3 1.6 20 407.3 3.0
L 49 859.5 4.7 52 290.9 5.0 34 293.2 5.0

VL 19 939.8 1.9 43 403.6 4.2 19 888.8 2.9

Model E VH 697 304.1 67.2 421 936.4 61.4
(A1–D2) H 232 577.8 22.4 194 225.1 28.3

U 19 079.0 1.8 31 693.8 4.6
L 50 110.9 4.8 25 008.2 3.6

VL 38 524.5 3.7 13 946.5 2.0

Model F VH 478 955.5 69.7
(A1–E2) H 159 285.7 23.2

U 24 279.4 3.5
L 10 343.0 1.5

VL 13 946.5 2.0

changes are not expected. Inspection of Table 5 indicates
that 29 of the 32 thematic variables entered into the suscepti-
bility models are not expected to change significantly in the
considered period. However, land use types (three variables,
BOSCO, SA, FRUTT) may change significantly in the pe-
riod. In a representative portion of the Collazzone area, com-
parison of land-use maps obtained form aerial photographs
taken in 1941 (B in Table 1) and aerial photographs taken in
1999, revealed a reduction of about 65% of the forest cov-
erage in the 57-year period, in favour chiefly of cultivated
land. In the same period, agricultural practices have changed
significantly, largely aided by new mechanical equipments.
In the central Apennines, areas recently deforested for agri-
cultural purposes are generally more prone to shallow land-
slides. If this will be the case for the Collazzone area, some
of the environmental variables considered in the susceptibil-
ity model will change, possibly hampering the validity of the
model, and new variables describing land use change should
be considered to forecast the location of new slope failures.

The available susceptibility model (Fig. 5e, Table 5) does not
consider the landslide triggering factors, i.e., rainfall, seismic
shaking or snow melting. Changes in the frequency or inten-
sity of the driving forces will not affect (at least not in the
considered period) the susceptibility model. However, they
may affect the rate of occurrence of landslide events.

In the Apennines, evidence exists that where abundant
clay, marl and sandstone crop out, landslides exhibit spa-
tial persistence, i.e., slope failures tend to occur where they
have occurred in the past. Guzzetti et al. (2005) tested this
hypothesis in the Staffora River basin in the northern Apen-
nines and found that for a period of 50 years landslide events
could be considered uncorrelated events in time and these
could be modelled designing a Poisson-type model. Follow-
ing the same approach, we note that in the Collazzone study
area 33% of the total number of landslides identified in the
period from 1941 to 2004 (A2–F3) occurred inside landslides
classified as older than 1941 (A0–A1).
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Analysis of the historical record of damaging landslide
events in Umbria indicates that in the 85-year period from
1917 to 2001, 1497 landslide events occurred at 1286 differ-
ent sites, with only 75 sites affected two or more times, and
only one site affected four times. Based on this historical
record, the same landslide site was affected on average 1.16
times, indicating a low rate of recurrence of landslide events
at the same site. Despite known incompleteness of the histor-
ical record (Guzzetti et al., 2003; Guzzetti and Tonelli, 2004),
the obtained findings concur to determine that for the period
of our hazard assessment (50 years), in the Collazzone area
landslides can be considered uncorrelated random events in
time.

Further analysis of the historical record of landslide events
in Umbria reveals that of the 889 events for which the trig-
gering mechanism is known, the majority (720, 80.9%) were
the result of intense rainfall. The remaining landslide events
were due to rapid snow melting (37, 4.2%), infiltration (135,
15.2%), earthquake shaking (38, 4.3%), erosion of the toe
of the slope (59, 6.6%), human actions on artificial slopes
(81, 9.1%), and other causes (39, 4.3%). The statistics indi-
cates that meteorological triggers (rainfall and snow melting)
cause most of the landslides in Umbria (and in the Collaz-
zone area). If the rate of occurrence of the meteorological
events that trigger landslides changes, the mean rate of slope
failures will also change. If the intensity (amplitude and du-
ration) of the rainfall will change, the rate of slope failures
might change, in a way that is not easily predictable. Modi-
fications in land use induced by changes in agricultural prac-
tices may also change the rate of occurrence of landslides.

Determining the statistics of landslide areas is no trivial
task (Malamud et al., 2004). The (scant) available informa-
tion indicates that the frequency-area statistics of landslide
areas does not change significantly across lithological or
physiographical boundaries. Malamud et al. (2004) showed
that three different populations of landslides produced by dif-
ferent triggers (i.e., seismic shaking, intense rainfall, rapid
snow melting) in different physiographical regions (southern
California, central America, central Italy), exhibit virtually
identical probability density functions. Unpublished work
conducted in central Italy indicates that for the same phys-
iographical region the probability density of landslide area
does not change significantly in time. It is therefore safe to
assume that in the Collazzone area the frequency-area statis-
tics of landslide area will not change in the 50-year period of
the hazard assessment. Since the most abundant landslides
in the study area are small (∼1×103 m2, Fig. 3a), great care
must be taken in mapping accurately the small slope failures.
The slope of the heavy tail of the probability density distri-
bution shown in Fig. 3a is controlled by a limited number
of landslides. There are 23 landslides (0.82%) larger than
1×105 m2 and only one landslide (0.03%) larger than one
square kilometre. Care must be taken in mapping the largest
landslides, and in deciding whether they represent an indi-
vidual slope failure or the result of two or more coalescent
landslides.

No unique measure of landslide magnitude is available.
Hungr (1997) proposed to use destructiveness as a measure
of landslide magnitude. In this work, we have adopted land-
slide area as a proxy for landslide destructiveness and of
landslide magnitude. We obtained the area of the individ-
ual slope failures from the multi-temporal landslide inven-
tory. To determine if landslide area is a reasonable measure
of landslide destructiveness in the Collazzone area we have
analysed the historical catalogue of damaging slope failures
in Umbria. Information on the size (area, length, width)
of landslides is available for 344 events (22.9%), which
range from 1.0×103 m2 to more than one square kilometre
(mean=1.64×104 m2). Damage caused by these landslides
was mostly to the road network (73 events) and, subordi-
nately, to private homes (53 events) and to the infrastructure
(30 events). Twenty-two landslide events produced casual-
ties, and 12 landslides produced 22 fatalities, none of which
in the Collazzone area. Information on the landslide type is
available for 368 events (24.6%), of which 152 were slides,
31 flows and 148 falls. Slides and flows caused the most se-
vere damage, and falls produced minor interruptions along
the roads. As a whole, the available historical information
on damaging slope failures in Umbria concurs to establish
that: (i) damage in the Collazzone area is expected mostly
from slow to rapid moving slides and flows, i.e., the type of
failures considered in the hazard assessment, and (ii) large
landslides are expected to produce a larger damage, particu-
larly to roads and private buildings in old villages and single
dwellings.

The last assumption of the adopted hazard model is that
the probabilities of landslide sizeP(AL), of temporal occur-
renceP(NL), and of spatial incidence of mass movements
P(S) are independent. The legitimacy of this assumption
is difficult to prove. We have shown that the probability of
landslide area is largely independent from the physiograph-
ical setting. As a first-approximation, it is safe to conclude
that the probability of landslide area is independent from sus-
ceptibility. The susceptibility model was constructed without
considering the driving forces (meteorological or else) that
control the rate of occurrence of slope failures in the study
area. We conclude that the rate of landslide events is in-
dependent from susceptibility. The catalogue of historical
damaging landslides reveals that landslides occurred in all
sizes. We consider this an indication that the rate of failures
is independent from landslide size.

8 Concluding remarks

To ascertain landslide hazard in the Collazzone area we
have adopted the probabilistic model proposed by Guzzetti
et al. (2005). The adopted model expresses landslide hazard
as the joint probability of landslide size, considered a proxy
for landslide magnitude, of landslide occurrence in an estab-
lished period, and of landslide spatial occurrence, given the
local environmental setting. For the study area we have ob-
tained most of the information used to determine landslide
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hazard from a detailed multi-temporal inventory map, pre-
pared through the interpretation of five sets of aerial pho-
tographs and field surveys. The adopted model proved ap-
plicable in the test area. We judge the model appropriate in
similar areas, and chiefly where a multi-temporal landslide
inventory captures the types, sizes, and expected recurrence
of slope failures. We tested the model ability to predict the
location of new or reactivated landslides, and the predicted
temporal occurrence of the slope failures. We found the for-
mer better than the latter, confirming the difficulty in predict-
ing when or how frequently slope failures will occur in an
area.

We conclude by pointing out that the main scope of a
landslide hazard assessment is to provide probabilistic ex-
pertise on future slope failures to planners, decision makers,
civil defence authorities, insurance companies, land devel-
opers, and individual landowners. The adopted method al-
lowed us to prepare a large number of different hazard maps
(Fig. 10), depending on the adopted susceptibility model, the
established period, and the minimum size of the expected
landslide. How to combine such a large number of hazard
scenarios efficiently, producing cartographic, digital, or the-
matic products useful for the large range of interested users,
remains an open problem that needs further investigation.
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