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Abstract. Rockfall hazard zoning is usually achieved us-
ing a qualitative estimate of hazard, and not an absolute
scale. In Switzerland, danger maps, which correspond to a
hazard zoning depending on the intensity of the considered
phenomenon (e.g. kinetic energy for rockfalls), are replacing
hazard maps. Basically, the danger grows with the mean fre-
quency and with the intensity of the rockfall. This principle
based on intensity thresholds may also be applied to other
intensity threshold values than those used in Switzerland for
rockfall hazard zoning method, i.e. danger mapping.

In this paper, we explore the effect of slope geometry and
rockfall frequency on the rockfall hazard zoning. First, the
transition from 2D zoning to 3D zoning based on rockfall tra-
jectory simulation is examined; then, its dependency on slope
geometry is emphasized. The spatial extent of hazard zones
is examined, showing that limits may vary widely depending
on the rockfall frequency. This approach is especially dedi-
cated to highly populated regions, because the hazard zoning
has to be very fine in order to delineate the greatest possible
territory containing acceptable risks.

1 Introduction

Rockfall hazard zoning for land-use planning is a complex
problem, because of the different parameters involved: en-
ergy, frequency, block size, characteristics of the topography,
uncertainty of all parameters, etc. Whatever the method used,
zoning leads to a document that helps authorities to decide if
a certain type of infrastructure or housing can be built within
a certain area or if some specific human activities may be
performed in some particular location.

For communication purpose the authorities need unique
land-use maps implying that the risk mapping is performed
using normative conditions, i.e. a building type or other facil-
ity. Because the map must be understood by the whole pop-
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ulation, a complicated document such as multiple layer Ge-
ographical Information System (GIS) document is not suit-
able. In this respect, the Swiss federal services in charge of
natural hazards have developed the concept of danger zones
(Lateltin, 1997; Raetzo et al., 2002), coupling hazard zones
and intensity of the natural phenomenon (total kinetic energy
for rockfalls) (Fig. 1). Contrasting with risk analysis, zoning
depends on a normative category of hazard defined on poten-
tial damage of buildings representing a sort of risk analysis
for one hazard type, because danger zones imply degrees of
damages. Even now risk analysis is still not a routine proce-
dure for land-use planning.

Often the methods used to establish land-use planning
overestimate voluntarily the hazard. These approaches are
only understandable if the studied area is sparsely populated.
In many countries, like Switzerland, the inhabited areas are
often close to or included in hazardous zones. Thus the chal-
lenge is to estimate rockfall hazard zoning with more pre-
cision. We propose a hazard zonation called, in Switzer-
land, danger zonation (see below) based on the Swiss federal
codes (Lateltin, 1997; Raetzo et al., 2002). These codes im-
ply taking into consideration energy and mean return period
(Fig. 1), explicitly using the frequency of historical events.
That kind of danger mapping has already been proposed by
Van Westen (2004) and by Calcaterra et al. (2004).

Rockfall hazard zoning is mostly performed using a rel-
ative hazard scale (Van Westen, 2004), which does not ex-
plicitly take into account time. In order to refine rockfall
hazard or danger zonation, it is mandatory to use frequency
of events, or at least a qualitative estimate.

The simplest way to construct a rockfall-hazard map is
to estimate the entire perimeter of potential rock failure and
runout with a geometrical method (Lied, 1977; Toppe, 1987;
Evans and Hungr, 1993; Jaboyedoff and Labiouse, 2001,
20051), assuming that a rockfall block cannot travel beyond

1Jaboyedoff, M. and Labiouse, V.: CONEFALL: a program for
rapid rock-fall potential propagation zone estimation, Computers
and Geosciences, submitted, 2005.
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Table 1. Definition of the main variables.

Symbol Definitions

N tot
tr Total number of trajectories

E Total kinetic energy
Ei , Ej Kinetic energy threshold
H(E, x) Hazard at a location,x, for a given kinetic energy
l Distance from the rockfall source
Nb Mean number of blocks per rock-mass-failure (Nb=Vi/Vb)

Ntr (m, n) Number of blocks crossing the cell indexm, n of the indexed DEM
Pp(E, x, t) Probability of propagation for an energy,E, at point,x, for a given return period
r Radius in polar coordinates
tref Reference period
Vb Mean block volume
Vi Volume of one rock-mass-failure
w Target diameter
x Spatial location
xlim(tref ) Runout distance end point: point beyond which the hazardH(xlim) is lower than 1/tref
xEi(tref ) Energy travel limit: point beyond which the hazardH(xEi) is lower than 1/tref for a given energyEi

α Angle values of polar coordinates
λf Rock-mass-failure mean probability or frequency
θ Angle of polar coordinates
ρf Number of events per unit of length of cliff

Return period or mean probability 
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Fig. 1. The chart used to define the danger, according to the
Swiss codes, is based on the return period and kinetic energy (after
Lateltin, 1997; Raetzo et al., 2002). The numbered points are used
to estimate the zoning with three colours: yellow, blue and red, cor-
responding to “low”, “moderate” and “high” danger. The danger is
considered as high for return periods below 300 years and energies
above 300 kJ. The danger is lowered with both decreasing energy
and increasing return period.

a point defined by the intersection of the topography with
a cone starting from the cliff making a fixed angle with the
horizon (=shadow angle; see on Fig. 2).

Many methods dedicated to land-use planning and using
rockfall simulations (trajectory analysis) are based on the
number of blocks reaching a point or a target weighted by
a relative frequency of rock failure (Rouiller et al., 1998;
Besson et al., 1999; Manche, 2000; Baillifard et al., 2001;
Mazzoccola, 2001; Mazzoccola and Sciesa, 2001). En-
ergy is also taken into account. Following the same prin-
ciple, Guzzetti and Crosta (2001) have developed a hazard-
zonation method taking into account: maximum velocity,
maximum bounce height, number of trajectories and energy
using a rockfall simulation program STONE linked to GIS
(Guzzetti et al., 2002).

Hazard can also be inferred from direct observations of
rockfalls (Bunce et al., 1997). However, this approach is
usually dedicated to linear facilities such as communication
routes (Baillifard et al., 2004).

Following the Swiss hazard-zonation (Lateltin, 1997;
Raetzo et al., 2002), it is possible to map-delineate zones
of low, medium and high danger (Jaboyedoff and Labiouse,
2002). This zoning depends on the topography, the frequency
of rock failure and the reference period considered (see be-
low) as well as the code used for rockfall simulation and it
assumes a target of fixed size, because a block is more likely
to hit a larger object. Please see Table 1 for meaning of vari-
ables used below.

2 Rockfall hazard

The rockfall process can be divided into two parts; the first
is the rock instability or failure in the source area and the
second is the runout area at a distance (Fig. 2). The hazard
(H(E, x)) at a point,x, for a given kinetic energy,E, is given
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by the product of the rock-mass-failure mean probability or
frequency,λf , and the probability of propagation up tox, Pp

(Leroi, 1996; Jaboyedoff et al., 2001):

H(E, x) = λf × Pp(E, x) (1)

H(E) can be estimated for different energies.λf may de-
pend on block volume (mass), i.e. onE (Table 1). In the
following we will useλf alone, keeping in mind that it can
be energy dependent, because rockfall frequency can change
owing to the considered entire instability volume. Usually
larger instabilities are considered as less frequent, but blocks
can be bigger and energy higher (Vengeon et al., 2001).

2.1 Probability of failure (frequency)

A complete characterisation of an unstable rock-mass must
lead to the estimation of the mean probability of failure,
which corresponds to a mean frequency of the occurrence of
rock fall events,λf . This value is necessary for risk analysis,
even if the scale is relative. It can be inferred from histor-
ical catalogues (Bunce et al., 1997; Wieczorek et al., 1998;
Vengeon et al., 2001; Pauly and Payany, 2002) estimating the
probability of occurrence of rockfall in areas or along a linear
object such as a communication facility.

Other methods estimate the probability of failure using
a relative rock failure rating system (Cancelli and Crosta,
1993; Mazzoccola and Hudson, 1996; Rouiller et al., 1998).
Implicitly, mean frequency is behind all such rating systems.

Depending on the knowledge of the instabilities, the fre-
quency can be either applied directly to a particular instabil-
ity or to a whole slope.

2.2 Probability of propagation

The probability of propagation,Pp, is dependent on the to-
pography, the characteristics of the outcropping lithology
along the path of the block, the block shape, material and
mass. This probability can be estimated by field observation
and isopleths (Sasaki et al., 2002), and/or by rockfall simula-
tions (Hoek, 2000; Guzzetti et al., 2002).

The simplest way to assessPp is to calculate the percent-
age of all simulated trajectories that cross a point (2D) or an
area (3D) (Crosta et al., 2001; Guzzetti et al., 2002). For in-
stance if 60 of 1000 trajectories cross a point, thenPp=6%,
and if λf =0.05 event per year, thenH=3×10−3 event by
year.

3 Rockfall hazard or danger zoning after the Swiss
codes

Usually risk is determined by multiplying hazard by vulnera-
bility and cost (Leroi, 1996). This procedure is still not a rou-
tine approach for land-use planning. In some countries like
Switzerland, the mapping method used for land-use planning
procedure generates a “danger map” (Raetzo et al., 2002).
The map is based on a mean probability-intensity diagram.
The intensity is defined as the total kinetic energy, i.e. the

Pp

λ f

Instabilities: 
- Instability type 
- Characteristics 
- Failure probability

Propagation zone: 
- Perimeter of rock-fall propagation 
- Characteristics 
- Probability of propagation 
- Hazard 

β

Fig. 2. Rockfall process and hazard evaluation (after Jaboyedoff et
al., 2001).λf is the rock-mass-failure mean frequency andPp the
probability of propagation up to the yellow area. In blue the shadow
angle (β) principle is shown.

sum of both rotational and translational energies. The higher
the intensity and/or the higher the mean probability of event,
the higher is the degree of danger (Fig. 1). Incidentally dan-
ger classes are also used for other hazards such as floods,
snow avalanches, landslides, etc., albeit these use different
intensity scales than for rockfall events (Raetzo et al., 2002).

For rockfalls, the Swiss codes (Lateltin, 1997) state that
the mean probability of occurrence or return period are con-
sidered as “high” if more than one event occurs in 30 years,
“medium” if the return period is between 30 and 100 years
and, “low” if it is between 100 and 300 years, and is as-
sumed “nil” if it is over 300 years, except for large catas-
trophic rockfalls or rock avalanches. Intensity is classified
as “low” for rockfalls of kinetic energy (E) less than 30 kJ,
“medium” for E between 30 and 300 kJ, and “high” ifE is
greater than 300 kJ. These limits are designed to delineate
build-up and protection measures for buildings. 30 kJ cor-
responds to the resistance of an oak-wood stiff barrier and
300 kJ corresponds to the resistance of a reinforced concrete
wall (Raetzo et al., 2002). The danger zones are defined as
follow (Fig. 1):

“High danger” zone, (also called “Red zone”): A rock-
fall area including potential rockfall with higher energy than
300 kJ and with a mean frequency of more than 1 event every
300 years. Areas with potential rockfalls with energy greater
than 30 kJ and mean frequency above 1 event by 30 years
(point 3 in Fig. 1) are also red zones. People are mainly at
risk outside buildings. A rapid destruction of the buildings is
possible.

“Moderate danger” (Blue zone): the energy of the poten-
tial rockfalls is less than 300 kJ (points 5, 6 and 7 in Fig. 1);
for high frequencies, energy below 30 kJ; for low frequencies
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Fig. 3. Schematic example of one rockfall trajectory and its total
energy (Etot ) distribution. (a) Trajectory itself. (b) The energy
travel limits (XEi , XEj ) are the last points where a block crosses
the energy thresholds assumingEi>Ej . The profiles of energy are
transformed in rectangles, which means that the energies of blocks
are not considered below the energy travel limits (because their en-
ergy will never reach again the threshold) and are equal or greater
than the energy thresholds above the energy travel limit.

(above 1 event for 100 years), energy between 30 and 300 kJ.
People are at risk of injury outside buildings, but the risk is
considerably lower inside buildings. Damage to buildings
should be expected if no reinforcement exists.

“Low danger” (Yellow zone): Expected energy is below
30 kJ for a 100 years return period and 300 kJ for a 300 years
return period (points 1, 4, and 7 on Fig. 1). Any rockfall
with a return period ranging from 30 to 300 years presents at
least a low danger. People are at slight risk of injuries outside
buildings. Slight damage of building is expected.

A “yellow hatched zone” with “Residual danger” is also
defined. It covers areas where large catastrophic landslides
are suspected, even if the return period is over 300 years.
This zone is not represented on Fig. 1.

The above danger categories may be adapted to other lim-
its than 30 and 300 kJ and 30, 100, 300 years depending on
the objectives of land-use planning. The presented method is
a generalisation of the Swiss danger mapping method: one
return period value and one intensity threshold can define a
danger limit. It can represent a pre-risk map for a particular
edifice or a portion of infrastructure.

4 Interpretation of rockfall simulations in 2D

4.1 Distribution of rockfall runout end points

In two dimensional rockfall simulations, each point of the x-
axis (Fig. 3a) can be characterized by the distributions of the
total kinetic energy, of the translational kinetic energy and
the rotational kinetic energy, the masses, the bounce height,
etc. The results of rockfalls modelling can also be repre-
sented as a cumulative curve of runout end points counted
from the bottom of the slope. Each point of the curve indi-
cates the percentage of blocks that reached or travelled be-
yond a given location,x. Pp(x) is thus inferred from the
cumulative distribution.

4.2 Hazard

The hazard at a point,x, is given by multiplyingPp(x) by
the mean number of blocks,Nb, involved in one event and
by its frequencyλf (Table 1). ThusH(x) is given by:

H(x) = λf · Nb · Pp(x) (2)

Now consider a reference period,tref , as a time-limit and
xlim(tref ) the location beyond which the hazard is lower than
H(xlim)=1/tref . Using Eq. (2), the corresponding proba-
bility that a block propagates beyond, within the reference
period, is given by:

Pp(xlim(tref )) =
1

λf · tref · Nb

(3)

In two dimensions,xlim can be located using the rockfall
runout distribution inferred from field data and/or from sim-
ulations.

4.3 Distribution of rockfall fragments using an energy
threshold

Hazard zonation can be associated with an energy threshold
Ei of the rockfall fragments. Consider the pointxEi (energy
travel limit) of a trajectory beyond whichEi is not reached
again. For a more consistent hazard zoning it is assumed that
the energy thresholdEi is reached at all points,x, above the
energy travel limitxEi (Fig. 3). This hypothesis is stated to
avoid inverse zonation, i.e. lower hazard in the upper part of
the slope, because the energy in the upper part of the travel
can be lower than below. This option is chosen to avoid
misinterpretation by stakeholders who are not specialists and
could hardly understand that hazard can be lower below the
instability than far below it. Note that if two kinetic energy
thresholds are chosenEi andEj , respectingEi>Ej we have
always the relationshipPp(Ei, x)≤Pp(Ej , x) (Fig. 3b).

Thus, replacing the travel limitxlim(tref ) by xEi(tref ), the
corresponding probability that a block exceeds the energy
thresholdEi , within the reference periodtref , is given by:

Pp(Ei, xEi(tref )) =
1

λf · tref · Nb

(4)
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Fig. 4. (a)Synthetic example of runout end point distribution, three
energy travel limits distributions (colours green and red correspond
to the example of Fig. 3), respectively, 0, 30 and 300 kJ.(b) The
results are based on 1 event of 5 blocks every 100 years on aver-
age. The choice of the relevant limiting points used to define dan-
ger zones is based on Eqs. (3) and (4) using runout energy limits
distributions givingPp of (a).

Pp(xlim(tref )) and Pp(Ei , xEi(tref )) have the same form
and value, butxlim and xEi are different becausePp(x)

and the probability of propagation for an energy travel limit
Pp(Ei, x) are different. xlim andxEi are different because
they correspond to the same value (1/λf tref Nb) of two dif-
ferent functionsPp(x) andPp(Ei, x), as shown on Fig. 4a.

4.4 2D zoning

Using the combinations ofE andtref defined by the limits in
the Figs. 1 and 4,Pp(xlim(tref )) andPp(Ei , xEi(tref )) are
estimated. The 0 kJ limits are obtained usingPp(xlim(tref ))

with tref =300 years, i.e. the point 1, Fig. 1. The blue and
red limits are traced using the most unfavourable points of
the hazard limits among points 1 and 4. The points are ob-
tained from each energy travel limit probability of propaga-
tion curve (Fig. 4a). The final result is obtained by inspect-
ing points numbered 1 to 7 in Fig. 1 choosing the most un-
favourable case for each limit (Fig. 4b).

5 Pseudo 3D zoning: synthetic examples

2D zoning is not directly applicable to reality, because nature
is three dimensional. The probability that a topographical
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thetic stop point distribution, in 3D based on radial (r) and angular
distribution (θ) of runout end point of blocks(b). Cumulative distri-
bution runout end point of indicating the percentage of blocks that
reach a point(c).

point will be reached by a block modelled by a point is almost
zero everywhere. It is clear thatPp is dependent on the size
of the block and/or the size of the target (Roberds, 2005). In
the present case we assume a target of constant size in all
directions. The block diameter may be simply added to the
target dimension.

Two different ideal geometries can be distinguished: an
unstable area comparable to a point source, and a linear cliff.
Knowing Pp for different energy thresholds, the procedure
explained in the previous section and illustrated in Figs. 3
and 4 may be applied; the following explanation presents the
method of estimatingPp.

5.1 Point sources

When an instability can be reduced to a point source (Fig. 5),
the probability of propagation can be calculated in polar co-
ordinates assuming rectilinear trajectories along radial tra-
jectories, wherer is the radial coordinate andθ the angular
coordinate, taken horizontally. Ifw is the target diameter
plus the block diameter (for reduction, the target is assumed
to be a vertical cylinder) and it is located at a distancel from
the point source, the angular range 2×δθ is given by:

δθ = arcsin
(w

2l

)
(5)
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cases: uniform distributiong(θ)=constant(a) and gaussian distri-
bution with standard deviation:σθ=7◦ (b). The energy must be
computed from the true instability.

PuttingfEi(r, θ) the distribution of energy travel limit, de-
pending onθ , andg(θ) the angular distribution of trajectories
(we assume thatg(θ) is not energy dependent), the probabil-
ity to reach the target centred inr=l andθ=α with an energy
higher or equal toEi is given by:

Pp(Ei, α, δθ, l) =

α+δθ∫
α−δθ

∞∫
l

fEi(r, θ)g(θ)dr dθ (6)

with the condition
−π∫

+π

∞∫
0

fEi(r, θ)g(θ)dr dθ = 1 (7)

Now we assume thatλf is defined for the entire instability.
As a consequence, if a channel exists below the source area,
a virtual source area with the sameλf can be placed at the
bottom of the channel, because all rockfalls will travel within
the channel (Fig. 6).

For simple topographic surfaces,fEi(r, θ) can be replaced
by fEi(r). f (r) can have any form like a normal distribution
located around the mean energy travel limit, or other.g(θ)

can be assumed to be symmetric if the topography is sym-
metric. If the instability or the virtual source is located at
the top of a circular scree fan, there is no preferential orien-
tation for trajectories, because all directions have the same

ρf

θ

0 θ+σθ−σθ

x

y

x1

Cliff

C

Target size

Target size: w

ρf

CliffA

B

fEi(r) = fEi(x) fEi(r) < fEi(x)

Target

Fig. 7. Simplification used for hazard zoning below an infinite lin-
ear cliff. (a) Cliff and its frequency of rockfall per unit of lengthρf

and the target sizew. (b) Explanation of how the simplification of
the calculation is performed. Potential trajectories starting from the
cliff of blocks that can reach point inx1. The probability of reach-
ing point y1 is equivalent to the probability of reaching any point
at distancex1 below the cliff from one point.(c) The results are
zones parallel to the cliff assuming a source for whichλf =w×ρf

and propagation alongx equivalent to the 2D distribution.

slope angle, so thatg(θ) is uniform (Fig. 6a). In the case
of a virtual source (Fig. 6a), the instability is linked to the
scree fan by a channel. On one hand the trajectories will be
slightly concentrated in the direction of the channel because
of an inertial effect, and on the other hand the variation of
orientation trajectories within the channel will induce a ran-
dom direction at the top of the scree, thus the assumption of
no preferential orientation is correct. If a planar topography
exists, the trajectories will be distributed around the dip of
the slope (Fig. 6b). As a consequenceg(θ) can be assumed
as a normal distribution with respect toθ (Feynman et al.,
1963). In this case, trajectories and their impact points are
considered as random with respect toθ .

5.2 Infinite linear cliff

Assume an infinite linear cliff with a planar sloping topogra-
phy below (Fig. 7).y is parallel to the cliff and,x is perpen-
dicular to it andλf is replaced by the number of events per
unit of length of cliff ρf . Considering an object of widthw
(plus the block diameter) parallel to the cliff, the correspond-
ing λf is given by:

λf = w × ρf (8)

The probability of propagation to a point below a linear
cliff is obtained by the integration of Eq. (6) over the range
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θ=[−π/2; +π/2], assuming thatl depends onθ , because
theoretically all points of the cliff can contribute to rockfall
in one location. But as in reality trajectories are close to
the dip direction, the standard deviation of the angular dis-
tribution σθ is small compared toπ/2, Fig. 7c). As a con-
sequence, the radial probabilityfEi(r, θ) can be replaced by
fEi(x)≈fEi(r, θ=0) with x=r in thex direction. This leads
to fEi(x1, θ)=fEi(x1) constant for allθ values for a distance
x1 from the cliff. Note thatfEi(x1)≥fEi(r, θ) for x1=r and
thus the above assumption overestimatesPp. The contribu-
tion of the cliff is:

Pp(Ei, x1) ≈ fEi(x1)

+π/2∫
−π/2

g(θ)dθ = fEi(x1) (9)

An object placed and centered atx1 can be reached by a rock-
fall block with a trajectory that comes from all points of the
cliff with the probability:

H = Pp(Ei, x1) × w × ρf (10)

The resulting danger map contains zones oriented parallel
to the cliff, based on the 2D zoning, but replacingλf with
w×ρf in Eqs. (3) or (4).

6 3D zoning

The 2D zoning procedure can be applied to 3D, but the pro-
cedure is slightly different because trajectories can cross each
other. The location where the largest numbers of trajectories
pass through is not necessarily close to the instability. Using
a digital elevation model (DEM) it is possible to count the
number of trajectoriesNtr crossing each cell of the DEM in-
dexedm, n: Ntr(m, n). The probability of propagation can
be estimated by (Guzzetti et al., 2002):

Pp (m, n) =
Ntr(m, n)

N tot
tr

(11)

whereN tot
tr is the total number of trajectories. As in 2D zona-

tion, the section of trajectory located above the last cell to
cross the threshold energy,Ei , is considered to have energies
equal or greater thanEi . By analogy with Eq. (4), all the
cells that have a mean probability verifying the condition:

Pp(Ei, m, n, tref ) ≥
1

λf × tref × Nb

(12)

are considered to belong to the degree of danger defined by
the coupleEi−tref (Fig. 8). Such a procedure must be ap-
plied to each relevant limiting point shown in Figs. 1 and 4.
The most unfavorable cases must be retained to create the
hazard map. Note that the target is implicitly the horizontal
cell size of the DEM. A multiplying factor may be used to
standardize results.
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Fig. 8. Schematic example of 3D zoning for the blue limit using
point 4 from Fig. 1 (tref =100 years andE=30 kJ). The number of
trajectories by pixel is used (see text). The zoning is different from
energy mapping.Pp is found using Eq. (3) withtref =100 years,
λf =1/20 years andNb=1.

7 Scenarios

Unfortunately the mean rock-failure probability (λf ) is of-
ten unknown. Furthermore, the exact instability volume is
also unknown. In such situations the best solution is to as-
sess several scenarios for a danger map for different return
periods for rock-failure and volumes (Vi). We assume a frag-
mentation of the unstable rock mass producing a mean block
size (Vb). For a given rock mass,Pp is modified according
to Eq. (3) becauseNb=Vi/Vb. Of course the block size can
also be a variable. In Fig. 9, eight theoretical scenarios are
compared. They are based on twoNb and fourλf values.λf

are chosen to be the mean of the return period classes of the
Swiss codes (Lateltin, 1997; Raetzo et al., 2002) of Fig. 1.
The frequency variation has a greater effect on the results
because the classes of frequency vary by 2 orders of magni-
tude, while the volume scenario variation does not exceed 2
or 3 times the estimated instability volume. For comparison,
a hazard zonation only based on a propagation probability
criteria ofPp=10−4 (Besson, 1999) is represented. It does
not depend on the mean rock-failure probability and on the
number of blocks per events, and yields to a conservative
zonation (large area compared to others).

As shown by various authors (Wieczoreck et al., 1998;
Vengeon et al., 2001; Dussauge et al., 2003), the probability
of failure is dependent on rockfall volume through an expo-
nential law. Depending on the knowledge ofλf for a specific
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instability, that law can also be used to establish different sce-
narios.

8 Multi zone problems

If propagation areas arising from several instabilities overlap,
or if instabilities are imbricated, the results of the zoning are
affected. The rockfall hazards from each source have to be
summed for energy thresholds. Using Eq. (2), the hazard at
a pointx, y for an energy greater or equal toEi linked to the
instabilityk is given by:

H k(Ei, x, y) = λk
f · Nk

b · P k
f (Ei, x, y) (13)

Forn instabilities, the hazard is given by:

H(Ei, x, y) =

n∑
k=1

λk
f · Nk

b · P k
f (Ei, x, y) (14)

For a given period of referencetref , the return period of the
rockfalls is less thantref if the condition:

H(Ei, x, y) >
1

tref
(15)

is verified. Figure 10 shows a schematic example of the ef-
fect of a diffuse instability zone on two localized instabilities.
The danger zones overlap markedly below them.

9 Case study of the Cŕetaux (Switzerland)

In August 1985, a rockfall occurred near Sion, Switzer-
land (Descoeudres, 1990; Rouiller, 1990). Blocks fell from
1400 m altitude to 450 m. Approximately fifty blocks with
masses ranging from 100 kg to 100 t with an average of 10 t
reached the vineyard below the instability in the valley. Since
that initial rockfall, approximately 800 000 m3 have fallen
to the Rĥone valley. Various trajectory studies have been
carried out using the 3D rockfall simulation code EBOUL
(Descoeudres and Zimmerman, 1987; Dudt and Heidenreich,
2001).

The zoning of danger is based on “EBOUL“ simulations
using a block mass ranging from 2500 to 4000 kg, distributed
homogeneously in this range (Dudt and Heidenreich, 2001).
Initially the blocks fall from a 3 m height. The source point
of blocks is located above the scree in a rectangular area mea-
suring 7200 m2 (Fig. 11), and the rock failures are distributed
homogeneously over that area. Twenty thousand trajecto-
ries were simulated. The grid mesh size of the DEM used
is 25 m×25 m.

The map of the simulation results of les Crétaux can be
compared roughly to a circular scree fan (Fig. 6a), the trajec-
tories having equal probability to be distributed around the
axis of the scree fan, because the effect of the morphology
on trajectories diminish the inertial effect of blocks. The
coloured categories of Fig. 11 indicate the limitsNtr>0,



M. Jaboyedoff et al.: Rockfall hazard zoning 629

Ntr>67 andNtr>200. These limits correspond respectively
to the perimeters of potential block runout, the high hazard
zone (red zone) for 300 years return period and 1 block per
year (Fig. 12b) and 1% block trajectories. The zoning in
Fig. 12 is performed usingtref according to the colours of
Fig. 1. The three results of Fig. 12 display only a red zone,
because the size of the cells of DEM is greater than the dis-
tance covered by the blocks to changes their kinetic energy
from 300 kJ to 0 kJ, thus yellow and blue zones are too nar-
row to be observed.

The results of the simulation are in general agreement with
the observed rockfall runout limits. Note that blocks are
stopped in the scree deposit, which is in accordance with the
deposit zone indexed by Rouiller (1990). Figure 12 displays
three different zoning scenarios following the Swiss codes
(Lateltin et al., 1997; Raetzo et al., 2002) based on 20 000
3D simulated trajectories. Case (A) for whichλf =1/20 and
Nb=50 corresponds to an unfavourable case assuming an
event of 50 blocks each 20 years (last event is 18 years old).
The red zone occupies most of the cone. In this case a cone
is suitable to simulate the runout zone. (B)λf =1 andNb=1
is based on an annual activity. It must be remembered that
zoning corresponds to a 300 years return period because of
the large blocks volume. The land-use planning correspond-
ing to this limit is defined by a red dashed line, or it can be
slightly reduced if the ramifications of the red zone obtained
directly from trajectories are not all considered.; (C)λf =0.5
andNb=1 results show the dependency of zoning withλf .

10 Discussions

The zonation method presented above can be applied for lim-
its other than those presented, which are calibrated for the
Swiss codes (Lateltin et al., 1997; Raetzo et al., 2002). Us-
ing an energy threshold and a return period limit, a mapping
can be performed in order to estimate loss for a given pe-
riod in a risk analysis. For instance one could draw a haz-
ard map corresponding to a 1000 year return period event
with a 45 000 kJ energy (block of∼4 m diameter (10 000 kg)
with a velocity of 30 m/s) on a 10 m large building. A house
reached by such a block will be completely destroyed (dam-
age 100%). The risk can be evaluated on the base of that
map.

Several issues are linked to the quality of rockfalls simu-
lations and required data. In order to obtain accurate results,
the trajectographic results have to be calibrated to field ob-
servations (Labiouse et al., 2001). The reliability of the re-
sults is obtained by a great number of trajectory simulations,
more than 10 000, in order to obtain enough data to infer sta-
tistical parameters. The rock-mass volume distribution must
be carefully characterized because it affects the number and
volume of blocks, the energies along the rockfall trajectories
and consequently the positions of the limits of the zoning.
Furthermore the rebound characteristics often vary depend-
ing on the rock mass (Labiouse et al., 2001). The precision
of the DEM for 3D simulations must be taken into account

Instabilities I and II

Danger zone of each 
instability alone 

Low 
Moderate 
High 

N
100 m

Danger 

Instability Zone  I

Fig. 10. Effect of overlapping danger zones from several instabili-
ties. The frequencies of event are summed.

because it strongly controls the spreading of trajectories in
space (Agliardi and Crosta, 2003).

The following remarks can be made for working out of
Swiss danger maps. The extent of the yellow zone is not di-
rectly dependent on the energy. Indeed it is based on the dis-
tribution of the runout limits and ontref =300 years (point
2 in Fig. 1), which leads to the most distant limit from the
sources. For the red zone, only points 7 and 3 have to be
considered (Fig. 1), because point 7 leads always to a larger
red zone than point 5 or 6. The choice between points 3
and 7 depends on the shape of the energy runout distribution.
This is also true for the blue zone, (point 1 or 4). Note that
the blue zone can disappear for large blocks. The maximum
extension of the danger zone as shown on Fig. 12 is often
jagged (Guzzetti et al., 2002), therefore it is not possible to
create a danger zone following the external limits delineated
by rockfall simulations. It can be achieved by hand contour-
ing.

As mentioned we have chosen to infer zoning with a de-
crease of danger downward slopes. It is relatively easy to
solve this problem in 2D, but in 3D some rules have to be de-
veloped, because the danger zone of higher degree red zone
can be located in the slope and disconnected from the source
area. To respect the rule of decreasing danger degree down
the slope, the source area has to be connected to the red zone
inferred by simulations and the zones of lower danger de-
gree (blue and yellow) have to be adapted to such modifi-
cations. If decrease of the degree of danger down slope is
recommended for land-use planning, it is not necessary to
use this rule in the case of the design of protection works or
for a simple risk analysis.

Note that the proposed zoning methodology leads to
equivalent results if the expressionPp=1/(λf ×tref ×Nb) re-
mains constant. Such a case of similar hazard zoning is ob-
served in Fig. 9 for couples (λf =1/65 years;Nb=10 and
λf =1/200 years;Nb=30).
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Fig. 11. (a)Location and picture(b) of Les Cŕetaux landslide.(c) Mapping of the number of trajectories,Ntr , by cells (pixels) of 25×25 m.
The white stars indicate the observed runout end points (DTM reproduced with the permission of Swiss Federal Service of the Topography,
BA034918).

Fig. 12. Three different zoning results for les Crétaux landslide following the Swiss recommendations based on 20 000 3D simulated
trajectories calculated with the program EBOUL (see Fig. 11 for simulation results and location). The zonings are mostly red because of the
mass of the blocks only few pixels are blue or yellow pixel.(a) λf =1/20 andNb=50, (b) λf =1 andNb=1. Two example of land planning
use are indicated. The red dashed line indicates the envelope of trajectories within the energy travel limits whether the second (light red)
is a solution that does not take into account to narrow energy travel limits zone which is in agreement with the solution(c); (c) λf =0.5
andNb=1, the red line indicate the second interpretation of results in (b) that is compatible with this solution, taking into account the cells
size (25×25 m) this solution is the most appropriate in terms of landplaning (Topography reproduced with the permission of Swiss Federal
Service of the Topography, BA034918).

The target size also has an effect on zoning. For instance,
cells one half the length of another will contain at least1/2 of
the trajectories thereby diminishing thePp value. Therefore,
the same danger limits will be located farther up the slope.
For true 3D zoning, the size of the target (including the di-
ameter of block) is given by the size of the cells of the DEM.
For pseudo-3D zoning, the target size and the size of blocks
are variables that control the zoning limits explicitly.

The danger limits will migrate according to the shape of
the distribution of the energy travel limits. In 3D the use of
square cells for computation produces results that depend on
the relative orientation of the rockfall regarding the orienta-
tion of cells. A possible improvement would be to calculate
Ntr (m, n) for a cell by counting trajectories crossing a cir-
cular area of the cell with a radius corresponding to the half
target size plus the mean radius of the block. This procedure
has yet to be implemented.
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We must keep in mind that changing the size of the DEM
cells (assumed target), as in the example of les Crétaux,
would lead to different contours. Thus to be fully compatible
with the Swiss codes of practice concerning hazard mapping,
the methodology presented in the paper should be improved,
in order to obtain more homogeneous results in particular
independent of the target size and shape. The effect of the
DEM size onNtr (n, m) could for instance be removed by
normalizing the results by unit of surface area.

But the precision of the map can not be beyond the defi-
nition of the used DEM. For instance using the Swiss codes
(Lateltin et al., 1997; Raetzo et al., 2002), the energy thresh-
olds are so close that they can lead to a single red zone when
the blocks involved in the rockfalls are large (their energies
are great and decrease very rapidly).

11 Conclusions

Three-dimensional hazard or danger zonation depends on
target dimension and block size. Applying 2D zoning is not
straightforward depending on the geometry of the slope. 2D
zoning is only directly applicable, taking into account the
target dimension, for infinite linear cliffs with homogeneous
underlying slopes. Danger zoning for nearly point-source in-
stabilities is more complicated and depends not only on the
target dimension but also on the morphology of the slope:
e.g. circular scree fan against planar slopes. Inspection of the
geometry of pseudo-3D zoning permits an estimate of the ex-
tent of the danger zone by varying factors such as target di-
mension, block size, frequency of events, number of blocks
or lateral distribution.

It must also be pointed out that zoning patterns based on
3D simulations have to be smoothed because of the irregular
shape of the simulated trajectories. The scenarios are sensi-
tive to the number of events and blocks per event and onPp

distribution in space. Such parametric studies are very useful
to land-use planning, because it is a unique tool to evaluate
danger, hazard, and finally risk.
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rocheuses. Annexes au rapport final CADANAV, in: Projet
CADANAV: Etablissement d’une ḿethodologie de mise en œu-
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IIc – “Falaises”, Pŕevention des mouvements de versants et des
instabilit́es de falaises, edited by: Carere, K., Ratto, S., and Zano-
lini, F., 155–211, 2001.

Lateltin, O.: Prise en compte des dangers dus aux mouvements de
terrain dans le cadre des activités de l’aḿenagement du territoire,
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de Grenoble, 2000.

Mazzoccola, D. F. and Hudson, J. A.: A comprehensive method of
rock mass characterization for indicating natural slope instability,
The Quarterly Journal of Engineering Geology, 29, 37–56, 1996.

Mazzoccola, D.: La methodologia RES, in: Programme Interreg IIc
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