
HAL Id: hal-00299172
https://hal.science/hal-00299172

Submitted on 28 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The high-conductance state of neocortical neurons in
vivo

Alain Destexhe, Michael Rudolph, Denis Paré

To cite this version:
Alain Destexhe, Michael Rudolph, Denis Paré. The high-conductance state of neocortical neurons in
vivo. Nature Reviews Neuroscience, 2003, 4 (9), pp.739-51. �10.1038/nrn1198�. �hal-00299172�

https://hal.science/hal-00299172
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


One of the most fascinating characteristics of the cerebral
cortex is its extremely dense connectivity: each pyramidal
neuron receives between 5,000 and 60,000 synaptic 
contacts. A large part of this connectivity originates 
from the cortex itself1,2, but inputs are also received from
subcortical structures, such as the brainstem and thala-
mus. In awake animals, neurons in these structures have
high spontaneous firing rates3,4. One might therefore
expect that in intact networks, at any given time, many
synaptic inputs onto a single neuron are simultaneously
active. In keeping with this, intracellular recordings in
awake animals have revealed that cortical neurons are
subjected to an intense synaptic bombardment and, as a
result, are more depolarized and have a lower input
resistance5–7 than neurons in brain slices kept in vitro.
However, how the ‘high-conductance state’ caused by
this continuous synaptic chatter affects neuronal
dynamics, and in particular neuronal responsiveness,
remains unclear.

To evaluate the integrative properties of pyramidal
neurons during high-conductance states, in vivo

approaches are insufficient. They have the advantage 
of an intact network, but do not allow us to control
synaptic inputs with sufficient precision. Such control is
easier to achieve in brain slices kept in vitro, but the
inherent network limitations of slices severely reduce
spontaneous synaptic activity. Nevertheless, visually
guided patch-clamp recordings and microfluorometry

have allowed important advances in the characterization
of synaptic integration in cortical neurons8. These
advances include precise measurements of the density
and distribution of voltage-dependent channels in 
dendrites9, the characterization of dendritic spikes10 and
sophisticated models of synaptic integration11–13.

Clearly, the presence of voltage-dependent channels
in dendrites and their ability to produce regenerative
events influences the integrative properties of pyrami-
dal neurons. However, because network activity might
affect the integrative properties of cortical neurons 
(a theme proposed in theoretical studies almost 30 years
ago14,15), computational methods are needed to 
integrate the results of in vivo and in vitro experiments.
Theoretical models have provided several predictions
about the computational properties of neurons in high-
conductance states15–18. They will be reviewed here.

We will start by providing an overview of the 
electrophysiological properties of cortical neurons 
during high-conductance states in vivo. Next, we will
review in vitro findings regarding the distribution of
voltage-gated channels and how they affect dendritic
processing. We then will show how computational
models have attempted to tie these in vivo and in vitro

observations together and have pointed towards a num-
ber of computational principles for high-conductance
states.We conclude by reviewing how in vivo and in vitro

approaches can be merged using dynamic-clamp 
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INPUT RESISTANCE

The voltage change elicited by

the injection of current into a

cell, divided by the amount of

current injected.

High-conductance states in vivo

We start by describing the in vivo characterization of the
activity of cortical neurons in awake animals, as well as
in different states of anaesthesia. In particular, we focus
on ‘activated’ states, which have electrophysiological
characteristics close to those seen in the awake state.

The first intracellular recordings of central neurons
date back to the middle of the last century, and were
obtained in motor neurons of the cat spinal cord in vivo19.
Since then, such recordings have been obtained in nearly
all cortical regions. For technical reasons (such as mech-
anical stability), these recordings were usually performed
in deeply anaesthetized animals, most commonly under
barbiturate anaesthesia. Unfortunately, barbiturates 
profoundly depress cortical excitability, leading to an 
electroencephalographic (EEG) pattern akin to that 
seen during slow-wave sleep. Indeed, in barbiturate-
anaesthetized animals, the EEG is dominated by 
slow waves of large amplitude that are associated with 
a synchronized burst–silence firing pattern in most 
cortical neurons. This is in contrast to activated states,
during which the EEG shows low-amplitude fast activity
(‘desynchronized EEG’), associated with asynchronous
and irregular firing4.

To characterize cortical neurons during EEG-
activated states, it is necessary to perform intracellular
measurements in parallel with EEG recordings.
Unfortunately, few such parallel measurements have
been reported. FIGURE 1 shows typical examples of intra-
cellular and EEG recordings during different states of
activity, including awake animals (FIG. 1a), those under
ketamine–xylazine anaesthesia (KX; FIG. 1b) and animals
under barbiturate anaesthesia (FIG. 1c). In each case, the
recorded activity contrasts with the relative quiescence
that is usually seen in intracellularly-recorded neurons in
cortical slices kept in vitro (FIG. 1d).

There have been few studies based on stable intra-
cellular recordings in waking animals5–7,20,21. Nevertheless,
these studies described cortical neurons as having a 
low INPUT RESISTANCE (5–40 MΩ) and a depolarized 
membrane potential (around –60 mV) that fluctuates
markedly (σ

V
= 2–6 mV), causing irregular and tonic

discharges in the 5–40-Hz frequency range7 (FIG. 1a).
Differences in input resistance were also observed,
depending on the behavioural state (wakefulness, slow-
wave sleep or paradoxical sleep7), but in most cases, input
resistance values were low compared to those reported 
in vitro22,23. The results were the same irrespective of
the cortical area5–7,20,21. Input resistance measurements
cannot be compared from one study to the next for 
several reasons. First, they depend on the electrode shape
and impedance, which vary beween laboratories. Second,
in the case of data for unanaesthetized animals, these
measurements depend on the behaviour of these 
animals. For instance, the relatively high input resistance
reported in REF. 7 is based on data obtained during quiet
wakefulness, which is presumable associated with lower
levels of synaptic bombardment compared with active
waking. However, values obtained in the same laboratory
(FIG. 1b–d; KX, barb and in vitro in FIG. 2d) are comparable
if they were obtained in the same cell type (the values

experiments, in which computer-generated high-
conductance states are used to study the effects of
synaptic bombardment on synaptic integration in vitro.
The aim of this review is to show that only through a
tight combination of different approaches will we 
be able to understand synaptic integration in cerebral
cortex during activated states.
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Figure 1 | Intracellular and electroencephalogram (EEG) recordings during different

states of activity. Parallel intracortical EEG and intracellular recordings are compared across

different cortical states. a | Awake animals: the EEG is desynchronized and the intracellular

recording is characterized by a depolarized and highly fluctuating membrane potential that is

associated with irregular firing. b | Under ketamine–xylazine anaesthesia, the EEG oscillates

between two phases: desynchronized periods (up states, U; indicated by bars) with fast

irregular EEG oscillations; and slow waves, during which fast EEG activities are absent or

strongly reduced (down states, D). During the desynchronized periods (bars), the membrane

potential is depolarized and highly fluctuating, whereas it is hyperpolarized during slow waves.

c | Barbiturate anaesthesia: the EEG displays slow waves, whereas the intracellular signal

consists of depolarized bursts riding on a hyperpolarized level. d | In vitro recordings are

obtained in cortical slices using sharp electrodes. In this case, the network activity was

reduced, as shown by the quiescent intracellular signal, which shows only discrete synaptic

events. e | Comparison of the average value <V
m
> and standard deviation σ

V
of the 

membrane potential across different states. Panel a reproduced, with permission, from REF. 7

 (2001) American Physiological Society; Panel b reproduced, with permission, from REF. 17

 (1999) American Physiological Society; Panels c and d reproduced, with permission, from 

REF. 23  (1998) Americal Physiological Society.
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hyperpolarized membrane potential (around –90 mV)
and a higher input resistance (39 ± 9 MΩ, compared
with 9.3 ± 4.3 MΩ for the up state). Stimulation of the
brainstem ascending systems that maintain the waking
state elicits a prolonged up state with a desynchronized
EEG in animals anaesthetized with KX25 or urethane26.
A similar pattern is seen in unanaesthetized animals 
during the transition from slow-wave sleep to wakeful-
ness (see fig. 9 in REF. 7). These observations support the
idea that such up states represent network states similar
to wakefulness.

By contrast, barbiturate anaesthesia produces a state
of reduced cortical activity (FIG. 1c) in which neurons fire
at low rates. Conductance analyses show that barbiturates
induce a state of lower global conductance compared
with KX. For instance, FIG. 2a and FIG. 2b compare the
effect of constant current injection in KX and barbiturate
anaesthesia. In FIG. 2a, the voltage distribution shows two
peaks, typical of the up and down states of KX. Current
injection has a much larger effect on the down state than
the up state, showing that there is a reduced conductance
in the down state. Interestingly, the distributions obtained
under barbiturate anaesthesia (FIG. 2b) are similar to the
down states of KX.

In epochs of irregular fast EEG activity, as seen 
in waking and the up state of KX anaesthesia, cortical
neurons have a low input resistance, are depolarized,
experience continuous membrane potential fluctuations
and fire spontaneously at rest.We will refer to this condi-
tion as the ‘high-conductance’ state of cortical neurons.
This state differs markedly from that seen in vitro, where
cortical cells lack spontaneous firing, and have a high
input resistance and a hyperpolarized membrane poten-
tial, showing only discrete synaptic events (FIG. 1d).

To investigate the contribution of synaptic activity to
high-conductance states, the same intracellularly
recorded neurons were compared before and after 
suppression of network activity by microperfusion of
the Na+-channel blocker TTX in vivo23. TTX microper-
fusion produced a membrane hyperpolarization, an
increased input resistance and a marked stabilization of
the membrane potential (FIG. 2c–e).After TTX application
in vivo, the membrane potential and input resistance of
cortical cells were similar to those seen in vitro using the
same type of electrodes23. These results indicate that
increased cell damage by intracellular electrodes in vivo

does not account for the differences between in vivo and
in vitro results. Rather, these experiments indicate that
the depolarized level and the low input resistance of
cortical neurons in vivo are mostly due to spontaneous
synaptic activity (computational models indicate that
less than 10% of the input resistance is due to activation
of voltage-dependent channels17).

Consistent with this, the effect of TTX on the input
resistance of cortical cells was greater in experiments
conducted under KX than under barbiturate anaesthesia.
This presumably reflects the fact that network activity is
reduced under barbiturate anaesthesia, in agreement
with previous experiments showing that the input resis-
tance of cortical neurons during barbiturate anaesthesia
is about half of that measured in vitro22.

before and after tetrodotoxin (TTX) in FIG. 2c,e were 
from the same cells).

Similar findings were reported using anaesthetics such
as KX or urethane. In low doses, these anaesthetics pro-
duce alternating periods of activity and quiescence, often
referred to as up and down states, respectively (FIG. 1b).
During the up state (FIG. 1b, bars), which is associated
with desynchronized fast EEG activity, cortical neurons
are depolarized, fire spontaneously and have a low input
resistance17,23,24, similar to cortical neurons in awake 
animals. During the down state, when fast EEG activity
is reduced, cortical neurons have a more stable and
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Figure 2 | Conductance measurements during different states of activity.

a | Ketamine–xylazine (KX) anaesthesia: membrane potential distributions at different direct

current levels. The hyperpolarized (diamonds) and depolarized (asterisks) peaks correspond to

the two states of the membrane (down and up states, respectively; see Fig. 1b). Current injection

has less effect on the peak of the up state than the down state, indicating a lower input resistance

in the up state. b | Barbiturate anaesthesia: same procedure as in a. In this case, the distribution

of membrane potential is closer to the down state of KX anaesthesia shown in a. c | Suppression

of network activity using microperfusion of tetrodotoxin (TTX). The scheme (left) illustrates the

experimental setup; a microperfusion pipette was used to infuse TTX into the cortex in vivo.

Middle panel: individual (top) and averaged (bottom) responses to injection of hyperpolarizing

current pulses during the up state of KX. Right panel: responses to the same current pulse

obtained in the same neuron after suppression of network activity by TTX. In this case, the input

resistance and membrane time constant were about fivefold larger than in the up state. The post-

TTX input resistance was similar to in vitro measurements using similar recording electrodes. 

d | Absolute value of input resistance (R
in
) measurements in different studies. In awake animals,

from left to right, data from REFS 7,5,20,6; KX data from REFS 17,23; barbiturate and in vivo data from

REF. 23. e | Relative values of the input resistance measurements in the same cells before and after

TTX. a and b reproduced, with permission, from REF. 23  (1998) Americal Physiological Society;

c and e reproduced, with permission, from REF. 17  (1999) Americal Physiological Society.
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(for example, recorded with chloride-filled electrodes17),
or after brainstem stimulation (J. Pelletier & D.P.,
unpublished observations). Other in vivo experimental
studies also concluded that inhibitory conductances are
two- to sixfold larger than excitatory conductances during
sensory responses27–29 or after thalamic stimulation30

(but see REF. 31).
The data reviewed here indicate that when the 

EEG is desynchronized, neocortical neurons are in a 
‘high-conductance state’ that is characterized by the 
following features: a large membrane conductance,
which corresponds to a three- to fivefold decrease in
input resistance; an average membrane potential
(around –65 to –60 mV) that is significantly depolarized
compared with the natural resting level (–70 to –80 mV);
and large amplitude membrane potential fluctuations
(σ

V
of 2–6 mV), which are at least tenfold larger

than those seen in the absence of network activity.
In addition, the data indicate that these characteristics
are attributable mostly to network activity, and that
inhibitory conductances account for most of the large
membrane conductance.

From these measurements, we can estimate the 
relative contributions of excitatory and inhibitory 
conductances during high-conductance states. For a pas-
sive membrane, the average membrane potential (<V

m
>)

at steady-state is given by:

where <> denotes the time average, g
leak

is the 
LEAK CONDUCTANCE, E

leak
is the leak reversal, and g

e
and g

i

(and their respective reversal potentials E
e
and E

i
) are the

time-dependent global excitatory and inhibitory con-
ductances, respectively. Including in this equation results
from in vivo measurements obtained under KX in the
up state and after TTX17,23, namely <V

m
> = –65 ± 2 mV,

E
leak

= –80 ± 2 mV, E
e
= 0 mV, E

i
= –73.8 ± 1.6 mV and

R
in

(TTX)/R
in

(active) = 5.4 ± 1.3, yields the following
ratios: <g

e
>/g

leak
= 0.73 and <g

i
>/g

leak
= 3.67.

According to these measurements, the ratio of the
contributions of the average excitatory and inhibitory
conductances, <g

i
>/<g

e
>, is about 5. Ratios between 

4 and 5 are obtained in cells with reversed inhibition

LEAK CONDUCTANCE

A constitutively active

conductance, the reversal

potential of which is called the

leak reversal.
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Figure 3 | Dendritic excitability. a | Somato-dendritic distribution of active channels in neocortical pyramidal neurons. Various voltage-

dependent ion channels are present in neocortical dendrites, including the fast Na+ current I
Na

(left36), delayed-rectifier K+ current I
Kd

(left40), Ca2+-dependent K+ current I
KB

(left41), A-type K+ current I
KA

(middle40), L-type (high-threshold) Ca2+ current I
CaL

(middle42), T-type

(low-threshold) Ca2+ current I
CaT

(middle42) and hyperpolarization-activated current I
h
(right; yellow44 and orange43). Results for young

(dashed) and mature (solid) animals are shown. Unlike hippocampal CA1 neurons, the density of these conductances is fairly constant

along the apical dendrites of neocortical pyramidal neurons, with the exception of I
h
(see REF. 9). b | Active propagation of dendritic action

potentials. Left: low-intensity stimuli applied at distal dendritic levels generate an action potential that is initiated in the axosomatic region

(green and blue) and then back-propagates into the dendrite (orange). Right: simultaneous recordings from dendrites (orange, 400 µm

from soma; pink, 920 µm from soma) and soma reveal both subthreshold and suprathreshold responses to distal synaptic stimulation.

c | Forward propagation of dendritic spikes to the soma. Triple recording at different sites (inset) shows that dendritic spikes generated

by coincidentally occurring excitatory postsynaptic potentials in distal dendrites can propagate to the soma and elicit somatic spikes. 

Panel b adapted, with permission, from REF. 10  (2000) American Association for the Advancement of Science; Panel c adapted, with

permission, from REF. 63  (2002) American Association for the Advancement of Science.
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depression (LTD), indicating that back-propagating 
dendritic spikes might be important in synaptic
plasticity56,57.Alternatively, the local integration of EPSPs
can initiate dendritic sodium or calcium spikes (FIG. 3b,
right top), which can propagate to the soma58–63 and
eventually trigger somatic spikes (FIG. 3c). Forward- 
propagating dendritic spikes can boost the influence of
synapses in distal dendrites on the soma, thereby 
circumventing the attenuation produced by the passive
cable properties of dendrites8,18.

Models of the high-conductance state

To investigate the integrative properties of neocortical
neurons during high-conductance states, we must com-
bine biophysical measurements of dendritic excitability
with in vivo data on stochastic dynamics and high mem-
brane conductances. To this end, several types of com-
putational approach have been used. ‘Compartmental
models’ integrate detailed three-dimensional morpho-
logical reconstructions of neurons. Most of the publicly
available neuronal simulation environments, such as
NEURON64, allow users to incorporate morphological
data and simulate the corresponding cable equations
using a set of isopotential compartments. These com-
partmental models also integrate measurements of
channel densities in the soma, dendrites and axon, as well
as postsynaptic receptors for excitatory synapses (AMPA
(α-amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid) and NMDA (N-methyl-D-aspartate) receptors) 
and inhibitory synapses (GABA

A
(γ-aminobutyric acid

subtype A) receptors).Various compartmental models
have been proposed to model ‘synaptic noise’ in cortical
neurons16,17,65 (BOX 1). These models simulate many 
individual synapses that are distributed in dendrites
according to anatomical data1. The random activity of
these synapses can be adjusted to reproduce the high-
conductance states observed in vivo. The model shown
in BOX 1b was constrained by the in vivo data on KX up
states discussed earlier. In addition, in vivo recordings 
of miniature synaptic events66 were used to estimate
quantal conductances17, which provide an important
additional constraint. This model could reproduce all of
the characteristics of high-conductance states under 
reasonable assumptions of release frequency (about
0.5–3 Hz and 4–8 Hz for excitatory and inhibitory
synapses, respectively17).

Other approaches to modelling high-conductance
states are either single-compartment models with multi-
ple synaptic inputs67,68, or single-compartment models
containing ‘effective’ synaptic conductances69 (BOX 1c). In
the latter case, the synaptic conductances are modelled
by stochastic processes that capture the statistical and
spectral properties of the underlying synaptic inputs (see
details in REF. 69). All of these models can reproduce the
characteristics of high-conductance states: a depolarized
membrane potential (–65 mV); a three- to fivefold
reduction in input resistance compared with the absence
of network activity; large-amplitude voltage fluctuations
(σ

V
≈ 4 mV); and dominant inhibitory conductances 

(g
i
≈ 4g

e
). In addition, these models qualitatively capture

the symmetric voltage distribution (BOX 1, middle 

Dendritic excitability in vitro

A prerequisite for evaluating the impact of high-
conductance states on neural processing in general, and
mechanisms of dendritic integration in particular, is 
to characterize the electrophysiological properties of
dendrites. The classic view of dendrites as passively 
conducting cable structures32 has changed greatly in the
past few decades. A large body of experimental evidence
has revealed that dendritic membranes are electrically
excitable9,33,34 because they are endowed with a plethora
of voltage-gated ion channels. In vitro recordings, and 
in particular whole-cell patch recordings (for example,
REF. 35), have not only shown the diversity of voltage-
gated ion channels in dendrites, but have also mapped
their distributions9 and revealed how their densities
change during development36.

Hippocampal pyramidal neurons have the best 
characterized dendrites9. However, the dendrites of
neocortical neurons seem to possess the same types 
of voltage- and calcium-dependent ion channels33,37–39.
These include fast sodium currents36, DELAYED-RECTIFIER

POTASSIUM CURRENTS
40, calcium-dependent potassium 

currents41, A-TYPE POTASSIUM CURRENTS
40, high and low

threshold calcium currents42, and hyperpolarization-
activated currents43 (FIG. 3a). However, the densities of
sodium, potassium and calcium channels are lower in
the dendrites of neocortical neurons than in hippocam-
pal pyramidal neurons9. Moreover, the fairly constant
density of these conductances along the apical dendrites
of neocortical neurons contrasts with their strong 
location dependence in hippocampal neurons9. One
exception to this is the hyperpolarization-activated 
current I

h
, which has a lower density in the soma than in

the apical tuft of neocortical neurons43,44 (FIG. 3a, right).
Experimental data indicate that this non-uniform 
distribution of I

h
might be responsible for a functional

decoupling of the basal and apical dendrites43. It also
diminishes the effect of dendritic attenuation on the
time course of the somatic excitatory postsynaptic
potential (EPSP) and on TEMPORAL SUMMATION in 
neocortical neurons45.

These active dendritic properties allow us to consider
qualitatively new electrical behaviours and mechanisms
of synaptic integration. The repertoire of possible inter-
actions between voltage-dependent conductances and
colocalized synapses ranges from the modulation of
passive responses46 to the subthreshold amplification 
of distal synaptic inputs at the soma43,45,47,48 (FIG. 3b, right
bottom). However, it is the ability of dendrites to gener-
ate and propagate spikes49–53 that has the most important
implications for synaptic integration.

Since they were first described in intracellular
recordings of hippocampal neurons49, two different
classes of dendritic spikes have been distinguished.Action
potentials generated in the axosomatic region, after 
current injection or synaptic stimulation, can actively
propagate back into the dendritic tree10,54,55 (FIG. 3b, left),
carrying retrograde signals from the soma to distal
regions. The pairing of such active signals with local
EPSPs in a narrow time window fosters the induction of
either long-term potentiation (LTP) or long-term

DELAYED RECTIFIER 

K+ CHANNELS

Channels commonly found in

axons, the conductance of which

changes with a delay after a

voltage step. They are important

for the generation of action

potential bursts, the regulation

of pacemaker potentials and

other functions.

A-TYPE K+ CHANNELS

This type of channel activates

and inactivates very rapidly in

response to voltage changes,

preventing neurons from

responding to fast

depolarizations.

TEMPORAL SUMMATION

The way in which non-

simultaneous synaptic events

add in time. One of the basic

elements of synaptic integration.
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POWER SPECTRUM

After analysing a waveform with

a Fourier transform, its

amplitude spectrum is the

collection of amplitudes of the

sinusoidal components that

result from the analysis. The

power spectrum is the square of

the amplitude spectrum.

COLOURED NOISE

White noise is a signal that

covers the entire range of

component sound frequencies

with equal intensity. In coloured

noise, the signal covers a narrow

band of frequencies.

Box 1 | Synaptic noise

The term ‘synaptic noise’ is commonly used to describe the irregular subthreshold dynamics of the membrane potentials of

neurons in vivo, which are caused by the discharge activity of a large number of presynaptic neurons. Despite carrying

neuronal information, this activity seems to be nearly random, resulting in stochastic dynamics of the membrane

potential, with statistical properties and a broadband POWER SPECTRUM that resemble those of COLOURED NOISE. Panel a shows

synaptic ‘noise’ in neocortical neurons in vivo during activated periods with a desynchronized electroencephalogram

(EEG). Panel b illustrates a detailed biophysical model of synaptic noise in a reconstructed layer VI pyramidal neuron, with

Na+ and K+ channels in dendrites and soma. Randomly releasing excitatory (n ≈ 16,000) and inhibitory (n ≈ 4,000) synapses

were modelled using AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and GABA
A

(γ-aminobutyric acid

subtype A)-receptor kinetics17. Their distribution in soma and dendrites was based on ultrastructural measurements1.

Panel c shows a ‘point conductance’ model of synaptic noise; a single-compartment model with two global excitatory (g
e
)

and inhibitory (g
i
) synaptic conductances, modelled by stochastic processes69. Panel d shows the results of dynamic-clamp

induction of synaptic noise in neocortical neurons in vitro. In each case, an example of the membrane potential time course

(left), its amplitude distribution (middle) and its power spectral density (right; logarithmic scale) are shown. The power

spectral densities were computed in the absence of spikes (hyperpolarized, or using passive models). In all cases, the

distributions were approximately symmetric, and power spectral densities were broadband and behaved as a negative

power of frequency (1/fk, k ≈ 2.6; green lines) at high frequencies (as expected for low-pass filtered noise). The data used for

the analysis in d were kindly provided by M. Badoual and T. Bal.
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neurons. FIGURE 4b contrasts the same compartmental
model in three states: a ‘quiescent’ state (pink), in which
membrane properties were adjusted to in vitro record-
ings; a high-conductance state (green), which simulates
stochastic synaptic inputs as in BOX 1b; and an equivalent
static conductance (blue), in which the sole conductance
factor of synaptic activity was retained and incorporated
through an additional leak conductance. Cortical cells 
in vitro behave like binary devices, showing a sharp
threshold as a function of stimulus intensity (‘all-or-
none’response function) (FIG. 4b, pink). The introduction
of a static high conductance alone results in a decreased
responsiveness (FIG. 4b, blue), consistent with a 
pure shunting effect. By contrast, voltage fluctuations
(‘synaptic noise’) significantly change the response curve
(FIG. 4b, green; see change in slope). Remarkably, this
curve shows that there is a small response probability for
inputs that were subthreshold in all other cases, showing
an enhanced responsiveness to low-amplitude inputs81

(FIG. 4b, asterisk). This phenomenon is comparable to 
STOCHASTIC RESONANCE, which is found in many non-linear
systems82, in simple neuronal models83,84, and in experi-
mental85 and theoretical86 studies of central neurons. The
situation described here is different, as synaptic noise
also decreases responsiveness through the increased 
conductance. The enhancement of responsiveness can
also be seen at the level of dendrites, where synaptic
noise can boost the ability of stimuli to initiate dendritic
spikes18 (see later in text). Therefore, a first prediction 
of modelling studies is that voltage fluctuations at 
levels comparable to in vivo measurements should 
significantly alter the responsiveness of cortical neurons.

A second main consequence of high-conductance
states is that they greatly affect the efficacies of synaptic
inputs at different dendritic sites. In passive dendrites,
the high-conductance state increases voltage attenuation
and reduces the time constant. These effects can be
deduced from CABLE THEORY

87 and were proposed in early
theoretical studies14,15. The impact of high-conductance
states on the attenuation of EPSPs is shown in FIG. 5a.
Excitatory synaptic inputs were simulated at different
dendritic sites in a compartmental model of a cortical
pyramidal neuron, and the EPSP peak was represented
against distance and stimulus amplitude. In quiescent
conditions (FIG. 5a, left), EPSPs are differentially filtered
as a function of their position. Addition of the static
high conductance (FIG. 5a, middle) leads to much
stronger attenuation, with distal inputs having negligible
impact at the level of the soma for distances of a few
hundred micrometres.

So, a high conductance severely reduces the likeli-
hood that distal inputs will influence somatic spiking.
One possible solution to this problem is the presence 
of voltage-dependent conductances, which can lead 
to different normalizations of synaptic efficacy9,43,45,46,48.
Another possible solution is to rescale synaptic conduc-
tances in proportion to the distance from the soma, so
that all synapses evoke roughly equivalent somatic EPSPs,
as observed in hippocampal pyramidal neurons88.
However, patch-clamp recordings indicate that such 
re-scaling does not occur in neocortical neurons8.

panels) and the broadband shape of the power spectrum
of membrane potential fluctuations (BOX 1, right panels).

Network-level modelling studies have also investi-
gated the genesis of self-sustained stochastic states
resembling high-conductance states. A number of such
studies were performed on INTEGRATE-AND-FIRE MODELS

70–76

or using conductance-based spike-generating mecha-
nisms77,78. Most of these studies, however, did not use
conductance-based synaptic interactions. As a result,
it is impossible to compare the states obtained in 
these models with conductance measurements in vivo.
So far, only one such study78 has reported the genesis 
of self-sustained stochastic states with dominant
inhibitory conductances, similar to in vivo measurements
(see also REF. 79).

Consequences of high-conductance states

The impact of high-conductance states on the integrative
properties of cortical neurons has been investigated
using computational models. We summarize here the
findings of several studies that predicted a number of
‘computational principles’ for high-conductance states,
using multi- or single-compartment models.

A first consequence is that the responsiveness of
cortical neurons is markedly different in the presence 
of fluctuating background synaptic activity. Owing 
to the presence of membrane potential fluctuations,
neurons respond stochastically to a given stimulus. In
fact, their behaviour is best described by probability
functions. An example of such a probabilistic response
is given in FIG. 4a. Using probabilities to quantify synaptic
efficacy (defined here as the probablity that a given
synaptic input specifically evokes an action potential at
the soma; for another measure, see REF. 80) shows the 
contrasting effects of conductance and membrane
potential fluctuations on the responsiveness of cortical

INTEGRATE-AND-FIRE MODEL

The simplest model of a spiking

neuron that takes into account

the dynamics of the synaptic

inputs.

STOCHASTIC RESONANCE

The facilitated or optimized

response of a non-linear

dynamical system to stimuli in

the presence of non-vanishing

noise, usually expressed as a peak

of the signal-to-noise ratio.

CABLE THEORY

Mathematical description of the

purely passive spread of

electrical current in a nerve fibre.

It is conceptually similar to the

theory that is needed to

understand the properties of

long cables.
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Figure 4 | Enhanced responsiveness during high-conductance states. a | Probabilistic

dynamics of synaptically triggered action potentials in the presence of membrane potential

fluctuations caused by spontaneous network activity. A simulated cortical pyramidal neuron in the

high-conductance state (compartmental model shown in Box 1b) was stimulated by AMPA 

(α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) synapses (arrow; two different stimulus

intensities are shown; 40 trials each). Stimuli evoked action potentials with considerable trial-to-

trial variability. b | Enhancement of responsiveness by voltage fluctuations. The response curve

(probability of somatic spike response as a function of stimulus amplitude) is shown in three

different states: quiescent (pink, absence of synaptic activity); static conductance (blue; additional

constant conductance equivalent to the averaged conductance during high-conductance states);

high-conductance state (green; synaptic activity as in a). The addition of a static conductance

shifted the response curve towards a higher threshold (single arrow), whereas the ‘synaptic noise’

during high-conductance states changed the slope of the response curve (double arrow). Small

inputs (for example, 0.1 mS cm–2, asterisk) evoked a detectable response only in the latter case.

Modified, with permission, from REF. 81  (2000) American Physiological Society.
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from these probabilities of dendritic spike initiation and
propagation, which show opposite location dependence;
the probability of dendritic spike initiation is larger for
distal sites (FIG. 5c, blue) because of the higher local input 
resistance of thinner dendrites. The probability for spike
propagation to the soma shows inverse dependence on
distance (FIG. 5c, yellow), because distally initiated spikes
have more chances to be ‘intercepted’ by inhibitory
synaptic events or dendritic spikes along the way.
Remarkably, these dependences compensate, such that
synaptic efficacy, which is the product of these two
probabilities, is approximately location independent
(FIG. 5c, pink). These results indicate that, owing to 
interactions between synaptic noise, voltage-dependent
channels and dendritic morphology, the efficacy 
of synaptic inputs has a reduced location dependence
during high-conductance states.

A third effect of high-conductance states is on tem-
poral processing. The reduction of the space constant in
states of high conductance is accompanied by a marked
reduction in the MEMBRANE TIME CONSTANT

16,17, which is
apparent in experimental data, for example in the faster
response to injected current (FIG. 2c, averaged traces).

Another solution to this dilemma might arise from
the dynamics of dendritic integration during high-
conductance states18,89. Theoretical studies predict that
synaptic inputs ending at different dendritic sites have
roughly equivalent efficacies during these states (FIG. 5a,
right). This remarkable result can be understood from
two properties. First, the initiation of action potentials in
dendrites is facilitated by voltage fluctuations18, through
mechanisms similar to that underlying enhanced
responsiveness (FIG. 4b). Second, dendritic action 
potentials might show facilitated propagation during 
high-conductance states (propagation is ‘facilitated’ in the
sense that in stochastic states, all dendritic spikes have
some probability of propagating up to the soma, whereas
a significant fraction of them, especially in distal sites, fail
in quiescent conditions). These effects are shown in 
FIG. 5b; in quiescent states, dendritic action potentials are
highly sensitive to variations in local electrophysiological
and morphological characteristics, and sometimes fail 
to propagate reliably (FIG. 5b, left), whereas in high-
conductance states even small stimuli can elicit dendritic
spikes, which reliably propagate up to the soma (FIG. 5b,
right). The location independence can be understood

MEMBRANE TIME CONSTANT

A quantity that depends on the

capacitance and resistance of the

cell membrane, and which sets a

timescale for changes in voltage.

A small time constant means

that the membrane potential can

change rapidly.
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Figure 5 | Equalization of synaptic efficacies during high-conductance states. a | Comparison of synaptic efficacies during

quiescent and high-conductance states. AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor-mediated

synapses were simulated at different sites (inset) and the response was represented against path distance from the soma and

stimulus amplitude. In quiescent conditions (left), distal inputs are moderately attenuated, as predicted by cable theory. With static

high conductance (middle), the attenuation was increased several-fold, leading to almost complete filtering of distal synaptic inputs.

During high-conductance states (right), the efficacy of synaptic inputs (defined as the total probability that a synaptic stimulus evokes

a somatic spike) was weakly dependent on the dendritic location of the synapse. EPSP, excitatory postsynaptic potential. 

b | Enhancement of action potential initiation and propagation by synaptic activity. A forward-propagating dendritic action potential

was evoked in a distal dendrite by an AMPA receptor-mediated excitatory postsynaptic potential (arrow). In quiescent conditions

(left), this action potential propagated for only 100–200 µm, even for high-amplitude stimuli (9.6 nS shown). In high-conductance

states (right), dendritic action potentials could propagate up to the soma, even for small stimulus amplitudes (2.4 nS shown). 

c | The location independence of synaptic efficacy can be explained by the probabilities of dendritic action potential (AP) initiation

and propagation. The probability that a synaptic stimulus will initiate a dendritic spike (blue) and the probability that a dendritic spike

evoked by the stimulus will propagate to the soma and elicit a somatic spike (yellow) are represented as functions of the distance of

the stimulating synaptic input. Synaptic efficacy, which is the product of these two probabilities (pink; values multiplied by 10), shows

nearly location-independent behaviour. Modified, with permission, from REF. 18  (2003) Society for Neuroscience.
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or even continuously switch between them. This 
possibility is in agreement with modelling studies based
on integrate-and-fire neurons101, and with the linear
relationship found between the degree of synaptic 
synchrony and cellular responses102.

Finally, models predict that enhanced voltage attenua-
tion during high-conductance states should favour the
electrical isolation of dendritic segments with respect to
each other. This would result in a dendritic tree in which
subregions could independently integrate synaptic inputs
and perform relatively independent computations.
This concept is similar to the ‘dendritic subunits’ postu-
lated in previous theoretical studies103. Such a functional
parcellation could increase the computational power of
dendritic trees. Recently, a similar compartmentalized
(in the sense of local processing) and parallelized 
(in the sense of independently processing subunits)
dendritic dynamic was proposed on the basis of in vitro

experimental observations of active signalling in 
individual terminal dendritic branches62. It was also 
predicted by modelling studies18 (FIG. 5b), which 
indicates that dendritic spikes might not only carry the
results of local dendritic computations, but also serve as
a channel through which distal dendritic subunits send
their information to the soma, therefore participating in
shaping the cellular response.

So, models predict that high-conductance states 
confer a number of advantageous properties on neocor-
tical neurons, the main one being fine discrimination of
inputs, not only in the amplitude domain (enhanced
responsiveness), but also in spatial and temporal
domains. The drawback of this integrative mode is that
the system is inherently stochastic, producing a response
only with some probability. However, this property
should be compensated for by populations of neurons
processing information in parallel104.

As proposed about 30 years ago14, this reduced time
constant should favour finer temporal discrimination of
distant synaptic inputs15,16,18. In active dendritic struc-
tures, small membrane time constants also promote
fast-propagating action potentials, resulting in a
reduced location-dependence of EPSP timing18 (FIG. 6a).
This might facilitate the association of distant inputs at a
higher temporal resolution. Consistent with this, a rela-
tionship was found between the high-conductance state
and the typical irregular firing of neocortical neurons67,90.
Perhaps the most striking consequence, however, is that
neurons can resolve higher frequency inputs in high-
conductance states than when quiescent91, as illustrated 
in FIG. 6b. Models therefore predict that cortical neurons in
high-conductance states can efficiently and rapidly track
synaptic inputs79.

Other computational advantages of high-conductance
states have been noted in modelling studies. First,
because both excitatory and inhibitory conductances
are large during high-conductance states, slight 
variations of either excitation or inhibition are effective
in modifying spiking probability. As a consequence,
neurons can reliably detect faint changes in temporal
correlation of the random activity of their inputs92,93.
This type of response is interesting, because it is not
accompanied by average changes in membrane potential
or membrane conductance. In fact, neurons respond 
to the variance of the conductances, only causing
instantaneous changes in the membrane potential
(which cannot be modelled by rate-based neuron 
models). This type of response, which was also found
experimentally94–96, deserves further study.

Second, synaptic activity has an important impact
on the operating mode (coincidence detection versus
firing-rate integration) of cortical neurons97; neurons
can use different coding strategies in parallel98–100
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corresponding interspike interval histogram. In quiescent conditions (left panel, pink), the model could respond reliably up to a

stimulus frequency of about 50 Hz. In high-conductance states (left panel, green), the frequency following was reliable up to much

higher frequencies (beyond 100 Hz). The right panels show examples of interspike interval (ISI) histograms for stimulation at 4 ms

and 12 ms interstimulus intervals, for the quiescent (top) and high-conductance (bottom) states. Panel a modified, with permission,

from REF. 18  (2003) Society for Neuroscience; Panel b modified, with permission, from REF. 91  (2003) Elsevier Science.
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Dynamic-clamp combines all the approaches
described earlier in this review. First, in vivo electrophysi-
ology provides qualitative and quantitative information
about the voltage and conductance dynamics in states of
intense cortical network activity. Second, computational
modelling provides models of the conductance 
fluctuations during high-conductance states (BOX 1c,d).
Third, in vitro electrophysiology is used with the
dynamic-clamp protocol to ‘recreate’ the characteristics of
high-conductance states as measured in vivo69. The 
limitation of this approach is that conductances can only
be injected at the site of electrode impalement (usually
the soma), whereas real synaptic inputs are distributed 
in dendrites. Nevertheless, the dynamic-clamp captures
the interplay of currents in the proximal region 
of the cell, and the benefit of this approach is that one
can take advantage of the fine control over synaptic

Dynamic-clamp experiments

To evaluate the impact of high-conductance states on real
neurons, techniques are needed to recreate these states in
simple preparations. Some studies have investigated the
effects of injecting noisy current waveforms in vitro105,106,
but in this case, neurons are in a low-conductance 
state. To simulate the conditions of an intact network,
conductances must be injected into the cell. This is 
possible through the dynamic-clamp technique (FIG. 7a),
which was introduced a decade ago107,108 and is equivalent
to adding a ‘virtual’ conductance in the membrane of a
real neuron. Implementing this system in cortical
slices69,109–112 yields a state of stochastic activity similar 
to that seen in vivo69 (BOX 1d), with a depolarized and 
fluctuating membrane potential (FIG. 7b, top and bottom
left), irregular firing and a markedly reduced input 
resistance (FIG. 7b, bottom right; compare with FIG. 1c).

SHUNTING INHIBITION

A phenomenon whereby

membrane depolarization that is

induced by a given current is

attenuated because of an

enhanced membrane
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inhibitory conductances, respectively) is injected into the cell (current-clamp mode), inducing stochastic neuronal activity (same

model as in Box 1c). b | Recreation of high-conductance states in neocortical neurons in vitro. Top: the stochastic activity induced

by the noisy injected current (orange) is characterized by a depolarized and fluctuating membrane potential as well as irregular

discharges (green; see also Box 1d). Bottom: the membrane shows a markedly reduced input resistance (induced) resulting in a

diminished response to injected currents (blue bars; compare with Fig. 2c). c | Contrasting effects of conductance and noise. The

sigmoidal response curve in control conditions (pink) can be shifted to lower or larger stimulus amplitudes (stimuli were driving

currents in this case) by changes in static conductances (blue; left- or right-shifts are produced by increases of excitatory or
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the response curve (green), which can be described as ‘gain modulation’. d | Dynamic-clamp evidence for the effect of static

conductances on the working point of the response curve (SHUNTING INHIBITION; blue circles: control response curve for excitatory

and inhibitory without additional conductance; blue squares: response with additional static conductance of 32 nS). e | Dynamic-

clamp evidence for gain modulation by synaptic noise. In this case, the slope of the response curve was altered compared with

control conditions (blue circles) by a threefold increase of the release rates at excitatory and inhibitory synaptic terminals (blue

squares). The latter modulation increases both the noise amplitude and the amount of shunting. Panel b reproduced, with

permission, from REF. 69  (2001) Elsevier Science; Panels c–e modified, with permission, from REF. 109  (2002) Elsevier Science.
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by synaptic inputs. Because unitary inputs between
pyramidal neurons have a small conductance117,
the main effect of conductance noise is probably to
enhance communication between single pyramidal 
neurons and to reduce the impact of highly synchronized
inputs.

The high-conductance state and associated respon-
siveness should be characterized for other cell types, such
as bursting neurons, and for other behavioural states,
such as sleep (see REF. 7 for conductance measurements
during slow-wave and paradoxical sleep), different 
levels of neuromodulators, or different attentional or
arousal levels. In particular, the proposed link between
enhanced responsiveness and attentional mechanisms81

would be worth investigating using intracellular 
experiments.

Equalization of synaptic efficacies. During high-
conductance states, the complex interplay between 
conductance noise, voltage-dependent currents and
dendritic action potentials can result in an equalization
of the efficacy of individual synapses (FIG. 5). In parallel
to this equalization, inputs are integrated more locally
in dendrites, although their individual impact shows 
little dependence on the morphological details of the
dendritic tree. These predictions18 could be tested by
performing dual dendrite and soma recordings,
together with a double dynamic-clamp injection of
conductance noise.

To characterize further the integrative properties
during high-conductance states, the following issues
should be investigated computationally or using a com-
bination of dynamic-clamp with dendritic recordings:
the dependence of synaptic efficacy on morphology,
and how combinations of inputs influence the soma as
a function of their respective locations in dendrites and
delays of activation.

Increased temporal resolution. Modelling studies14–18

have predicted that neurons in high-conductance states
should have sharper temporal processing capabilities.
First, there is reduced site-dependence of the timing of
somatic responses (FIG. 6a). Second, neuronal responses
have an augmented capacity to follow high-frequency
synaptic stimulation (FIG. 6b). Third, neurons can detect
rapid (~2 ms) changes of temporal correlation among
thousands of input sources93. No direct experimental
tests of these predictions are available so far, although
straightforward dynamic-clamp experiments could
address this issue (FIG. 6b).

Models further indicate that the variance of conduc-
tances reflects the correlation in presynaptic activity69,
and changes in temporal correlation (or conductance
variance) have powerful effects on neuronal
responses67,92,93. However, there is currently no method
to estimate conductance variances from experiments
(but see REF. 118). Theoretical studies should therefore
investigate how to ‘deconvolute’ the synaptic noise that
is recorded experimentally, perhaps providing methods
to estimate conductance variances and the degree of
temporal correlation in presynaptic activity.

inputs achievable in vitro, while having cellular 
characteristics comparable to in vivo recordings.
This reproduction of specific in vivo states provides a
powerful way to test theoretical predictions that could
hardly be addressed in vivo.

The effect of high-conductance states on responsive-
ness can be tested by dynamic-clamp experiments. In
agreement with model predictions, injection of stochastic
conductances in cortical neurons in vitro profoundly
altered their responsiveness, or equivalently, neuronal
gain109–112. The response function of the neuron usually
takes the form of a sigmoidal function of stimulus
amplitude (FIG. 7c, pink), and two aspects of this function
can be modulated: its sensitivity, defined by the slope
(‘gain’) of the response curve (FIG. 7c, green), and its
working point, defined by the position of the response
curve (FIG. 7c, blue). Both types of gain modulation arise
from different manipulations of the synaptic conduc-
tances, which was proposed as a fundamental principle
of neuronal computation113. In agreement with model-
ling predictions81,91 and cable theory, these experiments
revealed that variations in the static (time-averaged 
or ‘leak’) conductance component cause shifts in the
working point (subtractive modulation). Here, an
increasing excitatory conductance shifts the response
curve to lower stimulation amplitudes (FIG. 7c,d), whereas
an increasing inhibitory conductance has the opposite
effect109,111 (shunting inhibition). Divisive gain modula-
tion, on the other hand, consists of a change in the slope
of the response curve (FIG. 7c, green) and, therefore, a
change in the sensitivity. This effect was found for 
balanced variations in excitatory and inhibitory firing
rates109 (FIG. 7d), or by varying directly the stochastic 
component of the synaptic conductances without
changing its mean110,112, in agreement with model 
predictions81.

So, dynamic-clamp experiments support the idea
that stochastic conductances stemming from intense net-
work activity are responsible for a general enhancement
of responsiveness. Moreover, the amount of conductance
and membrane potential fluctuations identified in vivo

drastically alter the responsiveness of cortical neurons.
These studies agree with previous observations that
stimulation of the ascending activating systems leads to
enhanced responsiveness114,115, and that cortical neurons
are more responsive during attentive states116.

Conclusions

Experiments and models indicate that the intense synaptic
activity seen in vivo is not detrimental, but can confer
advantageous computational properties on neocortical
neurons. We now summarize these computational 
principles, possible ways to test them experimentally and
perspectives for future work.

Enhanced responsiveness and gain modulation. The 
prediction81 that conductance noise enhances the respon-
siveness of cortical cells to low-amplitude inputs while
decreasing responsiveness to large-amplitude inputs 
(FIG. 4) was confirmed experimentally85,109–112. These
effects were described collectively as ‘gain modulation’
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a small — but non-zero — probability of evoking
spikes in high-conductance states81,109–112 might have
interesting consequences at the network level. If the
divergence of connectivity is larger than the inverse of
the response probability to unitary inputs (1/P

u
), then

one spike in a given neuron will generally be followed by
at least one spike in another neuron in the network,
perhaps resulting in special collective properties.

Investigations of this type are needed to explore the
processing capabilities of networks in high-conductance
states, with the ultimate goal of understanding the 
computational operations of the intact and functioning
neocortex. Meeting this challenge will necessarily require
a continuous and tight association of in vivo and 
in vitro experiments with computational models.

Probabilistic and irregular behaviour. The dynamics of
neurons in high-conductance states are inherently 
stochastic and responses show considerable variability
(FIG. 4a), as typically found in vivo119,120. The appropriate
measure for such responses is to compute probabilities,
as routinely done in vivo through the use of post-stimulus
time histograms. This variability should disappear at the
population level if responses from many neurons are
pooled together104. Therefore, neuronal populations
should produce sensitive, precise and discriminative
responses during high-conductance states.

Future theoretical studies should explore how 
cellular properties translate into global properties at the
level of large populations of neurons. For example,
the finding that low-amplitude excitatory inputs have 
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