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Abstract. Risk assessment is mainly based on certain sce-
narios involving an event of a certain size which is thought to
be characteristic for the considered type of hazard. However,
many natural hazards extend over a wide range of event sizes,
and some of them are even free of characteristic scales. An
expression for the risk taking into account various event sizes
is derived, and its implications on risk assessment for earth-
quakes, forest fires, landslides, and rockfalls are discussed.
Under simple assumptions on the damage as a function of
the event size, it turns out that the total risk is governed by
either the small number of large events or the majority of
small events. The distinction between these two classes de-
pends on both the power-law exponent of the event size dis-
tribution and the damage function. For earthquakes, forest
fires, and rockfalls, the total risk is mainly constituted by the
largest events, while results are non-unique for landslides.

1 From hazard to risk assessment

Risk assessment is a straightforward extension of hazard as-
sessment towards economic sciences. While hazard assess-
ment concerns the probability of occurrence of a certain
event, risk assessment takes into account its effects on life,
civilization, and economics, too.

Although the term risk has several meanings in everyday
life, there is a more or less unique definition of risk in the
context of natural and man-made hazards. LetN be the ex-
pected (mean) number of events of a certain type in a cer-
tain region and time interval. Determining this number, per-
haps including its spatial and temporal variation and its de-
pendence on environmental conditions, is the main goal of
hazard assessment. Let furtherD be the expected damage
caused by an event of the considered type. The riskR is then
defined by

R = ND. (1)
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According to this definition, the riskR is the expected dam-
age caused by events of a certain type within a certain region
and time interval.

Although this definition is straightforward, it suffers from
the restriction to events of a certain type. This restriction
does not only concern the class of phenomena under consid-
eration, e.g. earthquakes, landslides, rockfalls, storms or for-
est fires, but also the magnitude of the event. Thus, we cannot
use Eq. (1), e.g. to determine the risk of earthquakes at San
Francisco, but only to determine the risk of earthquakes of a
certain magnitude there.

In those cases where a typical event size can be assigned
to the considered phenomenon, this restriction is no prob-
lem. However, event sizes vary strongly for most natural
hazards, such as earthquakes, landslides, rockfalls or forest
fires. In the example of earthquakes, an increase in mag-
nitude by one unit (e.g. from magnitude 6 to magnitude 7)
corresponds to an increase in released energy by a factor of
about 30. Thus, an earthquake of magnitude 8 releases about
1000 times more energy than an earthquake of magnitude 6.
Both are able to cause considerable damage, and the question
is whether a few events of magnitude 8 cause more damage
than the rather large number of magnitude 6 earthquakes or
not.

The same applies to many other natural hazards, such as
landslides, rockfalls, and forest fires. The largest histori-
cal rockfall in the Alps involved a rock volume of more
than 9 km3, while other rockfalls are only a few cubic me-
ters large. A single forest fire may destroy several thousand
square kilometers of forest, while the majority of forest fires
is much smaller.

As a result of the large range of event sizes in many nat-
ural hazards, Eq. (1) must be replaced with an expression
that regards all possible event sizes, their frequency of occur-
rence, and the damage corresponding to the event size. Let
P(s) be the cumulative size distribution of the considered
phenomenon, i.e. the probability that the size of an arbitrary
event is greater than or equal tos. In this context,s may be
any measure of event size, e.g. magnitude, released energy
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or size of the rupture area in case of earthquakes, affected
area or displaced volume in case of landslides and rockfalls
or destroyed area in case of forest fires.

In order to evaluate the risk regarding events of different
sizes, we first need the expected damage of one event with
respect to the size distributionP(s). Let p(s) be the corre-
sponding probability density according to

p(s) = −
dP (s)

ds
, (2)

andD(s) the expected damage induced by an event of sizes.
As a result of basic statistics, the expected damage is

D =

∫
p(s) D(s) ds, (3)

where the integration extends over all possible event sizes.
From this, the total risk is immediately obtained to

R = ND = N

∫
p(s) D(s) ds. (4)

Thus, risk assessment regarding event sizes involves two
steps:

1. Determining the total number of events in a certain re-
gion, time span, and environment,N , and the size distri-
bution of the events,P(s). The result is often expressed
directly in terms of the product of both, which is called
the frequency-magnitude relation.

2. Assessing the damage of an event as a function of its
size.

The first step is the goal of hazard assessment, which has
taken a major place in research on natural hazards in the last
decades. Size distributions of some natural hazards are re-
viewed in the following section. In contrast, the second step
is the transition from hazard to risk. It may be much more
complicated than hazard assessment. There may be cases
such as small forest fires or landslides where the damage to
be expected can be directly computed, but as soon as events
become large enough to affect the socio-economic network
including loss of life, reliable estimates may become diffi-
cult. For this reason, risk assessment is mainly restricted to
single scenarios, such as an earthquake of a given magnitude,
while in general a large number of scenarios covering a wide
range of event sizes is required. So it seems to be necessary
to introduce assumptions on the dependence of the damage
on the event size,D(s). Simple assumptions and their impli-
cations are discussed in Sects. 3–6.

2 Power-law distributions in natural hazards

Most natural hazards do not only cover a wide range of
event sizes, but also exhibit scale-invariant (also called frac-
tal) statistics. Earthquakes are the most prominent example,
although their fractal character may be hidden behind the
logarithmic definition of earthquake magnitudes. As men-
tioned above, an increase of magnitude by one unit roughly

corresponds to an increase in released energy by a factor 30.
Therefore, the relation for the numberN(m) of earthquakes
per unit time interval with a magnitude greater than or equal
to m found by Gutenberg and Richter (1954),

log10N(m) = A − Bm, (5)

can be transformed into a statistical distribution of the re-
leased energiesE:

N(E) ∼ E−
2B
3 (6)

whereN(E) is the number of earthquakes per unit time inter-
val with an energy release greater than or equal toE. The the-
ory behind this transformation was introduced by Kanamori
and Anderson (1975); brief reviews are given in almost all
textbooks on seismology (e.g. Lay and Wallace, 1995; Aki
and Richards, 2002) and in some books on fractals in earth
sciences (e.g. Turcotte, 1997; Hergarten, 2002).

If we switch to a more general notation and denote ar-
bitrary measures of event size bys, earthquakes follow a
power-law size distribution

P(s) ∼ s−b. (7)

If earthquake sizes are measured in terms of released en-
ergy, the power-law exponent isb=2B/3. The parameter
B slightly varies from region to region, but is generally be-
tween about 0.8 and 1.2 (Frohlich and Davis, 1993), so that
b falls into the range between about 0.5 and 0.8.

Power-law distributions were found in some other natural
hazards, too. For landslides, a rather strong variation in the
exponentb was found, but this variation could be neither at-
tributed to the triggering mechanism (e.g. rainfall, snow melt
or earthquakes), climate, type of landslide nor to the geolog-
ical setting. A review was given, e.g. by Hergarten (2003);
the values of the exponentb listed there are given in Fig. 1. It
was concluded that most of the studies resulted in values of
b between 1.0 and 1.6 if landslide size is measured in terms
of affected area. However, the range may in fact be narrower
because there is still some uncertainty about the effect of the
method used for data analysis.

Rockfalls are a type of gravity-driven mass movements
which strongly differs from most other types (e.g. slides in
the strict sense or flows). Their size distributions have been
addressed in several studies, too. Results are reviewed and
discussed by Dussauge et al. (2002, 2003). Power-law dis-
tributions were mainly found with respect to the volume of
displaced rock. Similar to landslides, a strong variation in the
exponents was observed (from about 0.2 to 1.0), but part of
this variation may be artificial as a result of different methods
of analysis. As shown in Fig. 1, most of the values fall into
the range between 0.4 and 0.7. However, these values are not
directly comparable to those of landslides listed above since
the former refer to areas, while the latter refer to volumes.
It is mostly assumed that the volume of the displaced rock
increases with the area to the power of 3/2, so that the size
distribution of rockfalls should be a power law with respect
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to the area, too. As a result of this transformation, the ex-
ponents increase by a factor 3/2, so that range of exponents
mentioned above turns into a range from 0.6 to about 1.0
with respect to areas. So the power-law exponents of rock-
falls seem to be smaller than those of landslides; the conse-
quences of this difference will be discussed later.

Forest fires are another example of power-law distributed
natural hazards. Since the fractal properties of forest fires
were recently discovered (Malamud et al., 1998), available
statistics are smaller than for earthquakes and landslides.
There is still a considerable uncertainty about the validity of
power-law distributions in forest-fire statistics and concern-
ing the exponentsb of the distributions. The range of expo-
nents reported so far is 0.31≤b≤0.49 if the burnt area is the
measure of event size.

3 Event size and damage

In some cases, the damageD(s) may be a linear function of
the event sizes. This may be the case, e.g. for forest fires
as long as they are not too large. Damage may then simply
be determined by the amount of destroyed wood which is
proportional to the burnt area. However, there are several
aspects which make the damage function more complicated
in general:

– For some natural hazards, such as earthquakes, events
below a certain size do not cause any damage, so that
D(s) is zero there.

– In return, there may an event size leading to total de-
struction, so thatD(s) is constant above this event size.

– In the range between these sizes,D(s) will proba-
bly grow stronger than linearly with the event size.
This may result directly from properties of the process
(e.g. because large landslides are more likely to achieve
high velocities than small landslides), but also from the
event’s increasing consequences on economy and hu-
man life.

– The damage function may even be discontinuous, e.g.
loss of life may introduce steps inD(s). In some cases,
these steps may be rather large, e.g. if a nuclear power
plant is affected by an earthquake.

4 A simple damage model

Since estimating the damage function requires detailed
knowledge on the process and on the goods and human be-
ings exposed to danger, we now switch to one of the simplest
models of damage, a power-law dependence

D(s) = α sβ . (8)

As mentioned above,β may be one in some cases, but will
mostly be larger. However, there may be even situations

0 0.5 1 1.5 2
exponent b

forest fires (area)

earthquakes (energy)

rockfalls (volume)

landslides (area)

Fig. 1. Power-law exponents of the cumulative size distributions
of some natural hazards. The tickmarks refer to the four forest-fire
data sets analyzed by Malamud et al. (1998), the studies on land-
slides compiled by Hergarten (2003), the rockfall data analyzed and
reviewed by Dussauge et al. (2002, 2003), and 38 earthquake cat-
alogs from various geographic regions (Frohlich and Davis, 1993,
Table 1, last column).

whereβ is smaller than unity, which means that the damage
increases weaker than linearly with the event size. Imagine
an important road crossing a forest, and that a certain eco-
nomic damage occurs if this road cannot be used because the
forest close to the road is burning. Let us, for simplicity, as-
sume that forest-fire areas are circular shaped, and that fires
occur at random locations. Under these assumptions, a fire
of radiusr causes damage if its center is located in a strip of
width 2r (r each left and right of the road) around the road.
Therefore, the probability that a randomly located fire causes
damage increases linearly with the radiusr, and thus with the
square root of the area, so thatβ=0.5 in this case.

5 The role of the minimum and maximum event sizes

Before evaluating the risk formula (Eq. (4)), we must spec-
ify the power-law distribution (Eq. (7)) more precisely. It is
well-known that a power-law distribution can only hold over
a limited range of scales in reality, so that cutoff effects at
large as well as at small event sizes occur. A discussion of
cutoff effects in power-law distributions is given, e.g. by Her-
garten (2002). In the simplest cutoff model, only events with
sizes between a minimum sizesmin and a maximum sizesmax
occur. The corresponding probability density function is

p(s) =
b

s−b
min − s−b

max
s−b−1 (9)

(e.g. Hergarten, 2002). From this, we immediately obtain the
total risk to

R = N

∫ smax

smin

b

s−b
min − s−b

max
s−b−1α sβ ds

=
Nbα

β − b

s
β−b
max − s

β−b

min

s−b
min − s−b

max
. (10)

As long as the power-law distribution extends over some or-
ders of magnitude, we can assume thatsmax is much larger
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thansmin. In this case, the behavior of Eq. (10) strongly de-
pends on the differenceβ − b.

If β > b, the terms
β−b
max is much larger thansβ−b

min , so that

R ≈
Nbα

β − b

s
β−b
max

s−b
min − s−b

max

=
N

β − b
smaxp(smax) D(smax). (11)

Thus, the total risk is mainly determined by the largest
events.

In the opposite case,β<b, the increase of the damage with
event size is not sufficient to compensate the decrease in fre-
quency of event occurrence. The termsβ−b

max becomes much
smaller thansβ−b

min , so that the total risk is

R ≈
Nbα

b − β

s
β−b

min

s−b
min − s−b

max

=
N

b − β
smin p(smin) D(smin). (12)

In this case, the risk mainly arises from the large number of
small events, while large events are less important.

Equation (10) is only valid ifβ 6=b. In the special case
β = b, the integral in Eq. (10) is computed to

R =
Nbα

s−b
min − s−b

max
log

smax

smin

= s p(s) D(s) log
smax

smin
(13)

for any arbitrary value ofs betweensmin andsmax. Thus, the
risk can neither be expressed in terms ofsmax alone, nor in
terms ofsmin alone. Both small and large events contribute
to the total risk in this case.

The caseβ=b looks like a theoretical case which is hardly
achieved in reality. However, if the difference betweensmax
andsmin is only a few orders of magnitude andβ comes close
to b, both small and large events contribute to the total risk.
As an example, we assume that the power law distribution
extends over three orders of magnitude, i.e.smax=1000smin

and thatβ−b=0.1. Then,sβ−b
max ≈2s

β−b

min in Eq. (10), so that
the risk is clearly not dominated by the large events alone.
So there is a region between both regimes where large and
small events contribute to the total risk.

6 Implications for earthquakes, forest fires, rockfalls,
and landslides

As discussed in Sect. 2, the exponentb of the earthquake size
distribution is in the range between 0.5 and 0.8 if event size is
measured in terms of released energy. Although quantifying
the damage caused by earthquakes of different sizes is dif-
ficult, it can be expected that the damage increases stronger
than linearly with the released energy, so that the exponentβ

exceeds 1. Thus, the differenceβ−b is always positive, and

the total risk resulting from earthquakes is dominated by the
largest events.

It is noteworthy that the largest event is not the largest his-
torically recorded event. It is the largest event that is possible
or better,smax is the event size where the power law distri-
bution breaks down. Especially in regions with a moderate
seismic activity, this size may be much larger than the maxi-
mum size obtained from historical earthquake catalogs. De-
tailed information on geology, especially on the size of the
largest faults in a region, is necessary in order to assess the
maximum event size.

Things are similar in case of forest fires. The exponentb

with respect to the area is rather small (between about 0.3 and
0.5), which means that large events play an important part in
forest-fire statistics. As a result, the differenceβ−b will be
greater than 0.5 if damage is proportional to the burnt area,
and will remain positive even in the case where the ques-
tion is whether roads are blocked by the fire (β=0.5). Thus,
the total risk related to forest fires will be determined by the
largest events. However, assessing the size of the largest
events may be even more difficult than for earthquakes where
much research on this topic has been done. None of the
forest-fire data analyzed by Malamud et al. (1998) reveals
a clear upper cutoff of the power-law; instead, statistics be-
come small at large sizes. So the question is whether the
power-law distribution may hold up to the sizes of the largest
forested areas or whether there is a cutoff at some smaller
size. The lack of information on the maximum event size
may be a severe problem in risk assessment with respect to
forest fires.

As mentioned above, the power-law exponentsb of land-
slides and rockfalls apparently differ. With respect to areas,
a range from 0.6 to 1.0 was given for rockfalls, and a range
from 1.0 to 1.6 for landslides. If we assume the simplest
damage model, i.e. that the damage is proportional to the af-
fected area (β=1), we obtainβ−b ∈ [0.0, 0.4] for rockfalls
andβ−b ∈ [−0.6, 0.0] for landslides. So the difference in
the exponents seems to be critical for risk assessment. In
the simple, linear damage model, the total risk of rockfalls
arises from the largest events, while the large number of
small events makes the major contribution in the example
of landslides.

However, it should be mentioned the these results are
less unique than the results for earthquakes and forest fires.
Firstly, the differenceβ−b approaches zero at the borders of
the ranges ofb given above. Secondly, the result strongly de-
pends on the assumptions on the damage model. If we, e.g.
switch to the model where damage occurs if a road is blocked
(β=0.5), a large part of the rockfall data sets falls into the
range where risk is dominated by the small events. However,
this may be unrealistic because small rockfall deposits are
not very likely to block a road and can easily be removed. So
rockfalls in fact seem to belong to the class of natural hazards
where risk is dominated by large events. In return, assuming
a damage model where the damage increases stronger than
linearly with the event size (β>1), which is not unrealistic,
probably brings landslides into this class, too.



S. Hergarten: Aspects of risk assessment in power-law distributed natural hazards 313

7 Conclusions

Many natural hazards extend over several orders of mag-
nitude in event size, and some of them even exhibit
scale-invariant properties over a considerable range of
scales. Assessing risk with regard to this phenomenon
requires the determination of damage as a function of the
event size, which may be difficult. However, some general
results can be obtained from a simple, power-law damage
model. It turns out that the overall risk is governed by either
the largest or the smallest events. For earthquakes, forest
fires, and rockfalls, the largest events are dominant. The
results for landslides are non-unique; it depends on the
assumptions of the damage model whether the largest or the
smallest events are more important for the total risk.
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