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Abstract. Cellular Automata (CA) represent a formal frame
for dynamical systems, which evolve on the base of local
interactions. Some types of landslide, such as debris flows,
match well this requirement.

The latest hexagonal release (S3−hex) of the determinis-
tic model SCIDDICA, specifically developed for simulating
debris flows, is described. For CA simulation purposes, land-
slides can be viewed as a dynamical system, subdivided into
elementary parts, whose state evolves exclusively as a con-
sequence of local interactions within a spatial and temporal
discretum. Space is the world of the CA, here constituted
by hexagonal cells. The attributes of each cell (“substates”)
describe physical characteristics. For computational reasons,
the natural phenomenon is “decomposed” into a number of
elementary processes, whose proper composition makes up
the “transition function” of the CA. By simultaneously ap-
plying this function to all the cells, the evolution of the phe-
nomenon can be simulated in terms of modifications of the
substates.

SCIDDICA S3−hex exhibits a great flexibility in modelling
debris flows. With respect to the previous releases of the
model, the mechanism of progressive erosion of the soil
cover has been added to the transition function. Considered
substates are: altitude; thickness and energy of landslide de-
bris; depth of erodable soil cover; debris outflows. Consid-
ered elementary processes are: mobilisation triggering and
effect (T1), debris outflows (I1), update of landslide debris
thickness and energy (I2), and energy loss (T2).

Simulations of real debris flows, occurred in Campania
(Southern Italy) in May 1998 (Sarno) and December 1999
(San Martino V.C. and Cervinara), have been performed for
model calibration purposes; some examples of analysis are
briefly described. Possible applications of the method are:
risk mapping, also based on a statistical approach; evaluat-
ing the effects of mitigation actions (e.g. stream deviations,
topographic alterations, channelling, embankments, bridges,
etc.) on flow development.

Correspondence to:G. Iovine (g.iovine@irpi.cnr.it)

1 Introduction

Nature’s laws are basically founded on principles of con-
servation (e.g. conservation of mass, momentum, energy),
which have to be expressed in appropriate mathematical
forms. The possibility of describing phenomena in terms
of differential equations marked the difference between
“strong” (highly predictive) and “weak” (purely descriptive)
science. An analytical solution of such equations returns the
state of the system in the continuum space-time. Neverthe-
less, analytical solutions fail for some problems of “strong”
science, when dealing with complex phenomena (e.g. turbu-
lence problems in fluid-dynamics). These latter cases can
only be treated as weak-science problems, in terms of exper-
imental observations: for instance, the development of tur-
bulence in an aircraft wing can be properly analysed (and
solved) only by examining a scaled mock-up of the wing, in
the wind tunnel.

Attempts of quantitative modelling of complex natural
phenomena through approximated numerical methods (com-
monly based on a discretisation of space and time) mainly
developed thanks to the growth in computer power. These
methods (e.g. for slope stability analyses: Little and Price,
1958; Morgenstern and Price, 1967; Withman and Bailey,
1967; Bromhead, 1986) greatly extended the class of prob-
lems which can be solved in terms of differential equation
systems; however, many problems still remained unmanage-
able. Meanwhile, innovative numerical methods emerged
from alternative computational paradigms such as cellular
automata (CA), neuronal nets, genetic algorithms, etc. (von
Neumann, 1966; Kohonen, 1984; Holland, 1975).

Both differential and alternative approaches rely on the
dual concept of “modelling and simulation”. Nowadays, as-
sessing hazard conditions related to complex natural phe-
nomena increasingly takes advantage of computer-assisted
analyses and simulations (e.g. for landslide hazard assess-
ment, cf. Van Westen, 1994; Carrara et al., 1995; Aleotti and
Chowdury, 1999; Guzzetti et al., 1999).

In particular, Cellular Automata (CA) are a powerful tool
for modelling natural and artificial systems which can be
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specified in terms of local interactions among their con-
stituent parts (Burks, 1970; Wolfram, 1986, 2002). Some
types of landslides, such as debris flows (Johnson and Ro-
dine, 1984), match well this requirement.

For CA modelling purposes (Di Gregorio and Serra,
1999), landslides can be viewed as a dynamical system which
evolves within a limited portion of the space, tessellated into
regular cells. The “state” of each cell describes the physical
characteristics of the corresponding portion of space: at this
purpose, proper cell attributes (substates) must be selected:
e.g. altitude, depth of soil cover, thickness of landslide de-
bris, landslide energy. The state of each cell is therefore ex-
pressed by the Cartesian product of all the considered sub-
states. Elementary processes constitute the transition func-
tion (σ ) of the model: it is made of a set of rules which de-
scribe local processes constituting the overall phenomenon.

At the beginning of the simulation, cell states are ini-
tialised by means of input matrices. Model parameters have
also to be assigned in this phase, by taking into consideration
their physical/empirical meaning. By simultaneously apply-
ing the transition function to all the cells, at discrete steps,
states are changed and the evolution of the phenomenon can
be simulated.

SCIDDICA is a deterministic CA-model, recently devel-
oped for simulating flow-like landslides. In the present pa-
per, the latest hexagonal release (S3−hex) of the model is
described. SCIDDICA S3−hex has preliminarily been cali-
brated, by considering several real cases of debris flows oc-
curred in Campania (Southern Italy) in May 1998 and De-
cember 1999. Examples of simulation of debris flows, se-
lected among those triggered on the southern slope of Pizzo
d’Alvano massif by the May 1998 hydrogeological event, are
briefly commented.

2 Cellular automata modelling

2.1 Microscopic approaches to fluid-dynamics

CA introduced a new approach in treating some complex sys-
tems, whose behaviour may be expressed in terms of local
laws. The complexity of the system emerges from the inter-
actions of its elementary (cellular) units, by applying rela-
tively simple local rules.

A CA can be intuitively considered as a d-dimensional
space (the cellular space), partitioned into cells of uniform
size. Each cell embeds an identical computational device:
the finite automaton (f a). Input for eachf a is given by the
states of thef a located in the neighbouring cells. At this
purpose, neighbourhood conditions have to be determined
through a geometrical pattern, which is invariant in time and
constant over the cells. At timet = 0, f a are in arbitrary
states and describe the initial conditions of the system. The
CA evolves by simultaneously changing all the states, at dis-
crete times, by applying the transition function to the cellular
space (Di Gregorio and Serra, 1999).

Fluid-dynamics is an important field of CA application:
lattice gas automata models (Hardy et al., 1976; Frisch et al.,
1986) were introduced for describing the motion and colli-
sion of “particles” on a grid. It was shown (Rothman and
Zaleski, 1997) that such models can simulate fluid dynami-
cal properties; the continuum limit of these models leads to
the Navier-Stokes equations. Lattice gas models can either
be regarded as microscopic or mesoscopic, as they describe
the motion of fluid “particles” – actually “fluid tokens” which
interact by scattering. An advantage of lattice gas models is
that the simplicity of these particles, and of their interactions,
allow for the simulation of a large number of particles, thus
making it possible to observe the birth of macroscopic flow
patterns.

A different approach characterises the so-called lattice
Boltzmann models (McNamara and Zanetti, 1988; Succi et
al., 1991): the state variables can take continuous values, as
they are supposed to represent the density of fluid particles,
endowed with certain properties, located in each cell (space
and time are discrete, as in lattice gas models).

Both lattice gas- and lattice Boltzmann models have been
applied for the description of fluid turbulence (Succi et al.,
1988). Nevertheless, their range of applicability does not
generally include macroscopic phenomena in three “effec-
tive” dimensions - e.g. evolution of debris flows in a 3-D-
context.

2.2 Modelling macroscopic phenomena

Surface-flow phenomena, like debris flows, take place on a
large space scale. When dealing with such processes, it is
necessary to define a correspondence between the system and
its evolution, on one side, and the model and its simulations,
on the other. Primarily, the dimension of the cell and the time
correspondence to a CA step must be fixed. These latter are
defined as “global parameters”, as their values are equal for
all the cellular space (other global parameters are commonly
necessary for simulation purposes). In order to fix the values
of such essential global parameters, further points must be
considered, especially when the phenomenon is complex and
involves time and/or space heterogeneity, in the sense better
specified later on.

The state of the cell must account for all the characteris-
tics, which are assumed to be relevant to the evolution of the
system: these refer to the space portion of the cell. Each
characteristic corresponds to a substate; permitted values for
a substate must form a finite set. The set of the possible states
of a cell is given by the Cartesian product of the sets of the
substates. In case one characteristic (e.g. a physical quan-
tity) is usually expressed in terms of a continuous variable
referred to a space point, the cell size must be chosen small
enough so that one single value can properly be attributed.
The continuity of the variable is not a problem: in practical
cases, the utilised variables have a finite number of signifi-
cant digits, and a finite range of permitted values; the set of
utilised values can be extremely large, but is always finite.



D. D’Ambrosio et al.: Simulating debris flows through a hexagonal cellular automata model 547

The size of the cell must also be large enough, in order
allow for a macroscopic approach; nevertheless, it has to be
much smaller than the length scale of appreciable variations
in the substates (so that they can be considered as constant
within each cell). These are reminiscences of the approxi-
mation, which is typical of classical rheologic models, where
limit operations are performed, letting the size of the elemen-
tary cell shrink to 0, and a continuum description (i.e. partial
differential equations) possible. Our approach differs in its
use of discrete space (cells), and discrete time increments
(steps): accordingly, continuum limit operations are not re-
quired.

As well as the state of the cell can be decomposed in sub-
states, the transition function may be split into local interac-
tions: the “elementary” processes. Different elementary pro-
cesses may involve different neighbourhoods; the CA neigh-
bourhood is given by the union of all the neighbourhoods
associated to each processes. If the neighbourhood of an ele-
mentary process is limited to a single cell, such process is an
“internal transformation”.

The choice of the cell dimension, of the CA clock and of
the neighbourhood is made by considering the peculiarities
of the elementary processes. A process affects a larger sur-
rounding of cells in a CA step, as faster is its propagation
within the cellular space: in CA, velocity depends on the CA
clock and the cell dimension.

2.3 Surface-flow modelling through CA

Macroscopic phenomena involving surface-flows can be
modelled through two-dimensional CA, if the third dimen-
sion (the height) can be managed as a property of the cell
(i.e. a substate). This condition permits to adopt a simple,
but effective, strategy based on the hydrostatic equilibrium
principle in order to compute the cell outflows (Di Gregorio
and Serra, 1999).

Let us focus for simplicity on a single CA cell (individu-
ated as the “central” cell) of the two-dimensional space: it
is considered limited to the universe of its neighbourhood,
which consists ofm cells (the central cell and its adjacent
cells). Indexes are utilised to individuate the central cell (0)
and the adjacent ones (1, 2, . . . , m − 1), respectively.

The outflows from the central cell to the adjacent cells de-
pend on the hydrostatic pressure gradients across the cells,
due to differences in “heights” (for instance, for a landslide:
altitude plus landslide debris thickness).

At step t , two quantities are identified in the central cell:
the fixed part (q(0)) and the mobile part (p) of its height. The
mobile part represents a quantity that can be distributed to
the adjacent cells (in our example, the landslide debris thick-
ness); the fixed part cannot change during the simulation (e.g.
the altitude related to the unerodable bedrock). Accordingly,
the height of the central cell is given by the sum of two terms
p + q(0); q(i), 1 ≤ i ≤ m − 1 is the height of thei-th ad-
jacent cell of the neighbourhood – note that the distinction
between mobile and fixed part is not necessary in the other

cells of the neighbourhood, as only the mobile part of the
central cell may be distributed.

At stept + 1, the outflow from the central cell to thei-th
neighbouring cell is denoted byf (i), 0 ≤ i < m, where
f (0) is the part ofp which is not distributed. Letq ′(i) =

q(i) + f (i), 0 ≤ i < m − 1 be the sum of the content (at
stept) of a neighbouring cell, plus the flow coming from the
central cell, and letq ′

min be the minimum value forq ′(i). The
determination of the outflows, from the central cell to the
adjacent cells, is therefore based on the local minimisation
of the differences in “height”, as described by the following
expression:

m−1∑
i=0

(q ′(i) − q ′

min) (1)

Theorems concerning the “minimisation” algorithm (i.e. the
algorithm for the minimisation of differences) and the rel-
ative discussion are not treated here; they can be found in
Di Gregorio and Serra (1999).

As the minimum “imbalance” conditions can be achieved
also in more than one single CA step, a relaxation rate -
which depends on both the cell size and the duration of
the CA step – must be considered. The relaxation ratepr ,
specified by a multiplicative factor, can assume values be-
tween 0 and 1(0 < pr ≤ 1).

The mentioned method constitutes a valid CA approxima-
tion only in cases of simple evolution of the phenomenon to
be simulated: integrations would become necessary in more
complex cases, e.g. when conditions of equilibrium to be ac-
counted for in the minimisation algorithm can not ignore in-
ertial effects (related to high-energy conditions). Integrations
may also consist of new local interactions and/or internal
transformations.

The above described minimisation algorithm, opportunely
adapted, has also been applied for modelling other types of
surface-flows, such as lava flows and soil erosion by water
(Barca et al, 1994; D’Ambrosio et al., 2001).

2.3.1 Previous releases of SCIDDICA

SCIDDICA was originally developed for simulating sim-
ple cases of flow-like landslides. In its successive releases,
higher complexity was essentially managed, by progressively
adding new local interactions and/or internal transformations
to the previous ones: therefore, it could be considered as an
“incremental” CA-model.

Subsequent releases of SCIDDICA were successfully ap-
plied to the 1984 Mt. Ontake, Japan, debris avalanche
(Di Gregorio et al., 1999) and to the 1992 Tessina, Italy earth
flow (Avolio et al., 2000). Recent applications concerned
debris flows occurred in May 1998 at Pizzo d’Alvano, Italy
(D’Ambrosio et al., 2002, 2003).

The Tessina earth flow was characterised by a rather slow
velocity, up to few meters per day (Avolio et al., 2000): the
resulting motion can be considered as purely gravitational,
and modelled through the basic (“T”) release of the model,
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Figure 1. 
Fig. 1. Portion of a 2-D-hexagonal cellular space. Integer coordi-
nates (x, y) individuate each cell of the cellular space. An exam-
ple of neighbourhood – as utilised in SCIDDICA S3−hex – is also
shown: the central cell (0,0) and its six adjacent cells are marked in
dark and light grey, respectively.
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Figure 2. Fig. 2. The neighbourhood adopted in SCIDDICA S3−hex. Key:

the central cell is individuated by the index “0”; indexes 1–6 identify
the cells of the neighbourhood.

in which the minimisation algorithm is implemented in its
simplest form. Only two elementary processes constitute the
transition function:〈a〉 “debris outflows” (local interaction),
and 〈b〉 “update of the landslide debris thickness” (internal
transformation).

The release “O”, applied to the Mt. Ontake landslide, is a
crucial extension of the basic T-model (Di Gregorio et al.,
1999): the considered case was, in fact, extremely rapid
(20–26 m/s) and thus characterised by relevant run-up ef-
fects (Sassa, 1988). As a consequence, the minimisation
algorithm had to be modified, in order to account also for
the ability of the flow of moving upslope and overriding to-
pographic obstacles. Owing to the peculiar feature of the
model, an empirical strategy was adopted: in the transition
function, the process〈c〉 “computation of the run-up” (local
interaction) was considered (yet not satisfying the explicit

treatment of inertial effects). At this purpose, it should be
stressed that, in a context of data approximation (e.g. of the
morphology), the treatment of vectorial proprieties can re-
sult very cumbersome, for the need of accounting also for
frictional effects and related energy dissipation. Moreover,
in such a context, modelling inertial effects should also ac-
count for changes of momentum induced either by obstacles
or counterslope zones, which lead to modification of the flow
direction mostly toward low ground areas. In particular, in
case of very irregular morphology, obstacles produce high
energy dissipation and turbulence, and flow direction statisti-
cally results downward. As a consequence, the adopted strat-
egy of minimisation, opportunely enriched with the process
〈c〉, represent an adequate approximation even in case of very
rapid flows, when the morphologic context is quite irregular
and higher values of energy dissipation are hypothesised. On
the other hand, in case of very regular morphology (e.g. flat
areas or areas with uniform gentle slopes), energy dissipation
is lower and momentum direction is less subject to abrupt
changes: the proposed minimisation algorithm is expected to
be less precise, mainly when handling cases of fast-moving
flows.

The successive family “Sx” of SCIDDICA was developed
for simulating the 1998 Sarno debris flows, which were char-
acterised by strong soil erosion along the landslide path.

SCIDDICA S1 (D’Ambrosio et al., 2003) introduced the
elementary process of soil mobilisation, which was origi-
nally specified in two distinct phases: (1) direct activation of
mobilisation, acted by the debris flow on the soil cover, and
(2) propagation of the mobilisation to the neighbouring cells
“by contact”. The transition function is characterised by two
more processes:〈d〉 “mobilisation triggering and propaga-
tion” (local interaction, in two phases), and〈e〉 “mobilisation
effect” (internal transformation).

In SCIDDICA S2 (D’Ambrosio et al., 2002) the compu-
tation of debris outflows〈a〉 was improved, by introducing
a more accurate calculation of the equilibrium conditions in
the neighbourhood. As a consequence, the updated elemen-
tary process〈a′

〉 “debris outflows” was derived.

Moreover, the elementary processes “update of the land-
slide debris thickness”〈b〉 and “computation of the run-up”
〈c〉 were re-organised as follows:〈b′

〉 “update of run-up and
landslide debris thickness” (local interaction), and〈c′

〉 “run-
up loss” (internal transformation).

SCIDDICA S3, here described, has finally been derived by
further on improving the process of soil mobilisation: a pre-
liminary version, characterised by a square tessellation, has
recently been presented by Iovine et al. (2002). In particular,
the two phases which constituted the process “mobilisation
triggering and propagation”〈d〉 have been unified, and in-
cluded into〈d ′

〉 “mobilisation triggering and effect” (internal
transformation). Furthermore, the mechanism of “progres-
sive soil erosion” has been introduced into the same process
〈d ′

〉. For computational reasons, the elementary processes
“update of run-up and landslide debris thickness”〈b′

〉 and
“run-up loss”〈c′

〉 became:〈b′′
〉 “update of landslide debris
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Table 1. List of the substates of SCIDDICA S3−hex

Substate Meaning

Qa Cell altitude (elevation of bedrock + depth of soil cover)
Qth Thickness of landslide debris
Qe Energy of landslide debris
Qd Depth of erodable soil cover
Qo Debris outflow (from the central cell toward any cell of the neighbourhood)

thickness and energy” (local interaction), and〈c′′
〉 “energy

loss” (internal transformation).
In SCIDDICA O and Sx releases, two more internal trans-

formations are included:〈f 〉 “water loss and related modifi-
cation of landslide debris thickness”, and〈g〉 “altitude and
landslide debris thickness modification by solidification”.
These have never been tested in the performed simulations
of real cases, and have been eliminated, thanks to the par-
ticularly “wet” conditions which characterised the examined
landslide activations.

The tessellation of the cellular space for SCIDDICA is
square or hexagonal: commonly, the square tessellation al-
lows for a quick test of the model, and is therefore utilised
either in the preliminary phases of development of a release
or for first calibration and analyses. The hexagonal tessel-
lation is utilised in a successive phase, when a higher preci-
sion is needed. Note that the hexagonal tessellation permits
a greater number of possible flow directions, and thus better
approximations.

In literature, other examples of CA (or CA-like) models
for flow-like landslides can be found. Among the most re-
cent, cf. e.g. studies by Barca et al. (1986, 1987), Sassa
(1988), Segre and Deangeli (1995), Malamud and Turcotte
(1999, 2000), Clerici and Perego (2000), and Klenov (2000).

3 SCIDDICA S3−hex

The release S3−hex of SCIDDICA can be defined as follows:

SCIDDICAS3−hex = 〈R, X, Q, P, σ 〉 (2)

where

– R = {(x, y) ∈ Z2
| − lx ≤ x ≤ lx, −ly ≤ y ≤ ly},

identifies the hexagonal cellular space (Fig. 1);Z is the
set of the integer numbers.

– X = 〈(0, 0), (1, 0), (0, 1), (0,−1), (−1, 0), (−1, 1),

(1, −1)〉 is the geometrical pattern of the neighbour-
hood of the cell, given by the “central” cell and its six
adjacent cells (cf. Fig. 1). Indexes are attributed to the
neighbouring cells, in order to specify the rules of the
transition function: “0” identifies the central cell, “1−6”
identify the adjacent cells (Fig. 2);

– Q = Qa ×Qth×Qe ×Qd ×Q6
o is the finite set of states

of the fa, given by the Cartesian product of the sets of

the considered substates. The value of the substatex in
the cell is expressed byqx ∈ Qx . In Table 1, substates
of S3−hex are listed and defined.

– P = {pa, pt , padh, pf , pr , prl, pmt , per} is the set of
the global (physical and empirical) parameters, whose
meaning is specified in Table 2.

– σ : Q7
→ Q is the deterministic state transition func-

tion for the cells inR. It is constituted by the following
elementary processes, listed in the order of application:

(1) mobilisation triggering and effect〈d ′
〉, internal

transformationT1

(2) debris outflows〈a′
〉, local interactionI1

(3) update of landslide debris thickness and energy
〈b′′

〉, local interactionI2

(4) energy loss〈c′′
〉, internal transformationT2

At the beginning of each simulation (stept = 0), the states
of all the cells inR must be specified, by defining the initial
CA configuration. Initial values are given to the considered
substates as follows:

– qa is set equal to the altitude (bedrock elevation plus
depth of soil cover); in the landslide source, the thick-
ness of the landslide debris is subtracted from the mor-
phology;

– qth is zero everywhere – except for the source area,
where the landslide debris thickness is specified;

– qe is zero everywhere – except for the source area,
where it is equal to the potential energy of the landslide
(with reference to the cell altitude);

– qd is the depth of the soil cover, which can be eroded by
the landslide along the path;

– qo are zero everywhere.

The transition function (σ ) is then applied, step by step, to
all the cells inR, and the CA configuration changes: in this
way, the evolution of the simulation is obtained.

The geometrical regularity of the cellular space allows for
some computational simplification: e.g. the thickness can
be employed to express the volume of landslide debris in a
given cell. Accordingly, the elements ofQa are expressed as
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Table 2. List of the global parameters of SCIDDICA S3−hex

Parameters Meaning

pa Apothem of the cell
pt Time correspondence of a CA step

padh Adhesion (i.e. unmovable amount of landslide debris)
pf Height threshold (related to friction angle) for debris outflows
pr Relaxation rate for debris outflows
prl Run-up loss (at each step), due to frictional effects
pmt Activation threshold for mobilisation of the soil cover
per Parameter of progressive erosion of the soil cover
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Figure 3. 

Fig. 3. Exemplification of “potential energy” in the CA context:
a debris column (with base =A, height= h, kinetic head= hk ,
run-up= r, and mass= m) is shown on the planez = 0.

length; the same is for the elements ofQth andQd , which
represent amount of material (thickness and depth);Qo is ex-
pressed in terms of length for reasons of computational ho-
mogeneity; the elements ofQe are finally expressed in the
energy dimensions.

The following conventions are adopted in the following
text: (1) indexes, specifying the cells of the neighbouring,
are added between brackets toqx ∈ Qx , when the substates
of all the neighbourhood are considered: e.g. the value of
substatex of the cell with indexa is given byqx(a); (2) the
six valuesqo of the substates outflows need further specifi-
cations:qo(a, b) is the value of the outflow from the cella
toward the cellb of the neighbourhood (i.e. the value of the
inflow into cellb from the cella).

3.1 General considerations

The peculiarity of the CA approach doesn’t permit to make
velocity explicit in the local context of the cell: an amount
moves from the central cell to an adjacent cell in a CA step
(which is a constant time), implying a constant “velocity”.
Nevertheless, velocities can be deduced by analysing the
global behaviour of the system (Succi et al., 1988).

The following hydraulics considerations (Marchi and Ru-
batta, 1981) can help for deducing velocity and energy in a

CA context: the “kinetic head” is defined ashk = v2/2g,
wherev is the speed of the flow andg is the constant of
gravity acceleration. Accordingly, the run-up (r) can be de-
fined as the height that be reached by the flow (cf. Fig. 3):
r = h + v2/2g = h + hk, whereh is the thickness of the
flow.

In the following description, energetic considerations are
referred to potential energy and its variations, in the local
context of the CA.

At this purpose, let’s consider a column of baseA, massm
and heighth on the planez = 0 (Fig. 3). Its potential energy
is given by:

U = ρgA

h∫
0

z dz = ρgA

[
z2

2

]h

0

=
ρgA

2
h2 (3)

whereρ is the density of the material that constitutes the col-
umn.

The kinetic-head effect can be inserted in Eq. (3), by “vir-
tually” incrementing the height of the column fromh to r.
As the mass must be conserved, a new densityρ′ is derived:

ρ′
=

h

r
ρ < ρ (4)

and the following “potential energy”-like formula expresses
the energy increase:

U ′
=

ρ′gA

2
r2

=

(
h

r
ρ

)
gA

2
r2

=
ρgA

2
hr > U (5)

U ′ represents the energyqe (referred to the cell altitude),h
representsqth in the frame of SCIDDICA S3−hex, andqe is
defined as:

qe =
ρgA

2
qth · r (6)

The productρgA/2 can be considered as constant: in fact,
A is the cell area, andρ can be considered constant in the
applications of the model. Therefore,r is proportional to
qe/qth by a constantk = 2/ρgA:

r =
2qe

ρgAqth

=
kqe

qth

(7)
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Figure 4. 

 

Fig. 4. Example of transition: on the left, the situation at stept ; on
the right, at stept + 1. A case of debris outflow from a cell towards
another one (this latter characterised by a higher height) is shown.

In Fig. 4, an example of outflow towards a cell charac-
terised by higher height (given by altitude plus landslide de-
bris thickness) is shown: the described distribution of land-
slide debris is permitted by the assumed energetic context
(for a more detailed explanation of the distribution algorithm
adopted in S3−hex, cf. the following section). In Fig. 5, the
kinetic head (hk) and the run-up (r), and the cell substates al-
titude (Qa), soil cover depth (Qd ), and landslide debris thick-
ness (Qth) are shown; moreover, an ideal vertical section of
a debris flow along a slope is also given.

3.2 The transition function of SCIDDICA S3−hex

In the following sections, a description of the four elementary
processes which constitute the transition function of SCID-
DICA S3−hex is presented.

3.2.1 I1: debris outflows

The local interaction:

I1 : Q7
a × Q7

th × Qe × padh × pr × pf → Q6
o (8)

determines the debris outflows from the central cell towards
its adjacent cells.

It is based on an opportune minimisation algorithm,
derived from the “minimization of the differences” pro-
posed by Di Gregorio and Serra (1999). In order to ac-
count for the run-up effects, the height of the debris col-
umn in the central cell is “virtually” incremented from
h = qth(0) to r = kqe(0)/qth(0) (cf. previous section).
Obtained outflows have to be normalised by a factor
vnf = h/r = kq2

th(0)/qe(0).
In the context of this minimisation algorithm (cf. §2.3),

q(0) = qa(0) + padh; p = kqe(0)/qth(0) − padh;

q(i) = qa(i) + qth(i), 1 ≤ i ≤ 6); f (i), 0 ≤ i ≤ 6 ,

are the not normalised outflows. The setA comprises the
cells that may receive flows; at the beginning of the algo-
rithm, A includes all the neighbouring cells.

The minimisation algorithm is composed of the following
steps:

1. The anglesβi , specified by the differences in height
between the central cell(q(0) + p = qa(0) +

kqe(0)/qth(0) = qa(0) + r) and the adjacent celli
(q(i) = qa(i) + qth(i), 1 ≤ i ≤ 6) are computed
(Fig. 6); the celli with βi < pf is eliminated fromA;

2. The following average is computed, considering the set
A of not-eliminated cells (where #A is the cardinality of
the setA):

average =

(
p +

∑
i∈A

q(i)

)
/#A (9)

3. The celli with q(i) ≥ average is eliminated fromA;
if any cell is eliminated, go back to step 2;

4. The flowsf (i)(0 ≤ i ≤ 6) towards the adjacent cells
are computed as follows:

f (i) = average − q(i) (if i ∈ A); (10)

f (i) = 0 (if i /∈ A). (11)

The six valuesqo(0, i) (1 ≤ i ≤ 6) of the substates “out-
flows” from the central cell toward the adjacent cells are ob-
tained, considering the normalisation factorvnf :

qo(0, i) = vnf f (i) (1 ≤ i ≤ 6) (12)

In Fig. 7, an example of the adopted minimization algorithm
is shown.

3.2.2 I2: update of landslide debris thickness and energy

The local interaction:

I2 : (Qth × Qe × Q6
o)

7
→ Qth × Qe (13)

updates the valuesqth andqe of the substates landslide debris
thickness and energy.

The new value of landslide debris thickness (new qth) is
obtained by considering debris thickness variations, due to
outflows and inflows from/into the central cell:

new qth = qth(0) +

6∑
i=1

(qo(i, 0) − qo(0, i)) (14)

The new value of the energy (new qe) is obtained by
considering energy variations, due to outflows and inflows
from/into the central cell. Note that, in the computation, en-
ergy must be referred to the altitude of a same cell, i.e. the
central cell:

new qe =

(
qth(0) −

6∑
i=1

qo(0, i)

)
·

(
qe(0)

qth(0)

)

+

6∑
i=1

(
qo(i, 0) ·

(
qe(i)

qth(i)

))
(15)
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Figure 5.  

Fig. 5. Relationships among kinetic head (hk) and “run-up” (r), and cell substates “altitude” (Qa), “soil cover depth” (Qd ), and “landslide
debris thickness” (Qth), are shown. Moreover, an ideal vertical section of a debris flow along a slope is also given.
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Figure 6. 

 

Fig. 6. Representation of the friction angle:βi , representing the
angle between the central cell (cell on the left) and itsi-th neigh-
bouring cell (cell on the right), is larger than the friction angle,pf ,
then a flow can occur from the central cell.

3.2.3 T1: mobilisation triggering and effect

The internal transformation:

T1 : Qa × Qe × Qth × Qd × per × pmt

→ Qa × Qe × Qth × Qd (16)

determines the soil erosion and its effects.
The erosion condition is:qe(0) > pmt ; the eroded quantity

of the soil cover is1d = (qe(0) − pmt ) per if 1d < qd(0)

else1d = qd(0).
The following new values update, respectively, the sub-

states altitude, depth of soil cover, landslide debris thickness,
and run-up:

new qa = qa(0) − 1d (17)

new qd = qd(0) − 1d (18)

new qth = qth(0) + 1d (19)

new r = r + 1d (20)

The energy is computed with reference to landslide debris
thickness and run-up (both changed), and updated according
to the following formula:

new qe = k (qth(0) + 1d) (r + 1d)

= kqth(0)r + kr1d + kqth(0)1d + k12
d

= qe(0) + qe(0)1d/qth(0) + k
(
qth(0)1d + 12

d

)
(21)

3.2.4 T2: energy loss

The internal transformation:

T2 : Qe × Qth × prl → Qe (22)

determines the energy loss by friction. It is modelled, by
reducing the run-upr to a value – not lower thanqth(0) – by
the parameterprl .

The loss of run-up is1r = prl if (k·qe(0)/qth(0)−prl) >

qth(0) else 1r = k · qe(0)/qth(0) − qth(0). It implies an
energy updating:

new qe = qe(0) − k · 1r · qth(0) (23)

4 Examples of application

4.1 The May 1998 event in the Pizzo d’Alvano study area

On 5–6 May 1998, hundreds of soil slip-debris flows were
triggered by heavy rains in Campania, mostly on the slopes
of Pizzo d’Alvano massif (Del Prete et al., 1998). Debris
slides originated in the soil mantle, and transformed into
rapid/extremely rapid debris flows, deeply eroding the soil
cover along their path. Landslides impacted on the urbanised
areas at the base of the massif, causing serious damage and
numerous victims.

Mesozoic carbonate rocks (Ippolito et al., 1975; Bonardi
et al., 1988) mainly constitute the skeleton of the Campanian
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Figure 7.  Fig. 7. Example of the minimisation algorithm adopted in SCIDDICA S3−hex for the determination of the outflows from the central cell

towards its neighbouring cells.

Apennines (Southern Italy). Weathered and reworked py-
roclastics of the Somma-Vesuvius volcanic complex (Arnò
et al., 1987) mantle Pizzo d’Alvano massif: their thickness
ranges from centimetres to meters, depending on slope, mor-
phology and erosion processes. Soil characteristics are het-
erogeneous, varying with parent eruption and successive ge-
omorphic history.

A detailed survey of the 1998 event was carried out, both
in the field and through interpretation of air-photos, and a
1:5000 scale map of the disaster was realised (Iovine et al.,
unpublished). By this way, required information for calibra-
tion of SCIDDICA in the study area were collected.

Input matrices, employed to defining the initial values of
the model substates for the entire cellular space, consist of:
(1) elevation data, derived from 1:5000 scale topographic
maps; (2) depth of erodable soil cover, as extrapolated af-
ter direct field surveying either along the path of the 1998
landslides or the main drainages; (3) location and extent of
the landslide sources.

In Figs. 8a, 9a and 10a, three examples of the main land-
slides triggered on the southern slope of Pizzo d’Alvano in
May 1998 are shown. The Chiappe di Sarno debris flow
(Fig. 8a) is peculiar insofar as, after an initial track along
a plane-convex segment of slope, the debris flow subdivided
in two secondary flows, each captured by a distinct drainage;
the same flows re-joined in the distal portion, at the base of
the massif, causing serious damage to the urban setting in
the Curti area. The Curti case of study (Fig. 9a) started, not
far from the Chiappe di Sarno source, as a minor soil slip
right above a sharp break in slope, related to a bedrock out-
crop. The phenomenon rapidly propagated donwslope, enter-
ing the main channel and notably increasing its original vol-
ume by eroding the available regolith along the path; more-
over, four secondary soil slips were triggered by the flowing
mass on both flanks of the channel, in the middle portion of

the path. At the base of the massif, the phenomenon subdi-
vided into two distinct branches; these latter rejoined in prox-
imity of the Curti area, impacting against the buildings and
taking two lives. The Pestello Storto landslide (Fig. 10a) was
also triggered on the southern slope of Pizzo d’Alvano, at the
western border of the area affected by the event. The evolu-
tion of the uppermost segment of the Pestello Storto case is
quite simple: as in the Curti case of study, it is an example
of channelised flow, originated right above a natural break in
slope; one secondary soil slip was also triggered by the main
flow on the right flank of the channel, in the middle reach of
the path. On the other hand, in the distal portion, the flow
impacted against an artificial wall (located on the downslope
side of a street), partly stopping in the area immediately be-
low the wall, and partly propagating for about 350 meters
along a minor channel. After crossing another street (and im-
pacting against another small wall), the phenomenon came to
rest within an archaeological site of Roman age, filling up the
depressed area in the centre of a small amphitheatre.

The above cited cases of debris flows have been selected
for a preliminary calibration of the model, as described in the
next session.

4.2 Model calibration

Morphometric data of the sources of the considered land-
slides are listed in Table 3: it can be seen that, in the case
of Pestello Storto, the extension (in terms of both area and
volume) of the original soil slip is by far greater than the re-
maining two cases. On the other hand, the same landslide
developed downslope by affecting a total area (R), which
is notably smaller than in the other mentioned cases (about
8 times smaller, if compared to the Curti case of study - cf.
Table 4). This could be explained by considering the more
confined nature of the Pestello Storto landslide, and also the



554 D. D’Ambrosio et al.: Simulating debris flows through a hexagonal cellular automata model

 

 

 
 
 

D’Ambrosio et al., EGS2002 – NH7.01 
 

NHESS 2070 
 

 

 
 

 
Figure 8a 
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Figure 8b 

 

(b)

Fig. 8. (a) The Chiappe di Sarno landslide. Key: (1) area affected by the landslide; (2) limit of the zones with constant depth of soil
cover (assumed values, in italics); (3) border of the area considered in the GIS analysis.(b) The Chiappe di Sarno landslide: quantitative
comparison between real and simulated cases. Key: area affected by (1) real landslide, (2) simulated landslide, (3) both cases; (4) border of
the area considered in the GIS analysis.

Table 3. Source morphometric characteristics of the considered landslides in the area of Pizzo d’Alvano massif

Case Length Maximum width Depth of soil cover Area
m m m m2

Chiappe di Sarno 4.7 8.7 5.0 29.8
Curti 5.9 11.6 2.0 68.3
Pestello Storto 10.1 14.3 6.0 102.6

influence on the flow propagation of both the artificial wall
and the amphitheatre, at the base of the massif.

For each case, by considering the best results of simula-
tions (i.e. those characterised by minimum differences be-
tween simulated and real cases), optimal values were de-
termined for the global parameters. A preliminary calibra-

tion of the model was performed by first assigning values
to the global parameters, both on the basis of their empiri-
cal/physical meaning and of previous simulations in similar
areas of study (e.g. other case studies in the Pizzo d’Alvano
area, and those in the San Martino Valle Caudina-Cervinara
zone, Campania). Results were quantitatively analysed, in a
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Figure 9a 
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Figure 9b 
 (b)

Fig. 9. (a) The Curti landslide. Key: (1–3) symbols as in Fig. 8a; (4) secondary source locations.(b) The Curti landslide: quantitative
comparison between real and simulated cases. Key: (1–4) symbols as in Fig. 8b; (5) secondary source locations.

Table 4. Model calibration results for the considered landslides

Case R S R ∩ S R ∪ S e1 e2
m2 m2 m2 m2

Chiappe di Sarno 319 390 425 660 300 626 444 423 0.82 0.97
Curti 104 990 95 334 75 498 124 826 0.78 0.85
Pestello Storto 40 792 64 116 30 793 74 114 0.64 0.87

GIS (ARC/INFO) environment, through a back-analysis ap-
proach, by comparing the map of each real case with the sim-
ulated ones. Comparison was performed by verifying the ar-
eas affected by both (the real and the simulated) cases, and
those affected by only one of them. The erosion/deposition
character of the flows was also taken into account, in order
to better evaluate the performed simulations. On the base of
a trial-and-error method, values of parameters were succes-

sively modified, aiming at obtaining better results.

Simulations were systematically compared to real cases,
and errors quantitatively evaluated by considering the follow-
ing indicators:

primary indicator(e1) =

√
R ∩ S

R ∪ S
(24)



556 D. D’Ambrosio et al.: Simulating debris flows through a hexagonal cellular automata model

 

 

 
 
 

D’Ambrosio et al., EGS2002 – NH7.01 
 

NHESS 2070 
 
 
 
 

 
 

Figure 10a 
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Figure 10b 
 
 
 

(b)

Fig. 10. (a)The Pestello Storto landslide. Key: (1–4) symbols as in Fig. 9a; (5) artificial wall along the border of the street.(b) The Pestello
Storto landslide: quantitative comparison between real and simulated cases. Key: (1–5) symbols as in Fig. 9b; (6) artificial wall along the
border of the street.

secondary indicator(e2) =

√
R ∩ S

R
(25)

whereR: the area affected by the real landslide;S: the area
involved by the simulation;∩: intersection;∪: union. Val-
ues of both indicators can range between 0 (i.e. complete un-
success of simulation) and 1 (i.e. perfect simulation). Sim-

ulations were judged “acceptable” only when the indicators
showed values not exceeding pre-fixed thresholds of accept-
ability, fixed on the base of empirical considerations (as com-
monly done in statistical analysis). In the cases here consid-
ered, 0.7 and 0.85 could be selected as thresholds fore1 and
e2, respectively – given the quality of the morphologic data
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available and the preliminary phase of analysis performed.
Optimal values of global parameters were then iteratively
determined, for the three considered cases of study, as fol-
lows: pa = 1.25 m;padh = 0.001 m;pf = 0.1 m; pr = 1;
prl = 0.6 m;pmt = 3.5 m2; per = 0.015.

Note that the model can be reliably applied only outside
urbanised sectors, i.e. where soil erosion processes can prop-
erly be managed by the model; moreover, in such areas a
greater morphological detail (compared to available topo-
graphic information) and engineering estimates on behaviour
of human-made structures (in case of direct impact) would
also be needed. As a consequence,R andS were computed
outside the urbanised zone, within the areas delimited by
dashed lines in Figs. 8, 9, and 10. Furthermore, the man-
made wall, which greatly interfered with the evolution of the
Pestello Storto landslide, had to be handled as an unerodable
topographic alteration, by means of a specific additional in-
put matrice.

Optimal parameters allow for the best results of simulation
of the considered landslides. The performance of the model
would certainly benefit from a systematic and automated cal-
ibration – e.g. in a parallel environment, by means of genetic
algorithms (Di Gregorio et al., 1996): in this way, a proper
definition of best values for global parameters could be at-
tained, and the model could be confidently applied, either in
the same study area or in an analogous geological context,
for reliable predictive analyses. In this study, calibration has
provisionally been performed on a standard PC platform, by
manually assigning initial values to the parameters, and by
modifying them on the basis of the analysis of the results.
Therefore, a set of only “optimal” values (i.e. improvable)
has been obtained for global parameters.

In Figs. 8b, 9b, and 10b, the comparisons among the real
landslides and the best simulations are shown: from a quali-
tative point of view, the essential characters of the real cases
are well captured. Furthermore, values of obtained indicators
of error quite satisfy the prefixed thresholds for all the con-
sidered landslides (cf. Table 4). In particular: (a) the Chi-
appe di Sarno case of study shows the best results in terms
of both primary and secondary indicators; (b) errors which
characterise the Curti simulation are also acceptable, as pre-
viously assumed; (c) as regards the Pestello Storto landslide,
its secondary indicator is pretty good, while the primary in-
dicator barely satisfies prefixed quality requirements. This
latter result could reasonably be ascribed to the poor quality
of topographic data, especially in the flat area at the base of
the massif (e.g. in such zone, the minor channel along which
the distal portion of the phenomenon propagated can not be
properly inferred by available topographic data).

5 Conclusions

The a-centric Weltanschauung (world-view) which charac-
terises CA models involves a different viewpoint, with re-
spect to partial differential equations, in treating complex
macroscopic phenomena. Therefore, physics laws of conser-

vation have to be rewritten (at a given approximation level) in
a very different context of space-time discretisation. Values
of model parameters cannot always be determined directly,
e.g. by physical measures: they are commonly selected, in
an iterative way, by comparing the results of simulations with
the global behaviour of the real phenomenon. These values
are then to be considered only as the “optimal combination”
of such parameters, which allows the model to better simu-
late the considered phenomenon.

The range of applicability of the CA model strongly de-
pends on its framework, in terms of elementary processes,
substates and global parameters, which refer to the physi-
cal characteristics of the real phenomenon to be simulated.
First, such a range can only be hypothesised, on the base of
the characteristics of the local empirical laws considered in
the transition function. The definitive judge on the validity
of the model depends on the comparison between a large set
of simulations (carried out by adopting several different sets
of parameters’ values) and the real phenomenon.

In its present release, the model is able to satisfactorily
predict the evolution of flow-type slope movements, espe-
cially for cases not characterised by extremely rapid veloci-
ties. Among all the experiments carried out, the best applica-
tions regarded cases of slow-moving or moderately fast land-
slides; moreover, in case of high-speed phenomena, best re-
sults were obtained when developing on a rather rough mor-
phology (Iovine et al., 2003b). In quantitative terms, the ac-
curacy of the results can synthetically be expressed through
indicators of error, which can be evaluated by comparing
simulations with real cases, in a GIS environment.

By employing an incremental approach, an original simple
model can gradually be enriched in order to simulate more
complex phenomena. The evolution of SCIDDICA repre-
sents an example of such incremental approach, which per-
mitted to progressively manage larger classes of flow-like
landslides. Nevertheless, in the last release (here presented)
some aspects still need to be treated. For example, (1) Wa-
ter loss and debris solidification have not been implemented.
Nevertheless, these processes could be important, especially
in the final phase of a landslide. On the other hand, exper-
imental data (frequently unavailable) can not be easily de-
ducted from the global behaviour of the phenomenon. (2)
Heavier inertial effects should be modelled, in order to bet-
ter handling the influence of motion direction of the flow-
ing mass. At this purpose, substates related to “momen-
tum” components could be introduced in the model, aiming
at considering the “privileged” direction of the flow. Such
characteristic of the debris flow could be inferred, for in-
stance, by considering both the kinetic head and the direction
of the inflows into a given cell. A possible solution could
involve two phases of computation for the debris distribu-
tion in the neighbourhood: in the former phase, the algo-
rithm could determine the flows along the privileged direc-
tion (i.e. by assuming low energy dissipation conditions); in
the latter, the present algorithm of minimisation could be ap-
plied (i.e. by considering high dissipation). Such a change in
the model would represent an important improvement, espe-
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cially in cases of regular morphology and fast-moving flows.
(3) Some of the global parameters could be transformed into
substates – for instance, if a characteristic of the phenomenon
(e.g. energy loss by friction) is not really “homogeneous” in
the cellular space. (4) A further point which needs to be
deeply investigated regards input data “reliability”: results
of simulations can, in fact, dramatically change, depending
on data quality and precision. At present, efforts are mainly
focused on the improvement of the management of inertial
effects (the release S4 is undergoing preliminary testing).

Results obtained by applying SCIDDICA S3−hex are sig-
nificant: despite some minor diversity in the evolutionary
style of the considered study cases, their development has
satisfactorily been captured by the model. In fact, the areas
affected by the debris flows and the thickness of the deposits
have both been satisfactorily determined; indicators of error
(e1 ande2) show acceptable values – i.e. they do not appre-
ciably exceed prefixed thresholds.

By means of a thorough phase of model calibration and
validation, to be carried out in a systematic and automated
way by considering a greater sample of real cases (of simi-
lar type within a homogeneous study area), the “best” set of
global parameters could finally be obtained. Afterwards, by
adopting such set, the model could be employed for true pre-
dictive purposes, in the same study area (or in a similar one),
in order to estimating the evolution of new cases of landslide.

Applications of the model could therefore be useful in haz-
ard mitigation: debris-flow susceptibility scenarios could be
analysed as proposed by Iovine et al. b). Moreover, the ef-
fects of planned mitigation actions on flow evolution could
be preliminary evaluated: in fact, in case of engineering
works easily translatable into CA terms (such as stream de-
viations, channelling, embankments, which can be seen as
topographic alterations), these could be handled as a spe-
cific substate and given as additional input matrice to the
model. In the present study, the artificial wall which partly
hampered the Pestello Storto debris flow at the base of the
Pizzo d’Alvano massif has been treated just in accordance
with such a modelling approach. By analysing the results
of simulation, with and without engineering works, a better-
founded selection of the most suitable mitigation actions to
be realised could finally be carried out.
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slope stability computation, Ǵeotechnique, 8, 113–120, 1958.

Malamud, B. D. and Turcotte, D. L.: Self-organised criticality ap-
plied to natural hazards, Natural Hazards, 20, 93–116, 1999.

Malamud, B. D. and Turcotte, D. L.: Cellular Automata models
applied to natural hazards, IEEE Computing in Science and En-
gineering, 2, 42–51, 2000.

Marchi, E. and Rubatta, A.: Meccanica dei fluidi. Principi e appli-
cazioni, UTET, Torino, 1981.

McNamara, G. R. and Zanetti, G.: Use of the Boltzmann equation to
simulate lattice-gas automata, Phys. Rev. Lett., 61, 2332–2335,
1988.

Morgenstern, N. R. and Price, V. E.: A numerical method for solv-
ing the equations of stability of general slip surfaces, Computer
Journal, 9, 388–393, 1967.

Rothman, D. H. and Zaleski, S.: LatticeGas Cellular Automata:
Simple Models of Complex Hydrodynamics, Cambridge Univ.
Press, Cambridge, UK, 1997.

Sassa, K.: Motion of Landslides and Debris Flows, Report for
Grant-in-Aid for Scientific Research, (Project No.61480062),
Japanese Ministry on Education, Science and Culture, Tokyo,
1988.

Segre, E. and Deangeli, C.: Cellular Automaton for Realistic Mod-
elling of Landslides, Nonlinear Processes in Geophysics, 2, 1–
15, 1995.

Succi, S., Santangelo, P., and Benzi, R.: High-Resolution Lattice-
Gas Simulation of Two-Dimensional Turbulence, Phys. Rev.
Lett., 60, 2738–2743, 1988.

Succi, S., Benzi, R., and Higuera, F.: The lattice Boltzmann equa-
tion: a new tool for computational fluid dynamics, Physica, 47,
219–230, 1991.

Van Westen, C. J.: GIS in landslide hazard zonation: a review with
examples from ndes, Colombia. in: Mountain Environment and
GIS, edited by Price, M. F. and Heywood, D. I., London, Taylor
and Francis, 135–165, 1994.

von Neumann, J.: Theory of self reproducing automata, University
of Illinois Press, Urbana, 1966.

Withman, R. V. and Bailey, W. A.: Use of computers for slope sta-
bility analysis, J. Soil Mechanics Div., 93, 475–498, 1967.

Wolfram, S.: Theory and application of cellular automata, World
Scientific, Singapore, 1986.

Wolfram, S.: A new kind of Science, Wolfram Media Inc., Cham-
paign, 2002.


