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Abstract. Power-law distributions of landslides and rock-
falls observed under various conditions suggest a relation-
ship of mass movements to self-organized criticality (SOC).
The exponents of the distributions show a considerable vari-
ability, but neither a unique correlation to the geological or
climatic situation nor to the triggering mechanism has been
found. Comparing the observed size distributions with mod-
els of SOC may help to understand the origin of the variation
in the exponent and finally help to distinguish the govern-
ing components in long-term landslide dynamics. However,
the three most widespread SOC models either overestimate
the number of large events drastically or cannot be consis-
tently related to the physics of mass movements. Introduc-
ing the process of time-dependent weakening on a long time
scale brings the results closer to the observed statistics, so
that time-dependent weakening may play a major part in the
long-term dynamics of mass movements.

1 Power-law distributions in natural hazards

Some natural hazards have been recognized to exhibit scale-
invariant size statistics. Earthquakes are the most prominent
example. World-wide monitoring of seismic activity has led
to extensive statistics concerning the frequency of earthquake
occurrence. Gutenberg and Richter (1954) found that

log10N(m) = a − b m, (1)

whereN(m) is the number of earthquakes per unit time in-
terval with a magnitude greater than or equal tom, anda and
b are parameters. The Gutenberg-Richter law has been sup-
ported by an enormous amount of data and has been found
to be applicable over a wide range of earthquake magnitudes
globally as well as locally. The parameterb slightly varies
from region to region, but is generally between about 0.8
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and 1.2 (Frohlich and Davis, 1993). In contrast, the param-
etera quantifies the regional seismic activity and thus varies
strongly. The scale-invariant character of the Gutenberg-
Richter law becomes evident if it is transformed into a sta-
tistical distribution of the sizesA of the rupture areas that
reads

N(A) ∼ A−b, (2)

whereN(A) is the number of earthquakes per unit time inter-
val with a rupture area greater than or equal toA. The theory
behind this transformation was introduced by Kanamori and
Anderson (1975); brief reviews are given in almost all text-
books on seismology (e.g. Aki and Richards, 2002; Lay and
Wallace, 1995) and in some books on fractals in earth sci-
ences (e.g. Turcotte, 1997; Hergarten, 2002a).

Relations that quantify the number of events as a func-
tion of their size, such as Eqs. (1) and (2), are frequency-
magnitude relations. In this context, the term magnitude is
not restricted to earthquakes, but an arbitrary measure of the
size of an event. Equations (1) and (2) define cumulative
frequency-magnitude relations since they refer to the num-
ber of events above a given size and not to the number of
events within a certain interval of sizes.

The statistical distribution defined by Eq. (2) is a power-
law distribution. In general, power-law distributions are not
restricted to the sizes of areas;A may be replaced with any
measure of the size of an object or an event. A power-law
distribution is free of characteristic scales: If we compare
the number of events of sizeA or greater with the number
of events of sizeλA or greater whereλ is an arbitrary factor,
the numbers always differ by the same factorλ−b, regardless
of the absolute size of the considered events. For this rea-
son, power-law distributions are also called fractal or scale-
invariant distributions. Discussing the inevitable limitations
of scale invariance at small and large scales would go beyond
the scope of this paper, but there is a variety of literature ad-
dressing the properties of fractal distributions (e.g. Turcotte,
1997; Sornette, 2000; Hergarten, 2002a).
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Forest fires are another example of power-law distributed
natural hazards. In contrast to earthquakes, the fractal prop-
erties of forest fires were recently discovered (Malamud
et al., 1998). As a consequence, available statistics are rather
poor compared to earthquake data. This concerns the num-
ber of studied areas as well as the range of scales covered by
the studies. There is still a considerable uncertainty about the
validity of power-law distributions in forest-fire statistics and
concerning the exponentsb of the distributions. The range of
exponents reported so far is 0.31 ≤ b ≤ 0.49, but due to the
limited number of available data sets, this result must be con-
sidered with some caution. However, the exponentb of forest
fires is considerably lower than that of earthquakes. A lower
exponent means that the decay of the distribution (Eq. 2) at
large sizes is slower. In other words, the relative number of
large events in forest fires is higher than it is in earthquake
statistics.

Concerning their statistical basis, landslides are between
earthquakes and forest fires. Several studies addressing the
frequency of landslide occurrence as a function of their size
have been carried out, although the statistics still cannot com-
pete with earthquake statistics. Apart from the fact that earth-
quake monitoring has a longer history than making landslide
statistics, the difference arises from different techniques of
observation. While monitoring seismic activity is almost
automatized, landslide statistics are mainly obtained from a
combination of field work and analyzing aerial photographs.

Extensive studies on fractal landslide statistics have been
conducted since the 1990s. In a quite comprehensive study
(Hovius et al., 1997), more than 7000 landslides in the west-
ern Southern Alps of New Zealand were mapped. Figure 1
shows the resulting frequency-magnitude relation, obtained
from those 4984 landslides located in the montane zone.
It should be noted that the plot does not directly refer to
a cumulative distribution according to Eq. (2), but repre-
sents non-cumulative data in bins of sizes which increase lin-
early with the event size (logarithmic binning). However, in
case of a power-law distribution, both representations lead
to straight lines with identical slopes in a double-logarithmic
plot (e.g. Hergarten, 2002a). Therefore, the straight line with
a slope of−1.16 suggests a power-law distribution with an
exponentb = 1.16 in the cumulative sense.

A similar study performed in Taiwan (Hovius et al., 2000)
resulted in a fractal distribution withb = 0.70. Later, the
same authors (Stark and Hovius, 2001) investigated the ef-
fect of censoring in the process of observation. As a result,
they corrected the exponents tob = 1.46 (New Zealand) and
b = 1.11 (Taiwan), respectively. However, their approach
is rather an improved fit of the data than a physically based
model of censoring, and it may be biased as well as their orig-
inal analysis (Hergarten, 2002a). In this sense, the modified
exponents should not be overinterpreted; and the discrepancy
shows that the uncertainty in determining the exponents is
still large. Under this aspect, their results are in agreement
with earlier studies.

More than 30 years ago, Fuyii (1969) found a power-law
distribution withb = 0.96 in 650 events induced by heavy
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Fig. 1. Frequency-magnitude relation obtained from landslide map-
ping in the central western Southern Alps of New Zealand (Hovius
et al., 1997). The non-cumulative data were binned logarithmically.
The straight line shows a power law with an exponent of 1.16.

rainfall in Japan. Even measuring the areas of landslide de-
posits instead of those of the landslide scars leads to similar
results; Sugai et al. (1994) obtained a power-law distribution
with b = 1.0.

From some recent studies, exponentsb which are larger
than the values listed above have been obtained. Pelletier
et al. (1997) compiled and analyzed landslide data from
Japan (Ohmori and Sugai, 1995), California (Harp and Jib-
son, 1995, 1996), and Bolivia. They obtained power-law dis-
tributions over a quite narrow range (not much more than
one order of magnitude in area) with exponentsb between
1.6 and 2.0. Again, the quality of the power-laws is not suf-
ficient for determining the exponent precisely; e.g. the ex-
ponent from the California data was estimated tob = 1.6
first, but later tob = 1.3 (Guzzetti et al., 2002). Recently,
rather comprehensive analyses of 16 809 landslides in Italy
resulted in an exponent of about 1.5 (Guzzetti et al., 2002). A
quite large exponentb = 2.3 was found for 709 earthquake-
triggered landslides in Eden Canyon, California (Malamud
and Turcotte, 1999).

In summary, there is evidence for fractal statistics in land-
slides. Figure 2 compares the observed range of exponents
with those of earthquakes and forest fires. The variation in
the exponents of landslide size distributions is stronger than
in the two other examples. We have already seen that a part
of the variation may arise from statistical fluctuations or from
applying different methods. The findings discussed above
suggest that these uncertainties may amount up to a differ-
enceδb ≈ 0.4.

Taking into account this uncertainty, it may be reasonable
to assume a range ofb between about 1 and 1.6 since the
majority of the results falls into this range. The exponents of
landslide distributions seem to be larger than those of earth-
quakes in the mean. Therefore, the relative importance of
large landslides is lower than it is in the example of earth-
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Fig. 2. Power-law exponents of the cumulative size distribu-
tions of some natural hazards (upper part) and results of the most
widespread self-organized critical models (lower part). The tick-
marks refer to the studies on landslides mentioned in the text, the
rockfall data analyzed and reviewed by Dussauge-Peisser et al.
(2002), the four forest-fire data sets analyzed by Malamud et al.
(1998), and 38 earthquake catalogs from various geographic regions
(Frohlich and Davis, 1993, Table 1, last column).

quakes and much lower than in the example of forest fires.
Geology, climate, type of landslides, and triggering mech-

anisms seem to be good candidates to account for the ob-
served variations in the power-law exponents. However,
none of them has been clearly recognized to affect the land-
slide size distribution. The number of available studies seems
to be too low for a systematic analysis of the variety of po-
tential influences.

A few studies address the triggering mechanism. Among
the data discussed above, there are two data sets of
earthquake-triggered landslides. One of them is that with
the highest exponentb = 2.3 (Malamud and Turcotte, 1999),
while the other leads to lower exponents of 1.6 or 1.3, respec-
tively (Pelletier et al., 1997; Guzzetti et al., 2002). Although
these values may suggest that the power-law exponents of
earthquake-induced landslides tend to be higher than for hy-
drologically triggered events, the statistics are not sufficient
to provide a sound basis of such a speculation. In the study
of the Italian landslides (Guzzetti et al., 2002), a second data
set of 4233 landslides triggered by just one rapid snow melt
event was considered, too. No significant difference concern-
ing their size distribution compared to the long-term inven-
tory was detected. Although the triggering mechanism may
be crucial for the total number of landslides per time, its in-
fluence on the size distribution seems to be negligible.

Due to the limited statistics, deriving reliable size distribu-
tions for different types of landslides is difficult. Frequency-
magnitude relations of rockfalls, a type of gravity-driven
mass movements which strongly differs from most other
types (e.g. slides in the strict sense or flows) have been in-
vestigated in several studies. Dussauge-Peisser et al. (2002)
compiled data on the sizes of rockfalls from various sources,
obtaining power-law distributions for the rockfall volume
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Fig. 3. Cumulative size distribution of a nuclear chain reaction re-
leasing two neutrons per fission for different values of the fission-
ating probabilityq. A power-law distribution occurs at the critical
pointq =

1
2 .

with exponents between 0.4 and 1.0. Although these val-
ues show a strong variability, a relationship to the geolog-
ical setting was not found. Assuming that rockfall volume

is proportional toA
3
2 , i.e. that small and large rockfalls are

geometrically similar, the volume distribution can be trans-
formed to areas (Eq. 2) with exponentsb in a range between
about 0.6 and 1.5. As illustrated in Fig. 2, this range is not
much smaller than that of landslides, but the exponents of
rockfalls seem to be smaller than those of landslides in the
mean. As a consequence, the relative importance of large
events in rockfall statistics is more pronounced than in land-
slide statistics, although still less than in the size distributions
of forest fires.

Understanding the origin of the power-laws in mass move-
ment statistics is a major challenge, both from a theoretical
point of view as well as for hazard assessment. This aim
leads from statistical descriptions towards physically based
models. As a second step, it should be examined whether
the observed variability in the power-law exponents is real
or whether there is a universal value for all kinds of gravity-
driven mass movements. In the first case, models may be
helpful to attribute the variations to any kind of geological or
climatic conditions.

2 Self-organized criticality

Power-law distributions are often attributed to critical phe-
nomena. In classical thermodynamics, the existence of criti-
cal points has been known for a long time. Instead of going
into the theory of critical phenomena, let us consider a quite
simple example of a nuclear chain reaction, which we will
take as a prototype of an avalanche. Assume that a nucleus is
fissionated, and that this process releases two neutrons. Each
of these neutrons may fissionate another nucleus at a given
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probability q. This process releases further neutrons (up to
four), and so on, so that avalanches may occur. The statisti-
cal distribution of these avalanches strongly depends on the
parameterq which is related to the density of fissionable ma-
terial in the considered sample. This model can easily be
simulated on a computer or even be solved analytically in
major parts. The resulting size distribution of the avalanches
is given in Fig. 3 for some values ofq; Pn denotes the prob-
ability that an avalanche involves at leastn nuclei.

The behavior changes drastically atq =
1
2. For q < 1

2,
the probability of large avalanches decreases rapidly, so that
the avalanches are in fact limited in size. This situation is
called subcritical. On the other hand,Pn does not tend to-
wards zero in the limitn → ∞ if q > 1

2. In this case, a
certain fraction of fissions causes chain reactions of infinite
size, although this is, strictly speaking, only true for infinite
samples. This unstable situation is denoted overcritical. The
situation whereq =

1
2 is called critical point; it is charac-

terized by a power-law decay of the event size distribution
which indicates fractal properties. In the critical state, events
of all sizes occur, and their statistical relationship is scale-
invariant.

In this sense, considering the examples of natural hazards
discussed in Sect. 1 in the context of critical phenomena
is tempting. However, there is one major problem: Bring-
ing the system to its critical point requires a precise tuning.
In the model considered above, the size distribution of the
avalanches considerably deviates from a power law even ifq

slightly deviates from its critical value. So why should the
land surface be tuned to a hypothetic critical point almost
everywhere on earth?

This is the point where the idea of self-organized critical-
ity (SOC) starts. Fifteen years ago, Bak et al. (1987, 1988)
found a system which organizes itself towards a critical state
without any tuning. This system is a simple cellular automa-
ton defined on a two-dimensional, quadratic lattice. Each site
may be occupied by a number of grains (or any other objects,
the physical context of these objects is not important for the
model). In each step of the model, a grain is added to a ran-
domly chosen site. If this site still contains no more than
three grains, nothing happens, and another site is selected for
a grain to be added. If, in contrast, the site contains four
grains, it becomes unstable, and these four grains are redis-
tributed among the four adjacent sites. Grains passing the
boundaries of the model domain are lost. Afterwards, some
sites may contain four or even more grains; they are relaxed
by redistributing four grains according to the same rule. This
may lead to avalanches; Fig. 4 shows an example. During
the avalanche, 28 sites became unstable; and it took 11 re-
laxation cycles until all sites became stable again. A total
of 27 sites participated in the avalanche; so one cell became
unstable twice.

This model is called Bak-Tang-Wiesenfeld (BTW) model.
Its properties are discussed in every book on SOC (e.g. Bak,
1996; Jensen, 1998; Hergarten, 2002a). It was found that
the BTW model organizes towards a state where the mean
density (number of grains per site) fluctuates around a value

Fig. 4. Example of an avalanche in the Bak-Tang-Wiesenfeld
model. Grains are represented by dots; unstable sites are marked
with grey. The avalanche starts from one cell containing four grains
and ceases after 11 relaxation cycles.

of about 2.1. This result is independent of the initial con-
dition, so that the model in fact self-organizes towards this
state. This state was found to be critical, i.e. the sizes of the
avalanches are power-law distributed. This led to the term
self-organized criticality which seems to have become some
kind of magic word in several fields.

If transferred to a cumulative size distribution (Eq. 2), the
exponent of the obtained distribution is very low. Measur-
ing avalanche sizes in terms of the number of affected sites
leads tob = 0.05. This value is much lower than the expo-
nents of the power-law distributed natural hazards discussed
in Sect. 1. In other words, the BTW model generates too
many large events compared to earthquakes, landslides, rock-
falls, and forest fires.

The forest-fire model is even simpler than the BTW model.
Strictly speaking, several different forest-fire models were
developed in the 1990s. SOC was discovered in the model
introduced by Drossel and Schwabl (1992). Today, a slightly
modified version (Grassberger, 1993; Clar et al., 1994) is
mostly referred to; it is based on the following rules: Each
site (of a mostly two-dimensional, quadratic lattice) is either
empty or occupied by a tree. In each step,θ sites are ran-
domly selected. Those of them which are empty give rise to
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Fig. 5. Setup of a two-dimensional spring-block model. Blocks
are connected with each other and with a rigid driver plate through
springs and leaf springs, respectively.

new trees. Then, a randomly chosen site is ignited. If this
site is occupied by a tree, this tree and the cluster of trees
connected to it is burned down.

The forest-fire model exhibits SOC in the limitθ → ∞,
which means that the rate of ignition is low compared to the
rate of tree growth. However, there is still uncertainty about
the size distribution of the burnt clusters of trees. For fi-
nite values ofθ , the distribution significantly deviates from a
power law at large event sizes, which makes the extrapolation
for θ → ∞ difficult. Thus, there is still a strong variation in
the estimated exponentsb. Interestingly, the range is marked
by recently published results, fromb = 0.08 (Pastor-Satorras
and Vespignani, 2000) tob = 0.45 (Schenk et al., 2002).
Very recent results (Hergarten, 2002b) suggestb = 0.20, but
raise doubts whether the forest-fire model fits into the frame-
work of SOC because the destruction of trees is governed by
a second class of fires which is exponentially distributed. In
summary, the exponentsb of the forest-fire model seem to be
smaller than those obtained from nature. However, the dis-
crepancy is not so strong that one should conclude that the
forest-fire model is not at all applicable to forest fires.

The Olami-Feder-Christensen (OFC) model is the third
widespread SOC model. From its physical background it be-
longs to a large class of spring-block models developed for
understanding the dynamics of earthquakes. Figure 5 shows
the setup of a two-dimensional spring-block model.

The first spring-block model was introduced by Burridge
and Knopoff (1967); numerous other followed which are
more or less similar in their spirit. A review is given, e.g.
by Turcotte (1999). Blocks are connected with each other
and with a rigid driver plate through springs and leaf springs,
respectively. They are held at their position by the static fric-
tion at the bottom. The forces acting on the blocks are uni-
formly increased by slowly moving the upper plate. As soon
as the force acting on any block exceeds the maximum static
friction, this block becomes unstable and is displaced. As a
result, the forces acting on its neighbors change, which may
give rise to avalanches.

The OFC model is a cellular automaton realization of such
a model. Due to its fundamental character in the framework
of SOC, it is discussed in all books on this field, too. Us-
ing non-dimensional variables, its rules can be written in the
form:

(i) Long-term driving as long as all blocks remain stable:

∂ui

∂t
= 1 as long asui < 1. (3)

(ii) Instantaneous relaxation of unstable blocks:

uj → uj + α ui for j ∈ N(i)

ui → 0
if ui ≥ 1. (4)

For simplicity, the blocks are numbered with a single index
i, andN(i) denotes the nearest neighborhood of the block
i. The variableui is the force acting on blocki, normalized
with respect to the maximum static friction force. The trans-
mission parameterα depends on the strengths of the springs;
it is not larger than1

4.
When the model was introduced (Olami et al., 1992), it

was not essentially new, but OFC recognized the role of the
upper leaf springs which connect the blocks to the upper plate
not only for long-term driving, but also for the relaxation of
unstable blocks. If a block is relaxed, a part of the forceui

is transferred to the neighbors. Apart from boundary sites,
this part is 4α. If the upper leaf springs are weak compared
to the springs between the blocks.α converges to1

4, so that
the total amount of force is preserved during the relaxation.
This case is denoted conservative limiting case; it was inves-
tigated by Brown et al. (1991) and Matsuzaki and Takayasu
(1991) before OFC published their results. However, it leads
to a power-law size distribution with an exponentb = 0.23
(e.g. Hergarten, 2002a), which is too low compared to real
earthquakes.

In case the upper springs are of finite strength, a certain
amount of force is transferred to the driver plate, so that the
relaxation rule is non-conservative. OFC recognized that the
model still exhibits SOC in the non-conservative regime, but
that the power-law exponent strongly depends on the level
of conservation, i.e. on the parameterα. If all springs are
identicalα takes the value15. In this case, the exponent seems
to be close to 0.7 (e.g. Hergarten, 2002a). For smaller values
of α, the results apparently approach the range ofb (between
0.8 and 1.2) observed in nature, although recently evidence
for a universal valueb ≈ 0.8 which is independent ofα (at
least forα ≥ 0.17) was found (Lise and Paczuski, 2001). No
matter where this discussion will lead to, the OFC model has
become a powerful tool for understanding the scale-invariant
statistics of earthquakes.

3 Are landslides sandpile avalanches or earthquakes?

Two out of the three natural hazards discussed in Sect. 1 can
be related to SOC with the help of the fundamental models
discussed in the previous section: The OFC model (and sim-
ilar spring-block models, too) has become a valuable tool in
seismology, and the results of the forest-fire model are not
too far of from the fire size statistics observed in nature, al-
though the model may be somewhat oversimplified.

Thus, the idea of understanding fractal size distributions
of landslides and rockfalls within the framework of SOC is
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tempting. The models discussed in the previous section de-
scribe of avalanching processes. The idea of avalanching was
introduced into the theory of slope stability long ago. Bjer-
rum (1967) found that instability in clays often does not oc-
cur at the entire slip surface simultaneously, but starts from a
small region. Slip occurring there destabilizes the neighbor-
hood, so that instability may propagate. This phenomenon is
called progressive slope failure; it seems to be quite similar
to the spreading of avalanches in the fundamental models of
SOC.

Interestingly, the BTW model is often called the sandpile
model. However, if we recall its rules, we immediately rec-
ognize that its relationship to sandpile dynamics is rather
vague. The stability of a sandpile mainly depends on the
local slope gradient, but not on the absolute number of sand
grains at any location as assumed in the BTW model. Thus,
the stability criterion of the BTW model hinges on the abso-
lute surface height rather than on the slope gradient.

With respect to its applicability to landsliding, a second
problem arises from the long-term driving mechanism. In
nature, tectonic uplift and fluvial incision are the main coun-
terparts to erosive processes. While the latter in general re-
duce surface heights and slope gradients, the former are able
to increase heights and gradients, so that finally a long-term
equilibrium may be achieved. In this sense, tectonic up-
lift and fluvial incision are the long-term driving processes
of erosion and gravity-driven mass movements. In contrast,
the BTW model is driven by randomly adding grains, which
cannot be directly related to either tectonic or fluvial pro-
cesses. In fact there is a second interpretation of the BTW
model where the model variable does not describe a num-
ber of grains, but a slope gradient (Bak et al., 1988; Jensen,
1998). This interpretation fixes these problems partly. But
even if a physically consistent relationship between the BTW
model and landform evolution could be found, the quantita-
tive results are disheartening: The valueb = 0.05 obtained
from the BTW model is far away from the range observed
for landslides and rockfalls in nature.

However, we may try to keep at least the essence of the
sandpile idea. Let us start from a quadratic lattice where the
state of each site is characterized by a surface height. Let
1i be the absolute value of the slope gradient at the sitei.
In order to keep the model as simple as possible, it is as-
sumed that a site becomes unstable if its slope gradient1i

reaches a given critical value1c. In this case, material shall
move in downslope direction towards the nearest neighbors
until 1i has decreased to a given residual slope gradient1r.
Some further simplifications are necessary in order to derive
a simple relaxation rule from these assumptions (Hergarten,
2002a), finally leading to

1j → 1j +
1
4 (1i −1r) for j ∈ N(i)

1i → 1r
if 1i ≥ 1c. (5)

Both the parameters1r and1c can be eliminated from the
relaxation rule and from the stability criterion by introducing

the variables

ui =
1i − 1r

1c − 1r
. (6)

This leads exactly to the stability criterion and the relaxation
rule of the OFC model (Eq. 4), except for the parameterα

occurring there. Instead of a parameter describing physical
properties of the system, the relaxation rule of this simpli-
fied landslide model has a constant transmission parameter
of 1

4. This corresponds to the conservative limiting case of
the OFC model.

As all SOC models, this landslide model needs some kind
of long-term driving. Otherwise, the slopes will decrease
through time and landsliding will cease. Interpreting the size
distribution of landslides in the context of SOC requires that
the slopes are maintained over long times, so that a long-term
equilibrium between the dissipative process of landsliding
and driving can be achieved. In the simplest approach, long-
term driving is introduced by homogeneously tilting the sur-
face, as it may result from tectonic uplift at large scales. As
a result, the slope gradients increase uniformly through time.
By rescaling the time axis of the model, the driving rule of
the OFC model (Eq. 3) can be exactly reproduced.

In summary, this simple landslide model coincides with
the conservative limiting case of the OFC model. The model
seems to be physically reasonable, although somewhat over-
simplified. The strong analogy to the OFC model may be
surprising; it is at least a good example for different model
approaches finally leading to the same mathematical model.

However, the quantitative results are again disappointing.
As mentioned in the previous section, the model exhibits
SOC, but the exponentb = 0.23 is significantly too low com-
pared to landslides and rockfalls in reality. Compared to the
BTW (sandpile) model, the results are better, but the over-
estimation of the number of large events is still too large for
any serious application to gravity-driven mass movements.

Blaming the poor results on the oversimplification of the
physical model is tempting. However, this is somewhat dan-
gerous: Points where the model is oversimplified are read-
ily found, but finding out whether spending more effort on
these aspects improves the results is often difficult. For in-
stance, long-term driving by uniformly tilting the surface ap-
pears to be unrealistic since it may describe large-scale tec-
tonic processes, but disregards fluvial erosion. As a result,
the surface will evolve towards one large slope, while flu-
vial erosion generally subdivides it into a pattern of smaller
slopes. This problem can be either fixed by coupling a model
of fluvial erosion or by restricting the model scale to indi-
vidual slopes and use simple assumptions for fluvial incision
there. For simplicity, we switch towards individual slopes
and assume a constant rate of fluvial incision at some edges
of the model domain. The model can easily be modified in
this way; it turns out that the driving rule (Eq. 3) must not
be applied to all sites then, but only to those at the bound-
aries where the river acts (Hergarten, 2002a). Figure 6 gives
the size distribution obtained from simulating this model on
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Fig. 6. Landslide size distribution obtained from the sandpile-like
model under long-term driving by fluvial incision. The landslide
sizes are measured in terms of the number of affected sites. The
different curves correspond to lattices of different sizes.

quadratic lattices assuming that fluvial incision takes place at
two adjacent edges.

At landslides sizes above about 100 sites, the distributions
show a rough power-law behavior within a narrow range of
scales (less than two orders of magnitude in area) with an
exponent of about 1.2. This value fits well into the range il-
lustrated in Fig. 2. However, the quality of the power laws
is poor, and the shape of the distribution depends on the size
of the lattice. As the size of the lattice is related to the size
of the considered slope and the spatial resolution, this result
is not very promising. In fact, a more detailed analysis (Her-
garten, 2002a) has shown that the power-law behavior is a
spurious effect of considering cumulative distributions and
vanishes if the data are plotted in a non-cumulative diagram.
Thus, assuming long-term driving by fluvial incision makes
the results even worse, at least if it is introduced in this sim-
ple form.

The problems might arise from disregarding the triggering
mechanisms of landslides, such as rainfall, snow melt, and
earthquakes. However, as discussed in Sect. 1, available data
do not indicate any correlation between the size distribution
and the triggering mechanism. Since SOC models often yield
surprising results, incorporating triggering mechanisms into
the model might improve the results, but this seems not to be
very likely.

Effects of inertia are another candidate. In real sandpile
dynamics, effects of inertia are quite important. As soon
as a sandpile exceeds a critical size, grains toppling down-
slope pick up enough kinetic energy to set many other grains
in motion. As a result, the SOC behavior is lost then; the
power-law distribution turns into a distribution where large
events are preferred. As it makes the overestimation of large
avalanches even worse, this is still not what we are looking
for.

So there seems to be a fundamental problem with the sand-

Fig. 7. Setup of a spring-block model placed on a tilted plate.

pile-like landslide model which hinges on the conservative
character of the conservation rule. The power-law expo-
nents of earthquakes and landslides are not far away from
each other, and the non-conservative OFC model has been
successfully applied to earthquakes. Thus, relating the non-
conservative OFC model to landslides might be the major
step towards understanding landslide dynamics in the con-
text of SOC. However, the conservative character of the re-
laxation rule is closely related to the conservation of mass
during an event (Hergarten, 2002a), so it seems to be im-
possible to derive a non-conservative relaxation rule from a
sandpile analogy.

So let us for the moment switch to an entirely different
view on the landsliding process. If we assume a distinct slip
surface, as it is present in translational and rotational slides,
we may consider the forces acting on this surface. A spring-
block model placed on an inclined plate (Fig. 7) may be the
simplest physically reasonable description of this situation.
However, the sketch immediately reveals the major problem
of this approach, apart from the question how long-term driv-
ing is realized: The driving force acting on the blocks results
from the inclination of the lower plate, but not from an addi-
tional driver plate as in the original setup illustrated in Fig. 5.
As a consequence, the upper leaf springs have vanished, and
this makes the relaxation rule conservative. Thus, this model
suffers from the same problem as the sandpile analogy, al-
though the physical background of both approaches is en-
tirely different.

In summary, neither the sandpile analogy nor the transfer
of spring-block earthquake models to landslide or rockfall
dynamics works on a quantitative level.

4 The role of time-dependent weakening

The findings of the previous section suggest that the sur-
face gradient alone cannot be responsible for the fractal size
statistics of landslides in a sandpile-like model; there must
be another component. In principle, this result is not sur-
prising since it is well-known that landslide abundance does
not increase constantly with the terrain gradient in any given
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area. Often, steep slopes which are more stable than ad-
jacent slopes with a lower gradient are found. In general,
slope stability depends on a variety of influences beside the
gradient. Skipping everything except for the slope gradient
was a first approach which has turned out to be too simple;
we must introduce a second component in the model. The
most straightforward idea is assigning the second component
to the mechanical properties of the soil or rock which may
change through time.

Early approaches in this direction were developed for dif-
ferent topics in landform evolution. Bouchaud et al. (1995)
introduced a two-state approximation for modeling sandpile
dynamics. Grains are assumed to be either at rest or rolling
with a pre-defined velocity; so the evolution of the sandpile
is governed by both the slope gradient and the number of
rolling grains. On a larger scale, a similar approach was
introduced for modeling erosion processes (Hergarten and
Neugebauer, 1996). Here, grains are assumed to be either
tightly connected to their neighbors or mobile; the number of
mobile grains is the second variable beside the slope gradi-
ent. Later, this approach was transferred to landslide dynam-
ics by replacing the number of loose grains with an amount
of mobile material (Hergarten and Neugebauer, 1998, 1999).
Although this approach is based on partial differential equa-
tions, which makes it numerically demanding, it results in
a fractal size distribution over a reasonable range of scales
with exponentsb close to unity. However, criticality occurs
only within a quite narrow range of parameter combinations,
so that the model behavior is somewhere between SOC and
(tuned) criticality in the classical sense.

At the same time, Densmore et al. (1998) introduced an
approach to landsliding as a component of a rather compre-
hensive landform evolution model. Similar to the approaches
discussed above, slope stability is governed by two compo-
nents. One of them describes the surface geometry, while the
other uniformly increases through time and introduces some
kind of weakening. Instability occurs as soon as the sum of
both components exceeds a given threshold. However, the
landslides do not propagate in this model like the avalanches
in the sandpile model; instead an explicit rule for their size
was introduced. Motivated by experiments (Densmore et al.,
1997), it is assumed that the size of a landslide being initi-
ated at a certain location depends on the time span since the
previous landslide at the location. The model yields power-
law distributions with realistic exponents for the landslide
volumes, but clean power laws can be recognized only over
about one order of magnitude in landslide volume, which is
in fact a very narrow range.

The idea of time-dependent weakening can be applied to
both the sandpile-like model and the spring-block model by
introducing a time-dependent criterion of stability instead of
the conditionui < 1. The simplest time dependence con-
cerns a linearly decreasing threshold, so that the slope re-
mains stable as long asui < 1 − λτi whereτi is the time
span since the last event at the sitei and λ is a parame-
ter characterizing the rate of weakening. This approach is
quite similar to that introduced by Densmore et al. (1998).

This criterion cannot be realistic on a long time scale as the
threshold decreases to or even below zero through time. This
means that every site will finally become unstable, even if its
slope gradient is zero. But still more severe, this model was
shown to exhibit SOC only in the trivial limiting case where
time-dependent weakening becomes negligible (Hergarten
and Neugebauer, 2000), at least under driving by tilting the
slope. The case of long-term driving by fluvial incision was
recently investigated (Hergarten, 2002a). A clean power-law
distribution was not observed; the results are rather complex
and considerably affected by the grid size. Thus, assuming
a linearly decreasing threshold does not provide any new in-
sights compared to the simple sandpile-like model or the sim-
ple spring-block model.

The approach involving time-dependent weakening is
some kind of two-variable model, while the established SOC
models involve just one variable. The second variable is the
time spanτi since the last event at the sitei. Obviously,τi

increases through time according to∂τi

∂t
= 1, which exactly

coincides with the driving rule of the OFC model (Eq. 3). As
soon as the sitei becomes unstable,τi is reset to zero. This
rule can also be related to the the relaxation rule of the OFC
model (Eq. 4);i it is the completely dissipative limiting case
α = 0 where transfer to the neighbors is inhibited. Thus, the
two-variable model involving time-dependent weakening is
a combination of two OFC models where one is conserva-
tive, while the other is entirely dissipative. Both models are
coupled by the criterion of stability which consists of a linear
combination of the variables:

ui + λ τi < 1. (7)

There are several other ways of combining two variables than
this one. Using the product of both variables according to

ui τi < µ (8)

is simple, too. According to this criterion, the threshold of in-
stability decreases through time like1

τi
. Transferred to slopes

(Eq. 6), the product criterion means that the slope remains
stable as long as

1i < 1r +
µ (1c − 1r)

τi

. (9)

Even a very steep slope would be stable immediately after a
landslide. However, this is a merely theoretical problem as
the gradients decrease during a landslide, so that they cannot
be very high immediately after an event. After a sufficiently
long time, each slope which is steeper than the residual slope
1r becomes unstable, while shallower slopes will remain sta-
ble forever.

The product approach was recently investigated, too (Her-
garten and Neugebauer, 2000; Hergarten, 2002a). It was
found to differ strongly from the linear combination (Eq. 7).
The model shows SOC, and the exponentb of the size dis-
tribution is close to unity. This result is independent of the
parameterµ and holds for driving by tilting the slope as well
as for driving by fluvial incision. Thus, the model predicts
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SOC with a universal power-law exponent which is within
the range observed in nature, but it cannot explain the ob-
served variability. Combining both variables to a more com-
plex criterion of stability such as

ui (1 + λ τi) < µ (10)

might be the next step.

5 Discussion and conclusions

There is growing evidence that gravity-driven mass move-
ments exhibit fractal size statistics. The exponents of the
observed power-law distributions are comparable to those
found for earthquakes, although they are exposed to a con-
siderable variability. The available data suggest that the size
statistics of the two major classes of mass movements dis-
cussed here – landslides and rockfalls – show considerable
differences. The exponents of rockfall distributions seem to
be lower than the exponents of landslide distributions, which
means that the relative importance of large events is more
pronounced in rockfall statistics than in landslide statistics.
The observed variability of the exponents within each of both
classes can be neither attributed to climatic or geological con-
ditions nor to the triggering mechanism so far.

Since power-law distributions are often related to SOC,
applying the SOC concept to gravity-driven mass movements
is tempting. However, the most widespread models of SOC,
namely the BTW model, the forest-fire model, and the OFC
model, are either not applicable to mass movements in a
physically consistent way or fail on a quantitative level, i. e.,
strongly overestimate the number of large events.

Introducing time-dependent material properties consider-
ably improves the results. Time-dependent weakening can be
incorporated into both sandpile-like models and spring-block
models. However, the results strongly depend on the way
weakening is regarded in the criterion of stability. The prod-
uct approach discussed in the previous section shows SOC
with a power-law exponent close to unity, which is within
both the ranges found for landslides and for rockfalls in na-
ture. Since the exponents of rockfalls seem to be lower than
those of landslides in the mean, one may speculate that time-
dependent weakening could be more important for landslides
than for rockfalls. However, the model cannot account for the
variability observed in nature. Models involving mechanics
on a higher physical level may help to find out whether the
observed variability reflects climate, geology or triggering
mechanism, or whether it is just a matter of statistics.

Finally, we should be aware that SOC is a promising con-
cept in many fields, but not the only one. In some cases, frac-
tal size distributions may also be the result of a pre-defined
structure which may not be related to the considered pro-
cess. Fractures are ubiquitous in rocks, and a relationship
between their pattern and the size distribution of rockfalls
cannot be excluded. In the example of landslides, fractal
properties of the spatial soil moisture distribution may con-
tribute to the observed size distribution, too. In combination

with a fractal surface topography, this idea was applied to
landslide size distributions (Pelletier et al., 1997), and the re-
sults are as promising as those obtained from the SOC mod-
els with time-dependent weakening. So there are different
theories accounting for one phenomenon, and available field
data are not yet sufficient to decide which one comes closest
to nature.
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