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Abstract. Droughts are related with prolonged periods when
moisture is significantly below normal values. Drought in-
dices attempt to scale the main drought features to facilitate
comparisons. Numerous indices are found in the literature
based on different drought features. Many of them were cre-
ated for particular places and specific objectives, and there-
fore not suitable to generalize the results. However, there
have been attempts to develop a general index, which would
provide full characterization of drought events. Two of the
most well known are the Palmer Drought Severity Index
(PDSI) and the Standard Precipitation Index (SPI). Each one
has particular advantages and disadvantages. Still neither of
them or any other includes a full representation of droughts
in a single value index, being useful for all general applica-
tion. The fact that droughts have a random nature prescribes
the statistical theory for the foundation of a complete and
generic index, which would meet this goal.

In this work, a procedure that allows a complete statisti-
cal characterization of drought events is presented. Droughts
are characterized, from a statistical point of view, based both
on the deviation from a normal regime and persistence. The
events are represented as multivariate ones, whose dimen-
sionality depends on the duration. Equal duration events are
discriminated through their deviations from normality. The
mean frequency of recurrence (MFR) is theoretically derived
for such multivariate events, and it is used to scale such devi-
ations. Therefore, events with different dimensionalities can
be compared on a common dimension of interest, the MFR.
This may be used as a drought index for drought character-
ization, both for analyzing historical events and monitoring
current conditions. It may also be applied to analyze precip-
itation, streamflows and other hydroclimatic records. Its sta-
tistical nature and its general conception support its univer-
sality. Results may be applied not only to drought analysis,
but also to analyze other random natural hazards. Applica-
tions of the procedure for drought analysis in Texas (USA)
and in Gibraltar (Iberian Peninsula) are made and compared
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with PDSI and SPI results. The MFR applied over drought
analysis allows the representation of the main drought char-
acteristics in a single value, based on the statistical feature of
the phenomenon, and scaled on the mean frequency of recur-
rence.

1 Introduction

Droughts are related with extremely long periods of abnor-
mally low water availability. Such low levels are coming
from reduced precipitation periods, and they can be ob-
served over different hydroclimatic variables related with
water availability. Examples are precipitation (meteorolog-
ical drought), soil moisture (agricultural drought), or stream-
flows (hydrological drought).

Whichever variable is analyzed to study droughts, the
common feature looked for on the records is the downwards
deviation from normality. If persistence is not considered,
droughts may be represented as univariate extreme events,
like other extreme hydrological events such as floods. How-
ever, for droughts is not only an issue the maximum deviation
below a fixed threshold, but also the amount of time that re-
mains below that threshold value is of high relevance. Runs
theory has been applied to analyze droughts, defined as pe-
riods with water availability below a threshold. Therefore,
run analysis may be used to assign probability to drought
events based on one characteristic (e.g. cumulative deficit,
duration, or mean intensity; Sen, 1976, 1977, 1980; Dracup
et al., 1980a, b; Fernandez and Salas, 1999; Chung and Salas,
2000; Shiau and Shen, 2001), or two of them simultaneously
(e.g. duration and severity; Gonzalez and Valdes, 2003). In
this kind of statistical characterization, usually more that one
drought variable is of relevance (i.e. duration, severity, in-
tensity) to assign a probability, but only extraordinary long
records provide data for a multivariate analyses. Another as-
pect of this kind of approach is how low the threshold should
be. This influences the results, and it depends on the expected
behavior of the variable under analysis.
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Fig. 1. Contour lines of standardized binormal density function for
independent variables(x1, x2) and` function for a point(X1, X2)

defined as the probability of events(x1, x2) with (x1≥X1∩x2≥X2)

Since droughts are events that not only are characterized
because they occur during prolonged periods, but also they
affect large areas, spatial analyses are of high relevance.
Dalezios et al. (2000) and Loukas et al. (2002) used several
statistical techniques to analyze the temporal and space be-
havior of regional droughts along Greece. Kim et al. (2002)
presented a methodology for estimating the return period of
droughts as a function of intensity, duration and areal extent.
The role of natural ecosystems in the soil-moisture dynamics
are been studied in recent years to understand the behavior
of plants in water-controlled ecosystems (Rodriguez-Iturbe
et al., 2001; Porporato et al., 2001; Laio et al., 2001).

Water Resources Management (WRM) allocates water re-
sources in time and space in order to meet demands. WRM
requires not only the statistical characterization of historical
drought events, but also the monitoring of current drought
conditions based on real time observations or on derived
indices. Numerous indices have been developed to be ap-
plied under particular objectives (for a complete summary
see Hein, 2000). Keyantash and Dracup (2002) evaluate sev-
eral of the most commonly used indices. The majority of
them may be applied only in the particular location where
they were created. One of the early generic drought in-
dexes is the Palmer Drought Severity Index (PDSI; Palmer,
1965). This is an empirical dimensionless meteorological
index, based on precipitation and temperature, and a con-
ceptual representation of soil-water dynamics. Another well
know index is the Standard Precipitation Index (SPI; McKee
et al., 1993). This uses the statistical distribution of the pre-
cipitation record for a given time-aggregation length to com-
pute the index. The value of the index is related with the

probability of precipitation record below the observed.
A good example of the need and level of effort to obtain a

quantitative evaluation of drought situations is the Drought
Monitoring Program (NOAA/National Climatic Data Cen-
ter), with the National Drought Monitoring Center in the
US. In Europe, studies like ARIDE and the requirement of
drought index development for WRM in the European Water
Framework Directive (200/60/CE) are additional examples.
None of the developed indices is fully satisfactory for gen-
eral applications. All of them are focused in one or a few
drought aspects, but disregard many others. This is a conse-
quence of the multiple nature of the droughts (i.e. meteoro-
logical, hydrological, agronomical, socio-economic). Even
when all indices need to be adapted to the particular applica-
tion, it does not imply that a general methodology cannot be
developed.

In this paper a new general methodology to compute the
Mean Frequency of Recurrence (MFR) of extreme events
taken as multivariate in time is presented. An event is given
by the succession ofw consecutive extreme values, and thus
the event-dimension is equal to its duration. An expression
of the MFR, under the assumption of temporal independence,
are analytically developed and approximately estimated. The
MFR, or its inverse the Return Period, provides a useful tool
to analyze and monitory droughts. The drought index derived
from these results may be used to characterize either histori-
cal events or current drought condition as observed by a hy-
droclimatic variable (e.g. precipitation, soil moisture, flow
rate, ground water level) according to the associated proba-
bility or MFR. The methodology uses the succession of val-
ues of the variable, and therefore takes implicitly into con-
sideration all possible aspects that should be considered (i.e.
duration, severity, intensity, minimum). Its application as
drought index takes into account all characteristics of an ex-
treme event, summarizing them in a single value. A demon-
stration of its performance is shown with cases in Texas Cli-
matic Division 5, USA, and Gibraltar. Results were com-
pared with the Palmer Index and SPI. The statistical nature
of the approach validates its use on comparing drought sever-
ity in different locations. It may also be applied to study other
extreme natural events.

2 Methodology

The main goal in this work is the quantification of the devi-
ations from the normal behavior of a hydroclimatic variable
related with water availability. In this way, deviation from
mean values may be quantified. For example, for the case
of analyzing extreme periods of two time intervals duration
(xt , xt+1) of a continuous variable normally distributed (say
standard distribution, i.e.x∈ Nµ=0, σ=1)), the parameter
R2

=X2
t +X2

t+1 may be applied. EachR value may be asso-
ciated to a probability derived from the bivariate distribution
of (xt , xt+1), that for the case of temporal independence is
represented in Fig. 1. However, the parameterR is no the
best way to statistically quantify deviations from normality
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in drought analysis. The main reason is that this does not
take into account the deviation direction, and equally treat
positive, negative or combined deviations.

In the drought characterization problem, the interest is
in the deviation towards a certain improper point of the
Rw space, wherew is the dimension of the considered event
(i.e. for the case of two variables, positive (+∞, +∞) or
negative (−∞, −∞) pole, depending on the established
reference). Taking as working pole the improper point
(+∞, +∞), to quantify the deviations toward this pole is
defined the functioǹ(x1, x2, . . . , xw) as the probability of
occurring events with variable values larger or equal than
the observed (i.e.̀(X1, X2, . . . , Xw)=P(x1≥X1∩x2≥X2∩

. . . , ∩xw≥Xw)). In this way, an event is considered larger
than a second is if thè value of the first is lower than the
second. Figure 1 illustrates this definition for the case of
w = 2 and represents the shape of equal` functions, when
joint events are of equal magnitude.

To complete the introduction of the procedure, an ad-
ditional consideration needs to be taken into account for
tractability: The` function can be used to compare events
of equal duration. However, how can events with different
duration periods be compared? The solution is not straight-
forward sincè values coming from different length periods
can not be directly compared. This is because such proba-
bilities are coming from probability spaces of different di-
mensions, so larger dimensions imply additional restrictions
and thus lower probability. The approach proposed to com-
pare events coming from different durations is by analyz-
ing the associated characteristic of greater interest in the ex-
treme analysis: the mean frequency of recurrence (MFR) or
its inverse, the Return Period. When computing the MFR of
events with different duration periods, all the probabilities re-
sulting from spaces of different dimensions are expressed in
the same scale. Either MFR or Return Period may be used to
compare events of different durations. A method to compute
MFR of events for any duration, assuming independence of
the variables in each time interval, was analytically devel-
oped.

2.1 Computation of the MFR of events with durationw

In a setX1, X2, . . . , Xw of w realizations of a random vari-
ablex, with probability density functionf (x), and cumula-
tive density functionF(x), the functioǹ (X1, X2, . . . , Xw)

is defined as the probability of events withxi≥Xi , for
i=1, 2, . . . , w.

`(X1, X2, . . . , Xw) = P [(x1, x2, . . . , xw)/xi ≥ Xi,

i = 1, 2, . . . , w] (1)

Under the assumption of independence between realizations,
` can be computed as:

`(X1, X2, . . . , Xw) =

w∏
i=1

(1 − F(Xi)) (2)

and`(x1, x2, . . . , xw)=α, whereα is assumed constant, rep-
resents a surface in theRw space. DefiningXc=F−1(1−α),
from Eq. (2) it follows that, over that surface, asxj→ − ∞

for all j 6 =i, thenxi→Xc, since`(x1, x2, . . . , xw)→1 −

F(xi)=α. Therefore, over this surface, the range of val-
ues of each componentxi is (−∞, Xc). The surface
`(x1, x2, . . . , xw)=α will be referred as̀ w(Xc).

The function `w(Xc) delimits a volume for which
`(x1, x2, . . . , xw)<α=1−F(Xc). This volume in a
Rw space is referred asLw and is defined byXc, or equiva-
lently byα, as shown in Eq. (3).

Lw(Xc) = {(x1, x2, . . . , xw)/`(x1, x2, . . . , xw)

< (1 − F(Xc))} (3)

In the volume Lw(Xc) each component ranges be-
tween (−∞, Xc). When k<w, (X1, X2, . . . , Xk)

with `(X1, X2, . . . , Xw)<(1−F(Xc)), are fixed,
then the remainder components of the points
into Lw(Xc) in the Rw space lay in a nar-
rower interval (−∞, H(Xc; X1, X2, . . . , Xk)), where
H(Xc; X1, X2, . . . , Xk) is defined as follows:

H(Xc; X1, X2, . . . , Xk)

= F−1

1 −
1 − F(Xc)

k∏
i=1

(1 − F(Xi))

 (4)

The probability of occurring events(x1, x2, . . . , xw) be-
longing toLw(Xc) is defined asP [Lw(Xc)]=P [(x1, x2, . . . , xw) ∈

Lw(Xc)], and its computation results from integrating the
PDF intoLw(Xc), i.e.:

P [Lw(Xc)] =

∫
Lw(Xc)

w∏
i=1

f (si) · dV (5)

wheredV is the volume differential in theRw space. As in-
dependence is assumed, the PDF in a point(x1, x2, . . . , xw)

is equal to the cumulative product of all single PDFs,f (xi).
This integral can be written usingH functions as:

P [Lw(Xc)] =

Xc∫
−∞

f (sw) ·

H(Xc;sw)∫
−∞

f (sw−1) · . . . ·

H(Xc;sw,sw−1,... ,s2)∫
−∞

f (s1) · ds1 · . . . · dsw−1 · dsw (6)
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However, the main interest is the associated MFR of
events outsideLw(Xc), for a fixedXc (i.e. larger that this
set of events), rather than the probability ofLw(Xc). To
compute it, let us assumex1, x2, ..., xn−1 to be a set of
consecutive realizations of the random variablex. After
a new realizationxn is observed, definepn as the con-
ditional probability that the set of lastw realizations (i.e.
xn−w+1, xn−w+2, . . . , xn) belongs toLw(Xc), under the
condition that all earlier sets ofw consecutive realizations
(i.e. xi−w+1, xi−w+2, . . . , xi i=w, w + 1, . . . , n − 1) be-
longs also toLw(Xc).

pn = P [(xn−w+1, xn−w+2, . . . , xn)

∈ Lw(Xc)/(xi−w+1, xi−w+2, . . . , xi)

∈ Lw(Xc), i = w, w + 1, . . . , n − 1] (7)

As n increases,pn tends to a constant value that represents
the probability that aw−event occurs (i.e. set ofw consec-

utive realizations) belonging toLw(Xc), given that earlier
w−events also belong toLw(Xc). The backwards extension
in time of these earlier events must be taken, from a practical
point of view, as when the influences of earliest realizations
have a negligible influence inpn and it tends to a constant
value. Under such practical point of view, asn increases the
complementaryqn=1−pn tends to the mean frequency of
recurrence (MFR) ofw−events larger or equal thaǹw(Xc)

assuming that previousw−events were smaller. Addition-
ally, the return period ofw−events larger or equal than
`w(Xc), after sufficient realizations ofw−events smaller
than`w(Xc), is 1/qn, for largen.

Therefore, to evaluate MFR or the return period of
w−events larger or equal thaǹw(Xc) requires the compu-
tation of conditional probabilities. Details of the analytical
derivation of the expressions that provide the algorithms to
compute the MFR are shown in Appendix A.

Forn≤w it follows that:

n∏
i=1

pi =

Xc∫
−∞

f (sn) ·

H(Xc;sn)∫
−∞

f (sn−1) · . . . ·

H(Xc;sn,sn−1,... ,s2)∫
−∞

f (s1) · ds1 · . . . · dsn−1 · dsn (8)

Forn>w + 1, using a recurrence expression for computing the auxiliary functionGi :

G1(sw, sw−1, . . . , s1) =

H(Xc;sw,sw−1,... ,s2)∫
−∞

f (s1) · ds1 (9)

Gi(si+w−1, si+w−2, . . . , si+1) =

H(Xc;si+w−1,si+w−2,... ,si+1)∫
−∞

f (si) · Gi−1(si+w−2, si+w−3, . . . , si) · dsi for i > 1 (10)

Thus:

n∏
i=1

pi =

Xc∫
−∞

f (sn) ·

H(Xc;sn)∫
−∞

f (sn−1) · . . . ·

H(Xc;sn,sn−1,... ,sn−w+2)∫
−∞

f (sn−w+1) · Gn−w(sn−1, sn−2, . . . , sn−w+1)

· dsn−w+1 · . . . · dsn−1 · dsn (11)

Following the recurrence expressions (9) to (11) and des-
ignatingPn as

Pn =

n∏
i=1

pi (12)

pn can be computed dividingPn by Pn−1. The value of the
MFR coincides withqn=1−pn asn tends to infinity.

2.2 Transformation for the MFR computations

The computation ofpn involves a significant amount of in-
tegrals, especially for largew. For many PDFs,f (x), those
integrals do not have an analytical solution (e.g. the normal
distribution) and numerical methods need to be applied to
approximate the solution. Since it is a sequential process
with multiplicative structure, care must be taken to control

the propagation of errors. Furthermore, even with small er-
rors, these may limit the application, because the probability
characterization of extreme events is very sensitive to round
off errors. A transformation is now presented that simplifies
the integrals in the operations sequence, provides analytical
solutions for the approximations that avoids numerical errors
and allows better control of round of errors.

Define the transformation ofx to a new variableν by
Eq. (13).

ν = −Ln(1 − F(x)) (13)

Under this transformation, whenx→ − ∞, ν→0; and
whenx→Xc, ν→Vc=−Ln(1 − F(Xc)), it follows that

Vc = V1 + V2 + . . . + Vw (14)



J. Gonźalez and J. B. Vald́es: The mean frequency of recurrence of in-time-multidimensional events for drought analyses 21

The function`(x1, x2, . . . , xw) written in terms ofνi has
a simpler form

`(ν1, ν2, . . . , νw) = e
−

w∑
i=1

νi

(15)

Therefore, the surface represented by`w(Vc) forms, in
term ofν’s, the region of the planeν1+ν2+. . .+νw=νc, with
νi>0 for i=1, 2, . . . , w. The volume defined byLw(Vc)

now takes the form of a polyhedron delimited by`w(Vc) and
the planesνi=0 for i=1, 2, . . . , w. The functionH , used
to set the integration ranges of components of points belong-
ing toLw(Vc). After fixing several components Eq. (4), may
now be expressed as

H(Vc, ν1, ν2, . . . , νk) = Vc −

k∑
i=1

νi (16)

To perform the integrals, the Jacobian of the transforma-
tion is required. From Eq. (13)

dν

dx
=

f (x)

1 − F(x)
=

f (ν)

e−ν
(17)

and the Jacobian function is

J (ν) =
dx

dν
=

e−ν

f (ν)
(18)

This simplification allows the representation of the inte-
grals in a simpler form. For example, the probability of
Lw(Vc), Eq. (6), using Eqs. (17) and (18) now takes the form

P [Lw(Vc)] =

Vc∫
0

e−νw ·

Vc−νw∫
0

e−νw−1 · . . . ·

Vc−

w∑
i=2∫

0

e−ν1 · dν1 · . . . · dνw−1 · dνw (19)

P [Lw(Vc)] = 1 −

(
w∑

i=1

V i
c

i!

)
· e−νc (20)

This result is independent of the distribution function used
for x. The only role of such distribution is in computingVc.

The recurrence expressions (9) to (10) after this transforma-
tion yield to:

p1 = 1 − e−νc (21)

Pn =

n∏
i=1

pi =

Vc∫
0

e−νn ·

Vc−

n∑
i=n

νi∫
0

e−νn−1 · . . . ·

Vc−

n∑
i=2

νi∫
0

e−ν1 · dν1 · . . . · dνn−1 · dνn (22)

for n = 2, . . . , w

G1(νw, νw−1, . . . , ν2) =

Vc−

w∑
i=2

νi∫
0

e−ν1 · dν1 (23)

Gi(νi+w−1, νi+w−2, . . . , νi+1) =

Vc−

i+w−1∑
j=i+1

νj∫
0

e−ν1 · Gi−1(νi+w−2, νi+w−3, . . . , νi) · dνi (24)

for i > 1

Pn =

Vc∫
0

e−νn ·

Vc−

n∑
i=n

νi∫
0

e−νn−1 · . . . ·

Vc−

n∑
i=n−w+2

νi∫
0

e−νn−w+1 · Gn−w(νn−1, νn−2, . . . , νn−w+1) · dνn−w+1 · . . . · dνn−1 · dνn (25)

for n > w
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Based on this transformation, the analytical expression of
Pn may be calculated, and it is possible to evaluatepn for
different n’s, studying its convergence. However, the num-
ber of terms in this analytical solution grows fast asn or w

increases.Pn has the general form:

Pn = 1 +

n∑
j=1

qj (Vc) · e−j ·Vc (26)

where qj (Vc) with j=1, 2, . . . , n are polynomials and a
function of Vc. An aspect of the computation ofPn is that
asn increases the coefficients in the polynomialsqj (Vc) be-
come larger. ForVc smaller than a given valueε the round-
off errors associated with the computation of Eq. (26) get
larger or equal order of magnitude that the exact solution.
The value ofε, delimiting the range for which round-off er-
rors are relevant, increases withn. Therefore, care must be
taken with the maximum value ofn adopted and the precision
of the calculation to avoid divergence.

Additionally, for large values ofVc, the terms in the sum-
mation, that is larger than a fixedε, the terms in the summa-
tion associated with larger indexes (i.e.j ) can be neglected

compared with first indexes. So, a good approximation to the
exact solution can be achieved by truncating, in the sequence
of integrals, the results to the firstm terms.

Pn ≈ 1 +

m∑
j=1

qj (Vc) · e−j ·Vc for m < n (27)

2.3 Approximate solution of MFR of events with
durationw

Using truncation techniques an approximation to the function
that relates the conditional probabilityp with Vc, for a given
w, may be calculated. This function will have a fractional
form, where both the numerator and denominator are sum-
mations of terms composed by a polynomial inVc multiplied
by an integer power of the negative exponential ofVc.

pw = Aw(Vc)/Bw(Vc) (28)

Aw(Vc) andBw(Vc) may be expressed in matrix form. For
example, withw = 2 and truncation levelm=5, pw=2 is
approximated by

Aw=2(Vc) = (1 Vc V 2
c V 3

c V 4
c V 5

c ) ·



1 7 19 21 −6 −42
0 −9 −42 −65 −24 14
0 0 49

2
125
2 36 0

0 0 0 −
125
6 −18 −

2
3

0 0 0 0 27
8

1
8

0 0 0 0 0 −
1

120

 ·



1
e−Vc

e−2Vc

e−3Vc

e−4Vc

e−5Vc

 (29)

Bw=2(Vc) = (1 Vc V 2
c V 3

c V 4
c V 5

c ) ·



1 6 13 8 −14 −14
0 −8 −30 −32 0 0
0 0 18 32 8 0
0 0 0 −

32
3 −4 0

0 0 0 0 2
3 0

0 0 0 0 0 0

 ·



1
e−Vc

e−2Vc

e−3Vc

e−4Vc

e−5Vc

 (30)

The approximate expressions for largerw have a similar
structure and may be computed with Eqs. (21) to (25) using
or not truncation techniques. In Fig. 2 thepw function is
plotted for values ofw from 2 to 8. For a givenp, asw in-
creases theVc value that provides the samep increases too.
This tendency is shown in Fig. 3, where, for a set ofp val-
ues, it is plotted the values ofVc versusw. The curves are
smooth concave curves. This allows interpolations inw, so
no allpw ’s functions require to be calculated.

From the conditional probabilitiespw, its complementary
qw=1−pw is the Mean Frequency of Recurrence (MFR) and
the inverse 1/qw is the Return Period of such events.

An important outcome of this work is that the results are
distribution-free. The statistical distribution of the variablex

only plays a role in theXc transformation toVc.

3 Application: the MFR as a drought frequency index

The technique developed above can be applied to charac-
terize droughts in term of their Mean Frequency of Recur-
rence (MFR). Both historical events and present events may
be characterized. The index expresses the degree of rareness
of the event or situation based on the statistical normal be-
havior.

In order to illustrate how to characterize a given situation,
Fig. 4 shows the analysis of the situation at time step n of
a hypothetic signal that follows a standard normal distribu-
tion. The signal at that time is finishing a period of persistent
low values. Different durations may be analyzed at that time
to characterize the current situation. Thep values estimated
using similar structure expressions that Eq. (28) are shown
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Fig. 2. Marginal probability of events of durationw, belonging to
L(Xc=F−1(1−e−Vc )) after indefinite succession of events belong-
ing toL(Xc)

Fig. 3. Vc versusw for a fixed marginal probabilityp, which
smooth variation allows interpolation inw

below for durationsw=1 . . . 8 time steps, all periods end-
ing at time stepn (i.e. (Xn), (Xn−1, Xn), . . . , (Xn−7, Xn−6,

. . . , Xn)). The MFR, q=1−p, and the Return Period,
T =1/q are also presented. If only the last valueXn is of
interest, this looks normal, andT is low. However, when the
last two or three values are analyzed,T increases, especially
for w=3. This includes the extreme period of low values
that still prevails at this time. Asw increases,T decreases
because the mean behavior of the signal gets closer to nor-
mal. Therefore, to characterize the situation at time step 8,
from the point of view of period of low extreme values, the
natural way is associating the observed largest Return Period
with the events that ended at this time step. The value in
this case isT =21 time step units and this will be the value

Fig. 4. Illustration of the computation of the drought index in time
stepn for time seriesx. At this time step the marginal probability
p, the MFR orq, and the Return PeriodT are computed for events
of different durationw, all ended at time step 8. The index value is
defined as the maximum of all Return Periods of events that ended
at this time step. In this case, the drought index value is equal to 21
for (Xn−2, Xn−1, Xn)

Fig. 5. Records of annual precipitation and drought study with
recurrence analysis (T ) and PDSI, for Texas Climatic Division 5
(USA)

of the drought index that would characterize the situation at
this time step. This corresponds with the idea that droughts
are not only extreme low values of a water-availability sig-
nal, but also persistency must be taken into account. With
this procedure, persistence is included by going back in time
looking for the most extreme period.

The above procedure characterizes the situation at a fixed
time step, getting the drought index value, equal to the largest
T of the periods that ended at that moment. Characteriz-
ing in this way each time, in a time series, produce a rep-
resentation of the variation of the degree of dryness. As an
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Fig. 6. Precipitation records and SPI in Gibraltar.

example, Fig. 5 presents the application of the index to the
drought analysis of annual precipitation in Texas Climatic
Division 5. The index characterizes the degree of extreme
dryness of current periods after each year. Main droughts
occurred in the 1930’s, 1950’s, and in current years. The re-
sults of applying the Palmer drought index, PDSI, are also
presented. PDSI expresses the current precipitation regime,
in addition to temperature, as a dimensionless index. Val-
ues below−1 represent drought periods with different grades
of intensity depending on the index value (from−1 to −2
indicate mild drought, from−2 to −3 moderate drought,
from −3 to −4 severe drought, and lower than−4 extreme
drought). Since expressed in a dimensionless scale, PDSI
values may be compared among drought events from dif-
ferent geographical locations (always keeping in mind that
PDSI was originally developed for arid and semiarid regions
and its application in different climate regions are outside the
original scope).

During the Texas 1950’s drought the Palmer index was
low, with values below−4 for several consecutive years.
However, while drought was occurring and its persistence in-
creased, the index kept similar low values without providing
a clear idea of the drought magnitude which was increasing
in time. Another examples to support the point of no persis-
tence representation of the Palmer index are found by analyz-
ing the 1930’s and 1950’s droughts. In both cases the index
achieves values lower than−4, so both are extreme droughts.
However, the index does not distinguish which event is more
exceptional. Drought durations must be included in addition
to the index value to account for persistence, but no integral
quantification of the magnitude of each drought is supplied.

On the other hand the use of the proposed approach, com-
puting the return period of extremely low events in the pre-
cipitation records analysis overcomes these shortcomings.
When the 1950’s drought starts, the return period of the event
becomes large and increases as the situation continues, given

by the higher persistence, which implies a more exceptional
event. As normal conditions returns, the return period de-
creases going back to normal values. Analyzing the 1930’s
and 1950’s events, even when the minimum annual precipi-
tation was lower for the 1930’s, the 1950’s drought achieved
a return period of the order of 1000 years, while the 1930’s
was 100 years. This is obviously due to persistence. For
the case of the 1950’s drought the return period is of similar
magnitude to that calculated by Gonzalez and Valdes (2003),
in that case coming from paleoclimatic data and the bivariate
statistical analysis of droughts using PDSI (T =700 years).
For the case of the 1930’s drought the return period coming
from the recurrence analysis increases significantly (T =44
years). Nevertheless, relative increments are expected be-
cause the presented approach computes return periods with
larger degrees of freedom.

The MFR or the return period,T , provides a direct idea of
the event magnitude that is represented by an unique value.
In both real time analyses and retrospective analyses, the ap-
proach is useful for quantification proposes. Another com-
parable aspect between PDSI and MFR is the spatial behav-
ior of the index. As analyzed by Guttman et al. (1992) the
Palmer index does not account with the a priori desired prop-
erty of spatial comparability of the index. As these authors
suggest, magnitudes of probabilistic nature are prescribed for
this aim. In this way, the MFR orT values are fully suit-
able. Its probability groundwork allows comparability be-
tween different locations, even with various climates. Ac-
cording with this idea, the SPI is also a drought index with a
probabilistic nature, which Guttman et al. (1998) compared
its spatial behavior with PDSI. Their work showed the better
spatial comparability properties of the SPI index with respect
to the PDSI.

SPI represents the distribution of cumulative precipita-
tion for different periods transformed as normalized stan-
dard population. Figure 6 presents the SPI analysis applied
over Gibraltar precipitation records for periods of 12, 24,
36, 48 months. The index allows for the quantification of
both dry and wet periods. The different aggregation time
provides information about the patter occurrence of different
kind of droughts (e.g. short droughts, useful for agricultural
purposes, or long droughts, of interest for WRM). This fact
and its spatial comparability are the main advantages of the
SPI drought index.

Nevertheless, the SPI index does not allow considering
different time aggregations, when comparing events that,
even when they correspond to the same temporal scale, have
different durations. To illustrate this point, the drought anal-
ysis performed with SPI in Gibraltar (Fig. 6) reveals several
droughts in the record. Two of them occurred in 1960’s and
1970’s. These episodes have different characteristics: the
first one has a duration of 5 years, while the second extends
over a shorter period of 2 years. The 1960’s drought has a
smaller intensity than the 1970’s drought, so the first corre-
sponds with an event of small intensity but prolonged over
a long period, while the second coincides with a short high
intensity event. To evaluate which event is more exceptional,
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Fig. 7. Precipitation records and drought recurrence analysis in
Gibraltar.

if cumulative periods of 12 and 24 months are used, the SPI
index indicated that the 1970’s has a higher magnitude. How-
ever, if a cumulative period of 48 months is considered, the
index set the 1960’s drought as more severe.

The question of ranking droughts is not completely re-
solved using SPI, however, this is an important question. For
example, in WRM the design and management of reservoir
systems is different depending on the expected duration of
shortage periods. Figure 7 presents the drought analysis in
Gibraltar using the proposed approach. Two more extreme
events occurred in 1879’s and 1980’s, corresponding to 60
and 100 years return period respectively. The procedure pre-
sented in this paper determined that the 1960’s drought has
a return period of 20 years and the 1970’s a return period
of approximately 50 years. Thus the 1970’s drought is more
exceptional, even when shorter.

The main advantages of this analysis over the SPI is that
it contains in one unique curve all this information, taking
into account all the characteristics such as duration, severity,
or distribution of the deficit. In addition, recurrence anal-
ysis has a physical meaning: the return period, which pro-
vides a direct idea of the grade of exceptionality of the event.
As a statistical property, the MFR may be used to compare
drought events from different climates and regions. In the an-
alyzed case studies the precipitation regimes are completely
different with significant differences in their variability. In
the case of Texas Climatic Division 5, it belongs to a semiarid
region, whose coefficient of variation of the annual precipi-
tation reaches a value of 0.650. On the other hand, Gibraltar
is a humid region, with an annual precipitation coefficient
of variation of 0.324. Even with so different precipitation
regimes, the MFR efficiently characterizes drought episodes
and makes possible the comparison of the drought conditions
between both regions. This is a desired property in WRM
dealing with extensive systems affected by different precip-
itation regimes. The MFR could provide information about
which region is under a more severe event, so resource com-

pensation could be performed. This may allow for the man-
agement of diversions between different watersheds.

The work provides the recurrence frequency ofw−events.
This frequency is used to distinguish between events of dif-
ferent durations. Low frequencies represent a higher excep-
tionality of the event. Future work is required to compute the
return period of events for any duration. The frequency of
droughts of a given magnitude is higher when the possibility
of any event duration is considered.

4 Conclusions

The proposed approach to compute the MFR of in-time-
multidimensional events allows the practical use of this con-
cept in the characterization of droughts. The approach re-
quires the condition of temporal independence of the in-
volved variable, but it does not depend on the probability
distribution of the variable. The application of the MFR of
multidimensional events in drought characterization, and the
formulation of the associated index, has the advantage of
dealing with droughts in term of probabilities, and it charac-
terizes droughts integrating all the aspects of an event: dura-
tion, severity, maximum intensity, etc. The probability nature
of the index coming from the recurrence analysis justifies its
correct application on comparing drought events of different
places and climates. This is an advantage from other indices
not based on statistic properties.

The main advantage with respect the SPI, which is also
based on statistical concepts, is that it embeds the duration
on the analysis, and does not require a parallel analysis like
the SPI does. Furthermore, the presented approach may be
applied to any hydroclimatic variable of interest, not only
precipitation. The resulting index allows the representation
of the main drought characteristics in a single value, based on
the stochastic feature of the phenomenon, and scaled on the
mean frequency of recurrence. The index value has complete
meaning, in the sense way that provides the Return Period of
the actual situation, considered as the more extreme from the
recent observations.

The approach is useful not only for drought characteriza-
tion, but also in any other analysis of natural hazards from
extreme deviations from the normality of a variable during
a certain extension in time or space (e.g. floods), as well as,
in system state monitoring for water resources management,
analyzing precipitation, stream flows, aquifer recharges, soil
moisture, etc.

Appendix A Analytical derivation of the MFR

To evaluate the MFR or the return period ofw−events larger
or equal thaǹ w(Xc) requires to compute a succession of
conditional probabilities. The evaluation ofpn, as defined in
Eq. (7), is as follows:
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1. After the first realization,x1, now−event may be studied, but asx1 must belong to a set(x1, x2, . . . , xw)∈Lw(Xc), then
x1∈(−∞, Xc). Thereforep1=F(Xc) and the conditional PDF ofx1 is given by Eq. (A.1).

f1(x1) = f (x1)/p1 x1 ∈ (−∞, Xc) (A1)

2. When the second realization occurs,x2, the set(x1, x2) must be from aw−event belonging toLw(Xc). If w=2, then
(x1, x2)∈Lw(Xc). Whenw>2, the remaining components,(x3, x4, . . . , xw) are still undetermined, and it is only known
that they are in the interval(−∞, Xc). From this fact, whenxi→−∞, i=3, 4, . . . w, at least(x1, x2) must belong to
L2(Xc). Therefore, even forw>2, (x1, x2)∈L2(Xc) the conditional probabilityp2 follows Eq. (A.2).

p2 =

Xc∫
−∞

f (s2) ·

H(Xc;s1)∫
−∞

f1(s1) · ds1 · ds2 (A2)

From (A.1) it follows that:

p1 · p2 =

Xc∫
−∞

f (s2) ·

H(Xc;s2)∫
−∞

f (s1) · ds1 · ds2 (A3)

3. Similarly, forn≤w it follows that

pn =

Xc∫
−∞

f (sn) ·

H(Xc;sn)∫
−∞

fn−1(sn−1) · . . . ·

H(Xc;sn,sn−1,... ,s2)∫
−∞

f1(s1) · ds1 · . . . · dsn−1 · dsn (A4)

with fi(xi)=f (xi)/pi i=1, 2, . . . , n−1, and therefore

n∏
i=1

pi =

Xc∫
−∞

f (sn) ·

H(Xc;sn)∫
−∞

f (sn−1) · . . . ·

H(Xc;sn,sn−1,... ,s2)∫
−∞

f (s1) · ds1 · . . . · dsn−1 · dsn (A5)

4. Whenn=w+1, the conditional probabilitypw+1 is given by Eq. (A.6).

pw+1 =

Xc∫
−∞

f (sw+1) ·

H(Xc;sw+1)∫
−∞

fw(sw) · . . . ·

H(Xc;sw+1,sw,... ,s3)∫
−∞

f2(s2) ·

H(Xc;sw,sw−1,... ,s2)∫
−∞

f1(s1) · ds1 · ds2 · . . . · dsw · dsw+1 (A6)

Defining the function

G1(sw, sw−1, . . . , s2) =

H(Xc;sw,sw−1,... ,s2)∫
−∞

f (s1) · ds1 (A7)

it follows that

n∏
i=1

pi =

Xc∫
−∞

f (sw+1) ·

H(Xc;sw+1)∫
−∞

f (sw) · . . . ·

H(Xc;sw+1,sw,... ,s3)∫
−∞

f (s2) · G1(sw, sw−1, . . . , s2) · ds2 · . . . · dsw · dsw+1 (A8)



J. Gonźalez and J. B. Vald́es: The mean frequency of recurrence of in-time-multidimensional events for drought analyses 27

5. For a generaln>w+1 and taking into consideration the recurrence expression

Gi(si+w−1, si+w−2, . . . , si+1) =

H(Xc;si+w−1,si+w−2,... ,si+1)∫
−∞

f (si) · Gi−1(si+w−2, si+w−3, . . . , si) · dsi (A9)

yields

n∏
i=1

pi =

Xc∫
−∞

f (sn) ·

H(Xc;sn)∫
−∞

f (sn−1) · . . . ·

H(Xc;sn,sn−1,... ,sn−w+1)∫
−∞

f (sn−w+1) · Gn−w(sn−1, sn−2, . . . , sn−w+1)

·dsn−w+1 · . . . · dsn−1 · dsn (A10)

Following the recurrence expressions (A.9) and (A.10)
and designatingPn as

Pn =

n∏
i=1

pi (A11)

pn can be computed dividingPn by Pn−1. Therefore,
qn=1−pn is the marginal probability of occurring a
w−event larger than the defined byXc. As n tends to
infinity, qn tends to the MFR of such events, and its in-
verse is the return period.
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