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Abstract. Investigations of the distribution of regional seis-
micity and the results of numerical simulations of the seis-
mic process show the increase of inhomogenity in spatio-
temporal distribution of the seismicity prior to large earth-
quakes and formation of inhomogeneous clusters in a wide
range of scales. Since that, the multifractal approach is ap-
propriate to investigate the details of such dynamics.

Here we analyze the dynamics of the seismicity distribu-
tion before a number of strong earthquakes occurred in two
seismically active regions of the world: Japan and Southern
California. In order to study the evolution of spatial inhomo-
geneity of the seismicity distribution, we consider variations
of two multifractal characteristics: information entropy of
multifractal measure generation process and the higher-order
generalized fractal dimension of the continuum of the earth-
quake epicenters. Also we studied the dynamics of the level
of spatio-temporal correlations in the seismicity distribution.
It is found that two aforementioned multifractal characteris-
tics tend to decrease and the level of spatio-temporal corre-
lations tends to increase before the majority of considered
strong earthquakes. Such a tendency can be considered as an
earthquake precursory signature.

Therefore, the results obtained show the possibility to
use multifractal and correlation characteristics of the spatio-
temporal distribution of regional seismicity for seismic haz-
ard risk evaluation.

1 Introduction

Study of evolution of spatial and temporal distribution of the
seismicity is important for understanding of the earthquake
preparation process. A number of precursory phenomena
is related to changes in spatial distribution of the seismic-
ity. One of the common features of these phenomena is the
evolution of inhomogeneity in the seismicity spatial distri-
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bution in wide range of scales. In the large scales, this fea-
ture manifests itself in the seismicity concentration close to
the nodal plane of the future rupture. The laboratory experi-
ments of Mogi and Scholz (Mogi, 1968; Scholz, 1968) have
to be mentioned in this connection. Also this pattern has been
observed in the laboratory experiments of Sobolev and Pono-
marev (1999) and even in the actual studies of the seismicity
behavior before some strong earthquakes of the Kamchatka
region (Zavialov and Nikitin, 1999). In the small scales, this
phenomena manifests itself in the seismicity clustering be-
fore the mainshock (Zavialov and Nikitin, 1999) and forma-
tion of spatio-temporal clusters of the acoustic emission in
the laboratory experiments (Sobolev and Ponomarev, 1999).

A suitable method for description of the inhomogeneity
of the seismicity spatial distribution is based on fractal ap-
proach. The results of corresponding investigations show
that seismicity spatial distribution manifests statistically self-
similar properties in a wide range of scales. Therefore, it can
be treated as fractal or multifractal. Several papers are related
to this item (Sadovsky et al., 1984; Okubo and Aki, 1987;
Geilikman et. al., 1990; Hirata and Imoto, 1991; Turcotte,
1997; Wang and Lee, 1996; Lapenna et al., 2000). However,
only a few papers are reported, where the dynamics of fractal
properties of seismicity is studied before strong earthquakes.

A gradual decrease of the correlation exponent of spatial
distribution of acoustic shocks has been observed by Hirata
et al. (1987) during the destruction of granite sample. The
behavior of the fractal dimension (calculated by the box-
counting method) of the continuum of earthquake epicenters
has been studied by Uritsky and Troyan (1998). The author
used the materials of the world-wide seismicity data-center.
The fractal dimension had been calculated for the two-year
periods before and after 23 strong earthquakes. In 16 cases
the pre-earthquake period was characterized by a lower frac-
tal dimension.

The results of numerical modeling of the destruction pro-
cess of the elastic body, containing a number of cracks
(Kiyashchenko and Troyan, 2001), showed that correla-
tion dimension of the continuum of the synthetic seismic-
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Fig. 1. Qualitative analogy between destruction process and multi-
plicative process.

ity hypocenters decreased during evolution of the destruction
process towards the main rupture. Hence, evolution of the in-
homogeneity of spatial distribution of seismicity in different
scales, which manifests itself in decrease of fractal dimen-
sions, can be interpreted as a significant feature of the earth-
quake preparation process.

In this paper we apply multifractal methods for analysis
of the seismicity distribution dynamics prior to strong earth-
quakes. There are several reasons for using multifractal anal-
ysis instead of monofractal analysis (i.e. calculation of frac-
tal dimension by box-counting method, calculation of corre-
lation dimension, etc.):

1. Multifractal analysis is more general than fractal anal-
ysis. Fractal dimension and correlation dimension can
be easily retrieved from the spectrum of the generalized
fractal dimensions.

2. Fractal analysis, based on the box-counting algorithm
(i.e. counting of the number of non-empty boxes of dif-
ferent sizes, covering the considered continuum), can
not take into account the distribution of number of earth-
quakes along different boxes. Multifractal analysis fills
this gap of fractal analysis, since it is based on counting
of the number of events in the boxes of different sizes.

If we represent the seismicity distribution as a colour
map, the fractal analysis treats it as a black/white image.
Multifractal analysis takes into account different colors,
which compose the image.

3. The qualitative analogy can be established between the
destruction process and multiplicative process of mul-
tifractal structure generation. The crack, appearing in
the elastic body under external stress (Fig. 1, Step 1),

Fig. 2. Earthquake epicenters continuum.

causes redistribution of stress near it’s tips (see Lawn
and Wilshaw, 1977; Liebowits, 1968). The notionsM2,
M1 (M2 > M1) in Fig. 1 are relative values of average
stress level in the zonesB, A, respectively. The cracks,
appearing in the zonesA, B cause the stress redistri-
bution in similar proportion (Step 2). As a result of a
number of such steps, the highly inhomogeneous spot-
like stress field distribution and hierarchical crack sys-
tem appear in the elastic body. The spot-like feature of
the seismicity can be considered as one of the manifes-
tations of such mechanism.

Therefore, multifractal methods seems to be suitable for
description of the seismicity distribution.

Besides study of precursory evolution of inhomogenity of
spatial distribution of the seismicity, it is also important to
pay attention to the evolution of inhomogenity in the tem-
poral distribution of the seismicity. The results of numeri-
cal modeling of the destruction process (Kiyashchenko and
Troyan, 2001) and the results of study of the acoustic emis-
sion (Sobolev and Ponomarev, 1999) show the increase of
spatio-temporal correlations in the seismicity distribution be-
fore the main rupture.

Here we study the dynamics of multifractal and spatio-
temporal correlation characteristics of the seismicity before
several strong earthquakes of Japan and Southern California
in order to reveal precursory signatures.

2 The approach to study of the seismicity distribution
dynamics

In this section we give the description of our approach to
study of the dynamics of spatio-temporal distribution of the
seismicity prior to large earthquakes.

We use multifractal analysis for description of spatial dis-
tribution of seismicity. As it is discussed in the previous sec-
tion, the multifractal approach is suitable for this purpose.
Moreover, the variations of scaling characteristics of the seis-
micity have to contain information about the evolution of the
destruction process in the earth crust (see Kiyashchenko and
Troyan, 2001).

The detailed description of multifractal formalism can be
found in Feder, 1988 and Mandelbrot, 1989. The brief de-
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scription of principal points of multifractal analysis is given
below in Appendix A.

As it is shown in the previous section, the spatial distribu-
tion of the seismicity can be treated as a result of some cas-
cade multiplicative process, governed by a set of parameters.
The binomial multiplicative process, which is governed by
two parameters only, is the simplest one among such kinds
of processes. It is considered in Appendix A.

The distributions, which are generated by multiplicative
processes, have the properties of multifractals. Such distri-
butions can be completely described by the spectrum of gen-
eralized fractal dimensionsd(q) or the multifractal spectrum
f (α) (see Appendix A). These characteristics contain a lot of
information about the parameters of multiplicative process,
underlying the generation of multifractal distribution.

In our case, we study 2D distribution of the seismicity
hypocenters (Fig. 2). The distribution functionpj (1) is de-
fined as:

pj (1) =
Nj

N
,

whereNj is the number of earthquakes occurred in the cell
with numberj and size1, andN is the total number of earth-
quakes in the considered region. The generalized fractal di-
mensiond(q) of the orderq is determined as a slope of the
best fit line representing the Renyi entropyIq(1) versus 1/1
in log-log plot (see Eqs. (A3) and (A4) in Appendix A).

The dynamics of two multifractal characteristics have been
studied prior to strong earthquakes: the minimal value of the
Holder exponentαmin = d(∞) and the entropyS of the mul-
tifractal measure generation process (S = α1 = d(1)). This
multifractal characteristics provide an information about the
inhomogeneity of the seismicity distribution and the level of
seismicity clustering in some range of scales. So, the entropy
S can be treated as the measure of inhomogeneity of distri-
bution of the seismicity: the lower (higher) values ofS cor-
respond to more (less) inhomogeneous distributions (see Ap-
pendix A). The value ofαmin characterizes the degree of seis-
micity clustering in the most seismically active parts of the
considered region in some range of scales. The smaller val-
ues ofαmin can be interpreted as a manifestation of stronger
clustering.

Besides multifractal characteristics, the dynamics of the
degree of spatio-temporal correlations in the seismicity dis-
tribution has been studied as well. The measure of the level
of spatio-temporal correlations can be defined as:

g(a, b, τ ) =
2

N(N − 1)
Np(τ, a < R < b); τ =

T0

WN
.

Here N is the number of events, occurred in some area
during the temporal periodT0; Np is the number of events,
occurred within the temporal intervalτ , and the spatial dis-
tanceR between which is ranged froma to b. The temporal
interval τ is takenW (in our caseW = 50) times less than
intervalT0/N . In this case the functiong(a, b) depends only
on the temporal distribution of earthquakes, but it does not

depend on their total number, occurred during the temporal
periodT0.

The results of study of the dynamics of valueC =

ln(g(0, 20 km)) prior to strong earthquakes are presented
and discussed in the next section.

Overall, our study contains investigation of the dynamics
of the multifractal characteristicsS andαmin of spatial dis-
tribution of the seismicity and the levelC of spatio-temporal
correlations in the seismicity prior to several strong earth-
quakes.

Two earthquake hypocenter catalogs have been used for
this analysis:

1. Japan University Network Earthquake Catalog
Hypocenters File, published by Tokyo Earthquake
Research Institute (http://www.eri.u-tokyo.ac.jp). This
catalog contains the earthquakes with magnitude
M > 2.0 occurred in the area with geographical
coordinatesϕ = 26 − 48◦ N andλ = 128− 148◦ E
during the temporal period from 1985 to 1996.

2. Southern California earthquake hypocenter catalog
(Hauksson, 2000), containing the earthquakes with
magnitudeM > 1.0 occurred in the area with geograph-
ical coordinatesϕ = 1 − 60◦ N andλ = 26− 178◦ W
during the temporal period from 1982 to 1999 (http:
//www.scecdc.scec.org/catalog).

We restrict our consideration only with those events,
which occurred at the depth less than 60 km. At the large
depths the material of the earth crust loses elasticity and the
mechanisms of the deep earthquakes could be linked to phase
transitions rather than to shear fracturing. The simulation
of the destruction of elastic body with a number of shear
fractures (see Kiyashchenko and Troyan, 2001) showed the
certain dynamics of scaling characteristics and the level of
spatio-temporal correlations in the synthetic seismicity prior
to main rupture (see Sect. 1). We can expect the similar be-
havior in the real seismicity, if it is produced by elastic phe-
nomena. That is why we do not consider the deep events
occurred due to non-elastic phenomena.

We have selected the strong earthquakes with magnitude
M > 6.5 from both catalogs to study the dynamics of re-
gional seismicity distribution prior to those strong events.
For each of the strong earthquakes considered the subcatalog
of the seismicity registered in its surrounding area, is selected
for analysis. The surrounding area is taken in the form of a
box with the sideA (Fig. 3) centered at the earthquake epi-
center. The sizeA of the area have to be selected according
to the size of the rupture area of the strong earthquake. Also
this area should contain sufficient amount of data for multi-
fractal analysis of the seismicity in sliding temporal window.

Let us estimate roughly the available size A of the sur-
rounding area. The sizeL of the rupture area of the earth-
quake can be estimated using the empirical relation (Sobolev
and Ponomarev, 1999; Sobolev, 1990):

lg L = 0.6M − 2.5, (1)
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Fig. 3. Box – like area near earthquake epicenter.

Table 1. The rupture sizeL of the earthquake with magnitudeM

M 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

L, km 0.8 1.6 3.16 6.3 12.3 25.1 50.1 100 200

whereM is the earthquake magnitude.
The values of the rupture sizeL calculated using Eq. (1),

are shown in Table 1.
The effective radius of the surrounding area (equal to

A/2), which has to be selected for analysis, must not exceed
several lengths of the rupture of the expected strong earth-
quake. That is an important condition for searching of the
precursory phenomena using the methods suggested in this
paper. In fact, the results of simulation of the destruction
of elastic body with a number of cracks (Kiyashchenko and
Troyan, 2001) indicate that such precursory tendencies as
the decrease of correlation dimension or increase of the level
of spatio-temporal correlation in the synthetic seismicity ap-
peared due to interaction of growing cracks in wide range of
scales.

In the case of elastic body with two cracks, the interac-
tion between cracks is significant, if the distance between
the cracks is comparable with their lengths, and it is negli-
gible, if that distance exceeds several lengths of the larger
crack (see Kiyaschchenko and Troyan, 2001). Therefore, if
the size of the rupture area of the selected strong earthquake
is much smaller than the size of surrounding area (for exam-
ple if the size of surrounding area isA = 400 km and the
size of rupture area isL = 6.3 km for the earthquake with
M = 5.5), the main part of the seismicity located in this area
has no influence on the process of preparation of that strong
earthquake.

Since we select the earthquakes withM > 6.5, the corre-
sponding rupture areaL > 25 km (see Table 1). In such a
case the size of the surrounding area A= 200–400 km seems
to be suitable for multifractal analysis: on the one hand, it
is in appropriate relation with the rupture size, on the other
hand, such area contains sufficient amount of data for analy-
sis of multifractal characteristics of seismicity distribution in
sliding temporal windows of reasonable lengths.

Taking into account the amount of data in the sub-catalogs
used for analysis, and the chosen temporal window (less than
approximately 3 years in our case), the size of surround-
ing area 400× 400 km2 seems to be acceptable for Japanese

earthquakes, and the size 200× 200 km2 is suitable for the
earthquakes of Southern California. We can take the smaller
size of surrounding area for the earthquakes of Southern Cal-
ifornia since the Californian catalogs contain larger amount
of data.

Below we present the results of application of our method-
ology.

3 The results of study of the dynamics of seismicity dis-
tribution prior to strong earthquakes

Overall, 12 strong earthquakes withM > 6.5 has been se-
lected, which satisfy the conditions discussed in the previ-
ous section. The corresponding sub-catalogs of seismicity in
their surrounding areas has been analyzed. The information
concerning these earthquakes is summarized in Table 2.

For every of the sub-catalogs the multifractal character-
istics (S and αmin) and the level of spatio-temporal corre-
lations C are calculated in sliding temporal window. The
length of the temporal window 0.3 × 108 s (approximately
1 year) is chosen for study of the dynamics of the level of
spatio-temporal correlationsC. For calculation of the multi-
fractal characteristics, the length of the temporal window is
selected individually for each case to contain an adequate set
of statistics (about 1000 events).

The results of calculations of the parametersC, αmin and
S for each case presented in Table 1 are shown in Appendix
B, (see Figs. B1–B12: b, c, d). The vertical line in each
figure marks the corresponding strong earthquake, which is
selected for analysis. It is necessary to emphasize, that the
presented dynamics corresponds namely to that strong earth-
quake, which is shown by the vertical line and it does not
relate to any other strong earthquake, which one can see in
Figs. B1a–B12a. For those earthquakes, another set of statis-
tics have to be selected, and thus the other array of the pa-
rametersC, αmin andS have to be obtained. In many cases
their statistics are not enough for multifractal analysis, and
so we did not consider those earthquakes.

It should be mentioned also, that the variations of multi-
fractal characteristics presented in Figs. B1–B12 appear re-
ally due to the processes of the reorganization of the seismic-
ity but not due to numerical errors or instability of the pro-
cedure of calculation of generalized fractal dimensions. The
example considered in the Appendix C confirms this state-
ment.

Generally, it is seen from Figs. B1–B12 (b, c), that there is
a tendency of decreasing of both multifractal characteristics:
αmin and entropyS before the mainshocks. It means the in-
crease of spatial inhomogeneity of the seismicity distribution
in a wide range of scale levels, preceding strong earthquakes.
The seismicity distribution evolves from the more homoge-
neous (disordered) state towards the more clustered (ordered)
state.

The other peculiarity revealed is the enhancement of the
level of spatio-temporal correlations in the seismicity before
mainshocks (see Figs. B1–B12, d). That indicates the in-
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Table 2. The parameters of the strong earthquakes selected for analysis.N – the number of earthquake,ϕ – latitude of epicenter,λ –
longitude of epicenter,z – the depth of hypocenter,M – magnitude,S – the square of surrounding area centred on the epicenter of the
earthquake

N data ϕ λ z, km M S, km2

1 27/10/88 36.3◦ N 141.749◦ E 40 7.7 400× 400
2 02/11/89 39.736◦ N 143.39◦ E 0 6.6 400× 400
3 07/02/93 37.658◦ N 137.309◦ E 26.5 6.6 400× 400
4 04/10/94 43.383◦ N 147.928◦ E 46.2 8.1 400× 400
5 28/12/94 40.434◦ N 143.867◦ E 14.1 7.5 400× 400
6 07/01/95 40.232◦ N 142.425◦ E 55.9 7.2 400× 400
7 17/01/95 34.583◦ N 135.027◦ E 33.4 7.2 400× 400
8 17/02/96 37.306◦ N 142.643◦ E 59.1 6.7 400× 400
9 19/10/96 31.798◦ N 131.972◦ E 44.6 6.6 400× 400
10 24/11/87 33.01◦ N 115.85◦ W 11.2 6.6 200× 200
11 28/06/92 34.2◦ N 116.44◦ W 1 7.3 200× 200
12 16/10/99 34.594◦ N 116.271◦ W 0 7.1 200× 200

tensification of formation of spatio-temporal clusters of the
seismicity prior to strong earthquake.

The aforementioned tendencies (decrease of the high-
order fractal dimension and entropy, and increase of the
spatio-temporal correlation) can be clearly seen from Fig. 11
on the example of the well-known Hyogo-ken Nanbu (Kobe)
earthquake of 17 January 1995 in Japan (ϕ = 34.583◦ N,
λ = 135.02◦ E, M = 7.2, depth = 33 km). The decrease
of the multifractal characteristicsαmin andS started approx-
imately two years before the earthquake. After the earth-
quake, both multifractal characteristics tend to reach their
initial level. Such post-earthquake behavior can be consid-
ered as a recovery process, when the earthquake focal sys-
tem breaks down to the more disordered (chaotic) state after
release of main portion of seismic energy. As for the level
of spatio-temporal correlationsC, its increase starts approx-
imately three years before the Kobe earthquake. After the
earthquake the presence of aftershock sequence cause signif-
icant increase of valueC due to strong temporal clustering.

In the case of the other earthquakes the seismicity distri-
bution behavior have similar features.

It is necessary to mention that there is no definite sce-
nario of variations of multifractal characteristics of the seis-
micity spatial distribution prior to the all strong earthquakes.
In some cases (see Figs. B1 and B11) the multifractal char-
acteristics decrease rapidly before the earthquake moment.
Sometimes the slow trend of decreasing of multifractal char-
acteristics can be seen for periods before the earthquakes (see
Figs. B2, B4, B5, and B12). In the case shown on Fig. B8
the multifractal characteristicsS andαmin decrease abruptly
approximately 2 years before the earthquake. After that the
value ofS slowly decrease and the value ofαmin keeps almost
constant value.

In the case of two Japanese earthquakes of 7 January 1995
(Fig. B6) and of 19 October 1996 (Fig. B9), the multifractal
characteristics have not any tendency of decreasing before
considered strong earthquakes.

Also there is no definite scenario of changes of the levelC

of spatio-temporal correlations prior to all strong earthquakes
considered. So in the cases shown at Figs. B7, B10, B11,
and B12 the valueC gradually increase before earthquakes.
In the case shown on Fig. B1 the valueC increase rapidly
before the earthquake moment. In many cases (Figs. B3, B4,
B5 and B6) the increase of the level of spatio-temporal corre-
lationsC prior to earthquake is not significant in comparison
with previous variations of its value. These variations are
possibly linked to aftershocks of previous events or earth-
quake swarms, which are strongly clustered in time.

In the cases shown on Figs. B2, B8 and B9, the level of
spatio-temporal correlationsC does not increase before the
mainshock.

In some cases the decrease of multifractal characteristics
or the increase of the valueC are not followed by the strong
earthquakes. That means that the earthquake clustering oc-
curs not due to crack network development and stress ac-
cumulation. The other possible explanation of such a fact
could be that the accumulated stress is released by a swarm
of earthquakes rather than by one strong earthquake. Any-
way, the aforementioned facts reflect the complex nature of
seismic process.

In order to reveal the general tendency of variations of
characteristicsαmin, S andC prior to strong earthquakes, the
superposed epoch method is applied to all the earthquakes
considered. The dynamics of the valuesαmin, S andC ob-
tained by this method is shown in Fig. 4. The momentt = 0
in Fig. 4 corresponds to the considered earthquake moments
in Figs. B1–B12.

In this case the length of sliding temporal window for
calculation of multifractal characteristics is taken equal to
0.5×108 s for Japaneese earthquakes and equal to 0.15×108

s for Californian earthquakes. The length of the temporal
window for calculation of valueC is taken equal to 0.3×108

s for all earthquakes, as previously.
The individual patterns of some earthquakes are neglected
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Fig. 4. The superposed epoch analysis results. The curves from top
to bottom correspond to variations of the valueC, the entropyS and
the valueαmin.

in this case, since the length of the temporal windows is not
selected individually for each earthquake. But even under
such condition the general tendencies can be clearly seen in
Fig. 4.

So the multifractal characteristicsαmin andS tend to de-
crease before the strong earthquakes. The valueC have a ten-
dency of increase before the strong earthquakes. But in this
case some additional peak of average valueC appears before
the moment when the increase ofC is starting. That can be
explained by the presence of earthquake swarms, which are
strongly clustered in time, for the temporal periods before the
strong earthquakes.

Once more we would like to pay attention to the earth-
quakes with magnitudeM < 6.5 (ex. Fig. B1), which are
not preceded by the decrease of multifractal characteristics
or increase of the level of spatio-temporal correlationsC in
the seismicity. The rupture area of these earthquakes is much
smaller than the surrounding area selected for analysis. The
absence of expected behavior in this case confirms the neces-
sity of taking the size of surrounding area consistent with the
size of the rupture area of expected earthquakes in order to
reveal precursory signatures.

It should be mentioned also that the methods suggested in
this paper may be not suitable for revealing precursory signa-
tures for those strong earthquakes, which are not situated in
the central part of the analyzed area. The matter is that if the
strong earthquake is occurred at the edge of some area, the

big amount of seismicity registered in this area is not related
to the preparation process of that earthquake. This feature
can be illustrated by the events N 1 and N 8 (see Table 2 and
Figs. B1 and B8) . There are two earthquakes with magni-
tudeM > 6.5 on the Figs. B1 and B8, corresponding to these
cases. There is no clear tendency of decrease of multifractal
characteristics and the increase of the valueC before the first
earthquake (N 1 in Table 2) withM > 6.5 on Fig. B8. The
area, selected for analysis in this case, is centered in the epi-
center of the second strong earthquake (N 8 in Table 2) on
this figure. The decrease of multifractal characteristics is ob-
served before this second earthquake. If the center of the area
is placed in the epicenter of the first strong earthquake (N 1
in Table 2, Fig. B1), one can see the decrease of multifrac-
tal characteristics and increase of the valueC, which haven’t
been observed before this earthquake on Fig. B8.

4 Discussion and conclusions

The results presented in this paper allow us to conclude that
the multifractal characteristicsαmin andS tend to decrease
and the level of spatio-temporal correlationsC tend to in-
crease prior to majority of the considered strong earthquakes.
Such tendencies are in good agreement with the results of
simulation of the destruction of elastic body with a number
of shear cracks (Kiyashchenko and Troyan, 2001).

However, it is difficult to reveal any definite scenario in the
behavior of the aforementioned characteristics prior to strong
earthquakes. This scenario is individual for each particular
case. In some cases the decrease of multifractal characteris-
tics and the increase of the level of spatio-temporal correla-
tions is not followed by the strong earthquake. These facts
reflect the complex nature of seismic process.

In few cases the expected behavior of the characteristics
of spatio-temporal distribution of the seismicity are not ob-
served prior the earthquake. It is interesting to note that the
depth of hypocenters of the earthquakes, for which the de-
crease of multifractal characteristics (Figs. B6 and B9) or the
increase of the level of spatio-temporal correlation are not
revealed (Figs. B8 and B9), exceeds 40 km. That allow us
to suppose that the absence of the expected behavior of the
seismicity (which is well explained in the frame of elastic
model) before mainshocks can be related to manifestation of
viscous properties of the litosphere material at these depths.

However, in spite of the aforementioned facts, the moni-
toring of variations of these characteristics is potentially in-
teresting and can be used for seismic hazard risk evaluation
together with other precursory signatures.

The effectiveness of methods suggested in this paper will
be improved if more complete catalogs with lower magni-
tude threshold will be available for analysis. The increase of
the amount of data will allow to analyze the distribution of
hypocenters instead of distribution of epicenters of the seis-
micity. Moreover, it would allow us to select the surround-
ing area of the earthquake for analysis as small as necessary,
and, therefore, to forecast the earthquakes with lower magni-
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Fig. A1. Multifractal structure generation process.

tude. The elaboration of procedure of filtering of the seismic
events, which do not occur due to formation of new rupture
area (for example, the dislocation of the rupture sides due
to overcoming of friction forces threshold without rupture
growth), would make an important contribution to further
development of the suggested methods of seismicity distri-
bution analysis.

Appendix A

Here we give a brief description of main points of multifrac-
tal analysis, which helps to understand better the contents of
Sect. 2.

Multifractal structure appears as a result of some kind of
self-similar multiplicative process. Let us imagine a line
(Fig. A1) with normalized mass and length, both equal to
unity. Then, at the first step, the line is divided intoK equal
partsSi (i = 1, ..., K). In our example (Fig. A1)K = 2.
Then, the mass is distributed along the line in such a way,
that the mass of the part with numberi is Mi . The mass of
the line is equal to unity, therefore

∑K
i=1 Mi = 1. At the

next step each partSi is also divided intoK equal partsSil

(l = 1, ..., K) and the mass is redistributed along these parts
Si in the same proportion as at the first step. Thus the mass
of partSil is MiMl (l = 1,...,K). Aftern steps the line will be
divided intoKn partsSi1i2...in with massMi1Mi2...Min (the
indexesi1, i2, ..., in are varying from 1 toK).

Such multiplicative process with the parameters
M1, M2, ...,MK generates multifractal distribution of
mass along the line. Multifractal functions, generated by
binomial (K = 2) multiplicative process with the parameters
M1 = 0.6 andM2 = 0.4 after 10 steps are shown on Fig. A2.

The left plot on Fig. A2 corresponds to the case when at
each step of multiplicative process, the smaller part of mass
goes to the right side of each considered segment of line
(non-mixed multiplicative process). In the case, which is
shown on the right side of Fig. A2, in half of cases the smaller
part of mass goes to the left side of the line segment (mixed
multiplicative process). Figure A3 demonstrate more inho-
mogeneous multifractal structures, which have been gener-
ated by binomial (K = 2) multiplicative process (non-mixed
and mixed) with parametersM1 = 0.8, M2 = 0.2.

In the case of binomial multiplicative process the code
(i1i2...in) of the partSj = Si1i2...in of the considered line

Fig. A2. Multifractal function, generated by binomial multiplicative
process with parametersM1 = 0.6, M2 = 0.4: (a) non-mixed
multiplicative process,(b) mixed multiplicative process.

Fig. A3. Multifractal function, generated by binomial multiplicative
process with parametersM1 = 0.8, M2 = 0.2: (a) non-mixed
multiplicative process,(b) mixed multiplicative process.

consist of the numbers “1” and “2”. Ifm is the number of the
values “1” in the code of the partSj , then the mass of this
part (the value of multifractal measure function for this part)
can be written as follows:

pj = M1
mM2

n−m
= M

nϕ1
1 M

nϕ2
2 ;

ϕ1 =
m

n
; ϕ2 =

n − m

n
= 1 − ϕ1.

The number of parts of the line with massp = pj (ϕ1) can
be calculated as:

Nn(ϕ1) =
n!

(ϕ1n)!(ϕ2n)!
,

using the well-known formula from combinatorics. Ac-
cording to Stirling formula,n! →

√
2πnn+1/2e−n, when

n → ∞. Therefore,

Nn(ϕ1) =
exp(−n(ϕ1 ln ϕ1 + ϕ2 ln ϕ2))

√
2πϕ1ϕ2

.

The size1 of the partSj is equal to 2−n. Then, ifn → ∞,
Nn(ϕ1) ∼ g(ϕ1)1

−f (ϕ1).
The Holder exponentsαj for each partSj of the line are

defined as follows:

αj = lim
1→0

ln(pj )

ln(1)
; pj = 1αj . (A1)
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Fig. A4. The spectrums of generalized fractal dimensionsd(q) for
multifractal functions which are shown on Figs. 7 (curve 1) and 8
(curve 2).

Fig. A5. Multifractal spectrumsf (α) for functions which are
shown on Figs. 7 (curve 1) and 8 (curve 2).

Then, asα = α(ϕ1), Nn(ϕ1(α)) ∼ g(ϕ1(α))1−f (ϕ1(α)).
Multifractal spectrum (f (α) curve) is defined as:

f (α) = lim
1→0

ln(Nn(ϕ1(α))

ln(1/1)
. (A2)

It can be seen thatf (α) is the fractal dimension of the subset
of segments of line with Holder exponent equal toα.

The definition of multifractal spectrumf (α) is one of the
ways of description of multifractal structures. Another way

is based on calculation of generalized fractal dimensions.
Let us introduce the Renyi entropy of orderq:

ln
(
Iq(1)

)
=

ln
(∑

j p
q
j (1)

)
1 − q

, if q 6= 1

ln
(
Iq(1)

)
= −

∑
i

pi(1) ln (pi(1)) , if q = 1. (A3)

Then, the generalized fractal dimension of the orderq is de-
fined as:

d(q) = lim
1→0

ln(Iq (1))

ln(1/1)
. (A4)

The valued(0) is fractal dimension, andd(2) – correlation
dimension of the considered mass distribution.

The spectrums of generalized fractal dimensionsd(q)

for multifractal structures presented on the right sides of
Figs. A2 and A3, are shown on Fig. A4 by the curves 1 and
2, respectively. The differencew = d(∞)−d(−∞) is larger
for the more inhomogeneous case (Fig. A3).

It is possible to show that the Holder exponentα andf (α)

curve can be retrieved from the spectrum of generalized frac-
tal dimensionsd(q) using the transforms:

α(q) =
d

dq
((q − 1)d(q));

f (α(q)) = q − d(q)(q − 1). (A5)

The multifractal spectrumf (α) contains important informa-
tion about the parameters of multiplicative process under-
lying generation of the considered multifractal distribution
function generation. The multifactal spectrums calculated
for multifractal distributions, which are shown on the right
side of Figs. A2 and A3, are demonstrated on Fig. A5 by the
curves 1 and 2, respectively.

The maximal value off (α) is equal to fractal dimension
d(0). The valuesαmin andαmax are linked correspondingly
to maximal (Mmax) and minimal (Mmin) parameters of multi-
plicative process and to extremal values of spectrum of gen-
eralized fractal dimensions:

αmin = d(∞) =
1

ln K
ln

(
1

Mmax

)
;

αmax = d(−∞) =
1

ln K
ln

(
1

Mmin

)
. (A6)

The value αmin (αmax) describes the scaling in more
densely (sparsely) populated domains of the considered re-
gion. It can be seen (Fig. A5) that in the case of distribution
with more high contrasts (Fig. A3) the width of multifractal
spectrum is larger.

The Holder exponentS = α1, satisfying the equation

df (α1)

dα1
= 1,

equal to the generalized fractal dimensiond(1) and can be
expressed as a function of the parameters of multiplicative
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Fig. B1. The results for the earthquake (27 October 1988; Japan;
latitude – 36.3◦ N; longitude – 141.749◦ E; depth – 40 km; Mag-
nitude – 7.7). (a) the magnitudes of the seismic events in the
earthquake region;(b), (c), (d) the results of calculation of higher-
order generalized fractal dimension (αmin), entropy (S), and value
C = ln(g(0, 20 km)) correspondingly in the sliding temporal win-
dow. The length of temporal window is 0.3e + 08 s for multifractal
characteristics. The square of selected area is 400∗ 400 km2.

process:

S = −

K∑
i=1

Mi logK Mi . (A7)

We call it the entropy of multifractal measure generation
process since it has a form of informational entropy. The
values of entropyS for the multifractal spectrums, which are
calculated for distribution functions shown on Figs. A2 and
A3, are correspondinglyS = 0.98 andS = 0.73. It is seen
that the entropyS is smaller for more inhomogeneous distri-
bution case.

Appendix B

Here we present the results of calculations of the values of
multifractal characteristicsαmin, S and the level of spatio-
temporal correlationsC. Calculations are performed in slid-

Fig. B2. The results for the earthquake (2 November 1989; Japan;
latitude – 39.736◦ N; longitude – 143.39◦ E; depth – 0 km; Mag-
nitude – 6.6). (a) the magnitudes of the seismic events in the
earthquake region;(b), (c), (d) the results of calculation of higher-
order generalized fractal dimension (αmin), entropy (S), and value
C = ln(g(0, 20 km)) correspondingly in the sliding temporal win-
dow. The length of temporal window is 0.7e + 08 s for multifractal
characteristics. The square of the selected area is 400∗ 400 km2.

ing temporal window for all considered earthquakes. The
length of temporal window was taken equal to 0.3 × 108 s
in the case of calculation of the valueC and was selected
individually for each earthquake in the case of calculation of
multifractal characteristics (see Sect. 3). The results of calcu-
lations are shown on Figs. B1–B12 (corresponding to earth-
quakesN 1–12 in Table 1). On each figure (B1 to B12) the
main earthquake, for which the seismicity in the surround-
ing area has been studied, is indicated by the vertical line.
The subplot (a) show the magnitudes of seismic events oc-
curred in the earthquake region. The subplots (b), (c), (d)
show the results of calculations of higher order fractal dimen-
sion (αmin), entropy (S) and the valueC = ln(g(0, 20km))

correspondingly in sliding temporal window.
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Fig. B3. The results for the earthquake (7 February 1993; Japan; lat-
itude – 37.658◦ N; longitude – 137.309◦ E; depth – 26.5 km; Mag-
nitude – 6.6).(a) the magnitudes of the seismic events in the earth-
quake region;(b), (c), (d) the results of calculation of higher-order
generalized fractal dimension (αmin), information entropy (S), and
valueC = ln(g(0, 20 km)) correspondingly in the sliding temporal
window. The length of temporal window is 0.6e + 08 s for multi-
fractal characteristics. The square of selected area is 400∗400 km2.

Appendix C

In this part an example of calculation of the multifractal char-
acteristicsS and αmin in sliding temporal window for the
synthetic seismicity catalog with randomly distributed epi-
centers is presented in order to verify the significance of the
variations of multifractal characteristics for the case of real
seismicity.

The subcatalog of seismicity registered in the surround-
ing area of the earthquake N 1 (see Table 2) is taken for test
calculation. The coordinates of the epicenters of the earth-
quakes in this subcatalog were randomly changed. As the re-
sult of such procedure, the synthetic seismicity catalog with
randomly distributed epicenters is obtained.

The dynamics of characteristicsS andαmin, which are cal-
culated by sliding temporal window of 0.5×108 for synthetic
catalog, is shown on Fig. C1 by upper curves. Lower curves
on this figure represent the results of calculation of the same
characteristics (in the same temporal window) for the real

Fig. B4. The results for the earthquake (4 October 1994; Japan; lat-
itude – 43.383◦ N; longitude – 147.928◦ E; depth – 46.2 km; Mag-
nitude – 8.1).(a) the magnitudes of the seismic events in the earth-
quake region;(b), (c), (d) the results of calculation of higher-order
generalized fractal dimension (αmin), information entropy (S), and
valueC = ln(g(0, 20 km)) correspondingly in the sliding temporal
window. The length of temporal window is 0.6e+08 s for multifrac-
tal characteristics. The square of the selected area is 400∗400 km2.

seismicity catalog (related to the earthquake N 1).
One can see that the lower values of multifractal character-

istics of the real seismicity indicate stronger spatial clustering
in comparison with those obtained for artificial (randomized)
seismicity.

The variations of the values ofS andαmin are consider-
ably larger for the case of real seismicity. Moreover, the
variations obtained for real seismicity are not correlated with
variations obtained for artificial seismicity, which are mainly
determined by the number of earthquakes in the temporal
window.

Therefore, the variations of multifractal characteristics of
real seismicity are significant and not related to instability of
the procedure of their estimation or dependence of their es-
timation on the number of earthquakes in the temporal win-
dow. These variations reflect the real processes of seismicity
reorganization in wide range of scales.
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Fig. B5. The results for the earthquake (28 December 1994; Japan;
latitude – 40.434◦ N; longitude – 143.867◦ E; depth – 14.1 km;
Magnitude – 7.5).(a) the magnitudes of the seismic events in the
earthquake region;(b), (c), (d) the results of calculation of higher-
order generalized fractal dimension (αmin), entropy (S), and value
C = ln(g(0, 20 km)) correspondingly in the sliding temporal win-
dow. The length of temporal window is 0.7e + 08 s for multifractal
characteristics. The square of the selected area is 400∗ 400 km2.
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mension (αmin), entropy (S), and valueC = ln(g(0, 20 km)) corre-
spondingly in the sliding temporal window. The length of temporal
window is 0.2e + 08 s for multifractal characteristics.

Fig. B9. Results for the earthquake (19 Oct. 1996; Japan; lat.–
31.798◦ N; long.–131.972◦ E; depth–44.6 km; Mag.–6.6). (a) the
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Fig. B10. Results for the earthquake (24 Nov. 1987; Southern
California; lat.–33.01◦ N; long.–115.85◦ W; depth–11.2 km; Mag.–
6.6). (a) the magnitudes of the seismic events in the earthquake
region; (b), (c), (d) the results of calculation of higher-order gen-
eralized fractal dimension (αmin), entropy (S), and valueC =

ln(g(0, 20 km)) correspondingly in the sliding temporal window.
The length of temporal window is 0.15e+08 s for multifractal char-
acteristics.
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Fig. B11. The results for the earthquake (28 June 1992; Southern
California; latitude – 34.2◦ N; longitude – 116.44◦ W; depth – 1 km;
Magnitude – 7.3).(a) the magnitudes of the seismic events in the
earthquake region;(b), (c), (d) the results of calculation of higher-
order generalized fractal dimension (αmin), entropy (S), and value
C = ln(g(0, 20 km)) correspondingly in the sliding temporal win-
dow. The length of temporal window is 0.15e+08 s for multifractal
characteristics. The square of the selected area is 200∗ 200 km2.

Fig. B12. The results for the earthquake (16 October 1999; South-
ern California; latitude – 34.594◦ N; longitude – 116.271◦ W; depth
– 0 km; Magnitude – 7.1).(a) the magnitudes of the seismic events
in the earthquake region;(b), (c), (d) the results of calculation of
higher-order generalized fractal dimension (αmin), entropy (S), and
value C = ln(g(0, 20 km)) correspondingly in the sliding tem-
poral window. The length of temporal window is 0.15e + 08 s
for multifractal characteristics. The square of the selected area is
200∗ 200 km2.

Fig. C1. The results of calculation of multifractal characteristicsS

andαmin by sliding temporal window with the length 0.5e + 08 s
for the synthetic (upper curves) and real (lower curves) seismicity
catalogs.
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