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Control-theoretic framework for a quasi-Newton local
volatility surface inversion

Gabriel Turinici

Abstract— We investigate in this paper the recovery of
the local volatility surface in a parametric framework
similar to that of Coleman, Li and Verma [4]. The
quality of a surface is assessed through a functional
which is optimized; the specificity of the approach is
to separate the optimization on the parametric space
(performed with any suitable optimization algorithm)
from the computation of the functional where we use
an adjoint formulation similar to that of the optimal
control; the procedure can thus incorporate information
from any derivative contract compatible with the adjoint
approach. The procedure was implemented and was
shown to perform satisfactory on real-world data.

I. I NTRODUCTION: THE LOCAL VOLATILITY

SURFACE

Let us consider a security (e.g. a stock) whose
price follows the stochastic differential equation

dSt/St = µdt + σdWt (1)

whereµ is the return rate,σ is the volatility (we
will make explicit its dependence latter) andWt

a Brownian motion. Under the risk-neutral [1]
measure, the evolution becomes

dSt/St = r(t)dt + σdWt (2)

with r(t) being the time dependent risk-free rate.
If the security St distributes dividends at a

known proportional rateq(t), under the Black-
Scholes local volatility model, the priceC(S, t)
of a derivative contract onSt with pay-off h(S)
at maturityt = T , will satisfy the (Black-Scholes)
equation [2] for allS ≥ 0 and t ∈ [0, T ]:

∂tC + (r − q)∂SC +
σ2S2

2
∂SSC − rC = 0(3)

C(S, t = T ) = h(S) (4)
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The price att = 0 of the contract isC(St=0, t =
0); recall that the pay-off of an European call is
h(S) = (S − K)+ where we have introduced the
strike K ≥ 0 and the notationx+ = max(x, 0).
Note the retrograde nature of the equation (3).

The equation (3) gives the price of a derivative
contractC(S, t) as function of the risk-free rate
r(t), dividend q(t), maturity T , pay-off h and
volatility σ. Among those factors,σ alone is not
explicitly known or quoted in the markets. The
corresponding inverse problem, called ”calibration
of the local volatility surface” is to recoverσ given
some known pricesCmarket

Kl,Tl
of derivative contracts

(usually European calls) with (given) maturitiesTl

and strikesKl, l = 1, 2, ..., L.
When the number of known contracts prices

Cmarket
Kl,Tl

is large enough such thatKl, Tl cover
well the range ofS and t the local volatility can
be expressed using the Dupire formula [2], [3].
However, when only a few prices are known the
Dupire formula is less effective and other methods
have to be used.

II. COST FUNCTIONAL AND THE GRADIENT

We take the choice here to formulate the prob-
lem in a control setting: the goal is to find the
controlσ(S, t) which ensures that the known prices
Cmarket

Kl,Tl
are hit, i.e.Cl(S0, 0) = Cmarket

Kl,Tl
where

Cl is the solution of (3) with final dataCl(S, t =
Tl) = (S − Kl)+.

To begin, let us view the price

C(t = 0; S = S0) =< δt=0,S=S0
, C(S, t) > (5)

as a functional in the optimal control setting to
be optimized with respect toσ. To compute the
gradient δC

δ(σ2)
of C with respect toσ2 one has to

introduce an adjoint stateχ solution of:



∂tχ + ∂S((r − q)Sχ) + ∂SS(
σ2S2

2
χ) + rχ = 0(6)

χ(S, t = 0) = δt=0,S=S0
(7)

and obtain
δC

δ(σ2)
=

S2

2
(∂SSC)χ. (8)

Of course we also have
δC

δσ
= 2σ

S2

2
(∂SSC)χ. (9)

Both problems (3) and (6) are implemented
through a Crank-Nicholson finite-difference
scheme; we took care to use for (6) the numerical
adjoint of (3). To illustrate the nature of this
gradient we display an example in Figure 1
where we note two singularities appearing in
(t = 0, S = S0) (from eqn (7)) and(t = 1, S = K)
(from ∂SS(S − K)+).

Fig. 1. Gradient (cf. eqn. (8)) of the price of the derivative contract
with respect to the volatility surface (squared). Herer = 4.2%,
q = r, K = 6000, S0 = 5800, σ = 20%(constant),T = 1.

When several option prices are available, we can
build an extended cost functional

Je(σ) =
L
∑

l=1

(Cl(0; S0) − Cmarket
Kl,Tl

)2. (10)

Other forms are also possible, for instance the sum
of relative errors

Je(σ) =
L
∑

l=1

(

Cl(0; S0)

Cmarket
Kl,Tl

− 1

)2

(11)

or other weighted variants.
Another setting appears when bid/ask quotes are

available i.e.Cl(0; S0) ∈ [Cbid
Kl,Tl

, Cask
Kl,Tl

]

Je(σ) =
L
∑

l=1

[

(Cl(0; S0) − Cbid
Kl,Tl

)+

]2
(12)

+
[

(Cask
Kl,Tl

− Cl(0; S0))+

]2
. (13)

In fact, the final functional to be optimized
will contain Je and also some terms that ensure
smoothness; see Section III for details.

The formulas (6)-(9) serve as building bricks for
the optimization of this aggregated cost functional.
Let us suppose that a simple fixed step (ρ > 0)
gradient algorithm is used:

σ2
n+1 = σ2

n − ρ
δJe

δ(σ2)
(σ2

n+1). (14)

We see thus immediately that the singularities
will propagate into the solution which will have
a full list of singularities at(0, S0) and (Tl, Kl),
l = 1, ..., L. Such properties are not natural for the
local volatility surfaceσ(t, S) and the inversion
procedure has to address them. Note that obtaining
a smoother local surface is possible because of its
underdertermination : in the extreme situationL =
1 only one priceCmarket

Kl,Tl
is available which brings

a limited information on the volatility surface that
will not be unique; in this case the most natural
volatility surface will a constant, equal to the
Black-Scholes implied volatility.

A traditional choice to avoid singularities and
address the non-uniqueness is to parametrize the
surface [3], [4] with a limited number of degrees
of freedom; the result will be the optimal surface
in the class. The parametrization also helps to keep
natural properties of the local volatility surface
e.g., finding the implicit volatility should only one
option be given in the input.

We propose in this work a variant of the Cole-
man, Li & Verma [4] procedure with the distinction
that here the optimization of the volatility surface,
while still performed in the parametric space, is
accelerated by the use of an first (and partially sec-
ond) order approximation of the functional through
the use of the adjoint (6).



III. SURFACE SPACE AND THE QUASI-NEWTON

PROBLEM

A. Surface space

Continuing the arguments of the previous sec-
tion, we set the space of available surface shapes to
be interpolations of cubic spine type that have zero
values except at some point of the grid(ti, Sj), cf.
Fig. 2; let us callfij(S, t) such an element; each
surface is a linear combination of these shapes
fij(S, t):

σ(S, t) =
∑

αijfij(S, t). (15)

A possible procedure would be to optimizeJe

(e.g. from (10)) expressed as a function of the
coefficientsαij of σ in (15). But this dependence
is highly nonlinear and the resulting optimization
will have many unwanted local extrema.

Fig. 2. Typical shape that is used to reconstruct the local volatility
surface.

B. Approximation formula

For this discrete space, we can compute the
gradient of any derivative contractC(S, t) with
respect to variations of the local surfaceσ inside
the admissible surface space. This is in fact just
a matter of projecting the exact gradient (9) onto
each shapefij. We obtain an approximation for-
mula around the current local volatilityσ:

C(σ +
∑

ij

αijfij(S, t)) ≃ C(σ) (16)

+
∑

ij

<
∂C

∂σ
, fij >L2

S,t
αij. (17)

Note that this formula already provides second
order information forJe; we will therefore use a
sequentially quasi-Newton iteration [5]; in order to
ensure smoothness we add a quadratic term

< α,Qα > (18)

where the matrixQ will represent the gradient of
shapesfij with respect tot andS.

C. Optimization procedure

The algorithm will be as follows:
0/ chooseL∞ bounds for the local volatility

surface :
σmin ≤ σ(t, S) ≤ σmax (19)

1/ initialize σ0

2/ compute the gradient of any derivative price
with respect to variations ofσ in the admissible
space i.e. formula (16);

3/ construct a (quadratic) optimization problem

min
Aα ≤ b

σmin ≤ α ≤ σmax

1

2
αT Hα + wtα (20)

with H containing the second order part ofJe

expressed by using the approximation formula (16)
and also the smoothness term (18); should a
bid/ask functional (e.g. as in (12)) be used then the
problem will not be quadratic any more but (16)
is still used; the constraints arise from the re-
quirement thatαk be in [σmin, σmax]; additional
contraints, in a ”trust-region” style, can be put to
remain in a region where the approximation (16)
holds. This quadratic problem can be solved by
any suitable algorithm; for instance Matlab uses
by default a subspace trust-region method based
on the interior-reflective Newton method described
in [6] (using a preconditioned conjugate gradient).

4/ update the local volatilityσ; if the replication
error Je is too high return in 2/ otherwise exit.

IV. RESULTS AND DISCUSSIONS

Note that instead of a unique optimization in
the parametric space we perform one optimization
aroung each current point; this reduces the number
of computations of the PDE (3). But, equally im-
portantly, the separation between the optimization
and the approximation of the functional provides
flexibility in the information that can be fitted, e.g.



Fig. 3. Local volatility surface of the CAC40 index for 19/02/08
as recovered from the published end-of-data european call option
prices. The marks on the surface indicate the option prices that were
used to invert: theKl and Tl, l = 1, ..., 106. To account for the
dividends we adjusted the prices to refer to the futures although the
options are written on the index.

we can readily accomodate any derivative contract
(as soon as an gradient formula like (8) exists for
it; when it does not one can use Malliavin calculus)
such as options on futures, strategies, structured
products etc. This is to be put into contrast with
Dupire’s approach [2] that needs a uniform set of
data (e.g. vanilla options) to perform the inversion.

The use of the gradient not in an optimization
procedure but to obtain an approximation of the
functional around the current point is a acknowl-
edgement of the fact that the main difficulty is
not finding a solution but choosing one among all
compatible surfaces (i.e. ill-posedness). In practice
two conditions ensure a relevant selection of the
local volatility surface

- the L∞ constraints (19); the use of a separate
optimization procedure is instrumental in satisfy-
ing the constraints

- the smoothness term in eqn. (18); we depart
here from the view in [4] to use a parametrization
dependent on the numberL of available prices; the
term (18) is used to avoid tunning the set of shapes
fij and to automatize the process.

We first checked that whenL = 1 the problem
recovers the implicit volatility; it did so with only
one cycle 2/-4/. We next moved to real-world ex-
amples to analyze the local volatility surface of op-
tions on the CAC40 index (cf www.euronext.com).

Fig. 4. Local volatility surface of the CAC40 index for 19/02/08
as recovered from the published end-of-data european call option
prices. The marks on the surface indicate the option prices that were
used to invert: theKl andTl.Five times less points with respect to
Fig. 3 are used (L = 22).

The convergence is attained after, typically, 10 to
20 iterations. A first test in Fig. 3 indicates that fine
structures on the volatility surface are recovered
if enough prices (L = 106) are available for the
inversion; but if only a few prices are to be used
(L = 22 in Fig. 4 andL = 10 in Fig. 5) the overall
shape remains very stable. For comparison we also
draw in Fig. 6 the implicit volatility surface.
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Fig. 5. Local volatility surface of the CAC40 index for 19/02/08
as recovered from the published end-of-data european call option
prices. The marks on the surface indicate the option prices that were
used to invert: theKl andTl. Ten times less points with respect to
Fig. 3 are used (L = 10).

Fig. 6. Implicit volatility surface for the example in Fig. 3-5.


