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Abstract

Spatial patterns of water chemistry along stream networks can be quantified using syn-

optic or “snapshot” sampling. The basic idea is to sample stream water at many points

over a relatively short period of time. Even for intense sampling campaigns, the num-

ber of sample points is limited and interpolation methods, like kriging, are commonly5

used to produce continuous maps of water chemistry based on the point observa-

tions from the synoptic sampling. Interpolated concentrations are influenced heavily

by how distance between points along the stream network is defined. In this study,

we investigate different ways to define distance and test these based on data from a

snapshot sampling campaign in a 37-km
2

watershed in the Catskill Mountains region10

(New York State). Three distance definitions (or metrics) were compared: Euclidean

or straight-line distance, in-stream distance, and in-stream distance adjusted accord-

ing characteristics of the local contributing area, i.e., an adjusted in-stream distance.

Using the adjusted distance metric resulted in a lower cross-validation error of the inter-

polated concentrations, i.e., a better agreement of kriging results with measurements,15

than the other distance definitions. The adjusted distance metric can also be used in

an exploratory manner to test which landscape characteristics are most influential for

the spatial patterns of stream water chemistry and, thus, to target future investigations

to gain process-based understanding of in-stream chemistry dynamics.

1 Introduction20

Synoptic or “snapshot” stream water sampling allows for the quantification of baseflow

water chemistry (and quality) throughout a catchment (e.g., Grayson et al., 1997; Bern-

hardt et al., 2003; Wayland et al., 2003). This type of sampling provides information on

spatial patterns at the landscape scale that enable insights to biogeochemical behavior

throughout a stream network at low flow conditions. The goal of such sampling cam-25

paigns is often to infer the relation between landscape characteristics along a stream
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continuum and stream water quality (Grayson et al., 1997; Salvia et al., 1999; Way-

land et al., 2003). This goal is in tune with emergent paradigms in freshwater ecology

of river ecosystems as riverscapes which are closely connected with their catchment

landscape (Fausch et al., 2002; Tetzlaff et al., 2007). Since baseflow chemical concen-

trations usually are temporally persistence, the observations made during a synoptic5

campaign are indicative of the health of an ecosystem.

During a synoptic sampling campaign typically water samples at ∼100 locations

along the stream network are taken. This number, however, is still spatially sparse

compared to the heterogeneity found in natural stream systems. Sampling significantly

more points is usually not possible due to practical constraints of sample collection10

associated with covering large distances and the cost of analysis associated with pro-

cessing large numbers of samples. The question is how we can infer spatially con-

tinuous information about the stream network from point observations such as those

obtained during a synoptic sampling campaign?

One option is statistical modeling in-stream water chemistry/quality from point ob-15

servations. Foran et al. (2000) and Alexander et al. (2002) provide a good overview of

the various modeling techniques available for monitoring and predicting stream water

quality. To link in-stream observations with landscape characteristics, models need to

include some spatially referenced component. For example, the popular SPARROW

model (Smith et al., 1997) uses a hybrid approach combining conventional regression20

methods with spatial data based on landscape characteristics and stream properties

to predict continuous water quality from point observations. It is a statistically cali-

brated regression model with mechanistic components (e.g., surface-water flow paths,

first-order loss functions) that has been applied at large scales for modeling nutrient

transport (Smith et al., 1997; Preston and Brakebill, 1999; Alexander et al., 2000,25

2002, 2004). SPARROW improves on previous regression approaches by including a

spatial referencing of watershed attributes, which increases their correlation with water

quality measurements (Smith et al., 1997). This and other models, however, require

explicit functions comprised of source-specific coefficients that need to be calibrated
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to describe land-water delivery and in stream delivery to be empirically implemented.

This approach implies assumptions on how various sources (point and non-point) on

the landscape influence stream water quality. Such assumptions are inherent to the

nature of all stream export models with a mechanistic component.

Geostatistics offers a different approach to interpolate between point observations5

using the spatial structure of the sampling campaign. Semivariogram models and krig-

ing, the core techniques of most geostatistics, are usually based on traditional Eu-

clidean, or straight-line, distance metrics to distribute weights between neighboring ob-

servation points when interpolating an unsampled location. This definition of distance

is used by most geostatistics packages because they are designed for interpolating10

surfaces on a continuous, two-dimensional plane (Christakos, 2000). Euclidean dis-

tance, however, may not be suitable for stream networks because it fails to represent

the spatial configuration, connectivity, directionality and relative position of sites in a

stream network (Smith et al., 1997; Yuan, 2004; Ganio et al., 2005; Peterson et al.,

2007). This has lead to a recent increase in studies using hydrologic or in-stream15

distance measures to explore spatial patterns in stream networks (Dent and Grimm,

1999; Gardner et al., 2003; Legleiter et al., 2003; Torgersen et al., 2004; Ganio et al.,

2005; Peterson et al., 2006, 2007). In-stream distance metrics restrict connections

from one point to another to pathways within the stream network and can be defined

in two variants: symmetrical and asymmetrical. Symmetric in-stream distance is taken20

as the shortest hydrologic distance between two points when movement is not limited

by flow direction while asymmetrical in-stream distance requires that water flow from

one location to another for two points in a stream network to be connected (Peterson

et al., 2007). In this study we only use symmetric in-stream distances. In addition to

restrictions in path, additive measures that represent relative network position based25

on stream conditions, such as flow volume, stream order, or watershed area, have

been used to weight hydrologic distance measures to make them more ecologically

representative (Peterson et al., 2006, 2007). For example, Cressie et al. (2006) use

classification variables to group similar stream locations based on the idea that “loca-
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tions that are subject to similar outside influences might be expected to have similar

data values”. Still, applying geostatistical techniques to stream networks is a relatively

new field of research and the limited findings to date do not clearly indicate which

distance measure to use (Peterson et al., 2006).

In this paper, we propose a new distance metric that incorporates information from5

the surrounding watershed that potentially influences stream water chemistry. This al-

lows for direct coupling between the stream network and the landscape that contains

it. The new metric adjusts the in-stream distance between any two points based on

the degree of similarity of relevant properties in their up-slope contributing watersheds.

For example, two positions in a stream that have contributing areas with very similar10

characteristics would be considered “virtually” closer together than two positions that

have contribution areas with different characteristics. This new metric, named the ad-

justed distance metric, does not use explicit assumptions on how landscape controls

influence water quality and can be used with existing geostatistical methods. In this

way both the physical distance between points and the connection of the stream to the15

surrounding landscape are considered. This provides a way to explore possible first-

order controls on stream chemistry by quantifying their relative influence on how we

interpolate observations. Such information can then be used to guide future sampling

schemes based on initial synoptic campaigns.

2 Methods20

2.1 Defining an adjusted distance metric

Consider two separate points (i and j ) in a stream network. Based on a Euclidean

distance metric (Fig. 1a), the points are separated by a distance defined simply by a

straight-line path (Ei j ) based solely on the coordinates of the points. Using a symmet-

rical in-stream distance metric (Fig. 1b), these two points are separated by a distance25

determined by the path of the stream (di j ).
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Both points i and j also have a local contributing area with certain landscape char-

acteristics. These characteristics can be used to define attributes for each point (ai
and aj , respectively) as the area-weighted average of any quantifiable landscape char-

acteristic in the contributing area (e.g., amount of forest, soil porosity, number of septic

systems, or land surface slope). How similar or different two positions in the stream5

are with respect to the composition of their contributing areas can be determined by

the absolute difference in attribute (ai j ):

ai j =
∣

∣ai − aj
∣

∣ (1)

For example, consider a map of forested versus non-forested landuse for a catchment.

In Fig. 1c, this is represented as crosshatched or non-crosshatched areas for forested10

or non-forested landuse, respectively. In this simple case where the landscape char-

acteristic has a binary spatial distribution, the attribute at any point in the stream would

represent the percentage coverage of characteristic over the local contributing area

(approximately 30% and 90% forested landuse for points ai and aj , respectively, in

Fig. 1c). When the landscape characteristic is defined over a continuous range of15

values (e.g., soil depth), the attribute at any point in the stream would represent the av-

erage value of the characteristic over the domain of the contributing area (e.g., average

soil depth).

For a stream distance metric to incorporate information about both topology of the

stream network and composition of the contributing areas, it would need to use some20

combination of di j and ai j . The measures di j and ai j have different units and must

be scaled for direct comparison. This can be accomplished by dividing through by

medians (dmedian and amedian, respectively) of all pairs of sample points in the stream

network. These scaled values can then be combined into the adjusted distance metric,

hi j , which combines physical distance and contributing area similarity. We propose a25

simple linear weighing of di j and ai j :

hi j = (1 −ω)
di j

dmedian

+ω
ai j

amedian

(2)
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where ω is a weighting factor varying from 0 to 1. The weighting factor allows us to

adjust the relative importance of the physical distance between points and the simi-

larity/dissimilarity of their local contributing area. For ω equal 0, the adjusted distance

equals the in-stream distance between two points scaled by the median of all in-stream

distances. With a small value for ω, the physical in-stream distance between two points5

dominates whereas with higher values the adjusted distance becomes more dominated

by the differences of the characteristic of the local contributing areas.

Of course, other formulations are possible for combining di j and ai j and Eq. (2) can

easily be generalized to consider more than one landscape characteristic. However,

these variations are beyond the scope of this proof-of-concept study. The goal of this10

study is to investigate the merits of including the characteristics of the contributing area

in defining distance metrics. We accomplished this by interpolating stream water chem-

istry along a stream network based on point observations using three different distance

metrics: Euclidean, in-stream, and the above proposed adjusted (Eq. 2) metrics. Data

from a synoptic sampling campaign in the Catskill Mountains, NY, as described below,15

were used as test case. We evaluated the different distance measures by computing

the cross-validation error associated with each interpolation.

2.2 Input data

The input data used to in this study were synoptic water chemistry data and landscape

characteristic data.20

2.2.1 Synoptic data

The synoptic data were point measurements of stream water chemistry. A snapshot

sampling campaign consisting of 117 manually collected grab samples was conducted

over one day during a spring recession flow period (26 April 2001) for the Townbrook

Research Watershed in the Catskill region of New York State (Fig. 2). This 37-km
2

25

watershed in the headwaters of the Cannonsville Reservoir basin in Delaware County
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ranges in elevation from 493 to 989 m above mean sea level with slopes ranging from 0

to 43
◦

. The main channel (Townbrook) flows primarily east-west through the southern

half of the watershed with an outlet at the farthest west point in the watershed. On

the sampling day, the mean stream flow at the outlet was 0.77 m
3
/s corresponding to

a specific runoff of 1.8 mm/d. The grab samples were analyzed at the US Department5

of Agriculture – Agriculture Research Services (USDA-ARS) laboratory at University

Park, PA for various nutrient and major cation and anion concentrations (Table 1). Note

that N and P refer to the nitrate-nitrogen and orthophosphate forms of the nutrients,

respectively. The analytical procedures used were standard methods for each con-

stituent similar to those outlined by McHale et al. (2004) and Burns et al. (2006). For10

measurements where constituent concentrations were below detection limits (account-

ing for less than 13% of all measurements), a value of half the detection limit was used

as value for the further analyses.

2.2.2 Landscape characteristic data

The landscape characteristic data were spatial information about the watershed used15

for defining attributes for the various subwatersheds in the adjusted distance metric.

Characteristics were selected that are commonly considered as first-order controls on

stream water concentrations at the landscape scale (Table 2). The landscape char-

acteristics used in this study were derived from topographic, landuse, and soil type

of spatial information from various published sources. The Soil Survey Geographic20

(SSURGO) distribution data base (USDA-NRCS, 2000) was used to define soil depth,

organic matter content, and porosity for each unique designation unit of the soils map

(commonly referred to as the map unit identifier – MUID). This links the graphic features

of the soils map to attribute data defined from soil surveys. Soil depth was defined as

the depth from the soil surface to lower boundary (restrictive layer). The organic matter25

content for each MUID was calculated as the average between the upper and lower

organic matter contents reported in the SSURGO data base. Porosity for each MUID

was taken directly from the SSURGO database.
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The topographic wetness index (ln(a/tanβ) from Beven and Kirkby, 1979), where

tanβ is the local slope and a is the upslope area, A, per unit contour length, were

computed from a 10×10 m USGS digital elevation model (DEM) (USGS, 1992) using

a multiple flow-direction algorithm for determination of the upslope area (Seibert and

McGlynn, 2007). In addition to the topographic wetness index, its components were5

also considered individually, i.e., the local slope, tanβ, and the logarithm of the upslope

area, ln(A), as attributes. Landuse characteristics were based on Thematic Mapper

data (NYCDEP, personal communication, 1999). The watershed is primarily forested

at higher elevations (away from the main stream channel) and used agriculturally (in-

cluding pasture and cropping) at lower elevations (near the main stream channel). For10

this study, we considered only these two landcover classes (which in total accounted

for more than 96% of the total watershed area).

2.3 Calculating distance metrics

The distance between any two points in the stream was computed for three stream dis-

tance metrics (i.e., the Euclidean, in-stream, and adjusted in-stream distance metrics).15

The stream network was defined by thresholding the upslope area map at a value of

5 ha which gives a rasterization of the stream network in the same 10×10 m grid as the

DEM. Euclidean distance between two points was defined as a straight line between

points based on the coordinates of each point. Using network-modeling techniques,

an ArcView (ESRI, Inc., 2006) script was written similar to that used by Gardner et20

al. (2003) to calculate the distance between points for the symmetric in-stream dis-

tance metric using a path restricted to the stream.

The specific values of the adjusted distance metric depend on the landscape charac-

teristic selected to define attribute values. As a first step the landscape characteristics

considered in this study where computed for each grid cell along the rasterized stream25

network. This was done by first delineating the local contributing area for each stream

cell and then determining the average of each landscape characteristic listed in Ta-

ble 2 within this contributing area. The contributing areas were computed based on
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the DEM. A multiple-flow-direction algorithm (Seibert and McGlynn, 2007) was used

to compute the downslope accumulation of catchment area and the local input of area

entering the stream network at a certain stream cell. Along the stream network all area

was routed towards the direction of the steepest gradient. Once the contributing area

for each point in the stream network was determined, the average of each landscape5

characteristic over that area was calculated. This defines several attribute values (one

for each landscape characteristic) at each point along the stream network. Based on

these values, the attribute differences ai j the between any two points i and j in the

stream network could be calculated using Eq. (1) for each attribute. The distances di j

were computed using the symmetric in-stream distance metric. The di j reflects the10

topology of the stream network and does not depend on the selected attribute. The

adjusted distance metric between two points in the stream was defined from Eq. (2)

for each attribute with ω allowed to vary from 0.1 to 1 using intervals of 0.1 to facilitate

computations (for ω=0 the adjusted distance equals the symmetric in-stream distance

scaled by the median and is redundant). This resulted in a different adjusted distance15

metric for each landscape characteristics listed in Table 2 at each increment of ω (i.e.,

8 characteristics times 10 increments of ω or 80 possible adjusted distance metrics).

Instead of a priori choosing which landscape characteristic and ω combination to use

for a certain constituent, (Table 1) we considered all possible combinations and se-

lected for each constituent the best performing based on error analysis associated with20

the resultant interpolation (see Sect. 2.5 below).

2.4 Geostatistcal analysis

Ordinary kriging was used to interpolate between the synoptic sampling points for each

constituent based on exponential models fit to calculated semivariograms (Cressie,

1985). To calculate semivariograms, the distances between all sampling locations,25

x(i , j ) defined using either Euclidean, in-stream, or adjusted in-stream distance metrics

from above, were divided into lag bins of a given length, x, defining the semivariance
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for each lag bin, γs(x), as

γs(x) =
1

2N(x)

∑

(i ,j )

(Yi − Yj )
2 (3)

where, N(x) is the number of pairs, Yi and Yj are the constituent of interest at sampling

point i and j , respectively, with summation over pairs (i , j ) for the lag bin. The aver-

age bin semivariance was plotted against the average bin length to create the sample5

semivariogram. This describes variance between two sampling locations in space as a

function of distance and is fitted by a function (also called a model) to create the semi-

variogram. The main parameters of the fitted semivariogram model are the nugget,

the sill, and the range. The sample semivariograms were fitted with an exponential

semivariogram model of the form10

γe(x) = σ2
0
+

(

σ2
∞

− σ2
0

)(

1 − e
−x
λ

)

(4)

where γe(x) is the fitted semivariogram model, σ
2
0 is the nugget, σ

2
∞

is the sill, and

λ is the correlation length. The models were fit using an automated fitting procedure

(Cressie, 1985, 1991). The fitted semivariogram model provides a manner to interpo-

late the constituent of interest between sampling locations using kriging to generate15

predictions at unobserved locations by weighting the influence of neighboring sampled

locations based on their distance and configuration and, in the case of the adjusted

distance metric, landscape characteristics.

2.5 Selecting the best performing adjusted distance metric

All combinations of landscape characteristics (Table 2) and ω were considered for20

defining distance for interpolating each constituent (Table 1). The best performing

adjusted distance metric was then selected using the cross-validation of the kriging

interpolation. Cross-validation, which describes how well a kriging interpolation fits
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observed data, was performed with a “leave-one-out” methodology. This methodol-

ogy omits a sampling location from the analysis and then estimates its value using

the remaining sampling locations. After repeating for all sampling locations, a cross-

validation error (KRMSE) was then calculated as the root mean squared error from the

differences between estimates and actual observations of the constituent concentra-5

tions as

KRMSE =

√

√

√

√

√

n
∑

i=1

(Ei − Yi )
2

n
(5)

where Yi is the observed concentration of the constituent at point i in the stream net-

work, Ei is is the kriging estimated concentration of the constituent at point i in the

stream network, and n is the number of points considered or the number of samples.10

The combination of landscape characteristic and ω that resulted in the lowest KRMSE

for each constituent was selected as the best performing adjusted distance metric for

interpolating that particular constituent. For comparison, ordinary kriging interpolations

and cross-validation were performed using the Euclidean and in-stream distance met-

rics.15

3 Results

3.1 Visual comparison

Due to the large scale of the synoptic campaign and the number of constituents con-

sidered in this study, we present visual comparison results only for the nutrient concen-

trations of N, K and P. Semivariograms based on Euclidean, in-stream, and adjusted20

distance metrics for the observed concentrations of N, K, and P show the relationship

between variations among observations and the distance separating measurements
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(Fig. 3). The points (i.e., the sample semivariogram) represent the average semi-

variance of observations binned according to observation separation distance. The

curves are the fitted exponential models describing variance between observations as

a function of separation distance. Different landscape characteristics and values of ω

provided the best performing adjusted distance metric used to generate the semivari-5

ograms (Table 3). In addition, the exponential semivariogram models fitted to the sam-

ple semivariograms developed from observed data using Eq. (3) had different nugget,

sill, and range parameters (Table 4). Note that in order to allow comparison between

the three new metrics, we scaled all distances by dividing by the maximum distance for

each metric, and, thus, range values have no units.10

Examples of N, K, and P interpolations made with ordinary kriging for the three

distance metrics are shown with two first-order tributaries and their downstream con-

fluence (Fig. 4). The observed values and sampling locations are highlighted in the first

column of Fig. 4 for N, K, and P, respectively. The southern end of this tributary, which

flows north-south before it flows into the main stream channel of the watershed, have15

higher observed values for each of the three nutrients when compared to the northern

ends. It should be noted that there is more agricultural land draining through the south-

ern end of the tributaries than the northern end. The northern end of this region is

more upland in position and primarily covered with forest. For each point in the stream

that is not directly sampled, an interpolated value is estimated using ordinary kriging20

based on the semivariogram models from Fig. 3. These interpolations allow the visual

comparison of how each distance metric represents small-scale variations in nutrient

concentrations along the stream.

3.2 Quantitative evaluation

The kriging interpolations for all the constituents using the three different distance25

metrics were evaluated by computing KRMSE from cross-validation (Table 3). Cross-

validation gives a quantification of how well the interpolation “predicts” locations where

concentrations are known. There is a reduction in cross-validation error for almost all

1301

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/1289/2008/hessd-5-1289-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/1289/2008/hessd-5-1289-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD

5, 1289–1317, 2008

Incorporating

landscape

characteristics in a

distance metric

S. W. Lyon et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

constituents (except N and P where there is a slight increase) when a symmetric in-

stream distance metrics was used compared to a Euclidean distance metric (Table 3).

The change in KRMSE found using the in-stream distance versus Euclidean distance

ranged from a slight increase of 4.2% for P concentrations to a reduction of 37.9% for

Mg concentrations with and average reduction of 21.2% for all constituents. Using the5

adjusted distance metric resulted in an even larger reduction in cross-validation error

for all constituents (Table 3). The change in KRMSE found using the adjusted distance

versus Euclidean distance ranged from a reduction of 10.8% for P concentrations to a

reduction of 43.1% for Mg concentrations with an average of 30.1% for all constituents.

When comparing the adjusted in-stream distance metric to the in-stream distance met-10

ric, there was a reduction in cross-validation errors for all constituents. The values of

KRMSE using the adjusted in-stream distance were on average 11.0% lower than when

the in-stream distance was used directly; for the individual constituents this reduction

of KRMSE ranged from 6.2% for Cl to 16.0% for N.

4 Discussion15

Different landscape characteristics and weighting factors were found to give the best

performing adjusted distance metrics for different constituents. For example, an ad-

justed distance metric using the topographic wetness index and ω=0.2 provided best

results for interpolating Na concentrations while using average porosity and ω=0.5

gave best results for interpolating Ca concentrations in this stream network. This vari-20

ation is expected since there are different processes controlling in-stream concentra-

tions for different constituents. The outlined methodology had no a priori assumptions

on primary mechanisms and on how or to what extent the different landscape charac-

teristics influence in-stream concentrations. Such restrictions based on assumptions

of primary mechanisms are inherent to existing stream export models, such as SPAR-25

ROW (Smith et al., 1997), and require calibration based on constituent and location to

give continuous representations of stream water chemistry. The opportunity to be used
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as an explanatory analysis tool is one advantage of using the proposed geostatistical

technique. Representations of stream water chemistry made using geostatistical tech-

niques are drawn directly from observations and, thus, reflect the tight coupling inher-

ent between stream water chemistry and landscape characteristics. This is especially

true during low-flow conditions (which are present during most synoptic campaigns)5

as the mean transit time of water in and the contact time of water with the landscape

increases.

Of the three metrics considered in this study, Euclidean distance performed the worst

based on KRMSE for most constituents (with N and P being exceptions). This result (with

respect to the symmetric in-stream distance metric) is expected and is similar to the10

results seen by Little et al. (1997) and Gardner et al. (2003). The better performance of

both the symmetric in-stream distance metric and the adjusted in-stream distance met-

ric is attributed to a more appropriate representation of distance when the travel path

between two locations is restricted to the stream. This shortcoming of the Euclidean

distance metric is exemplary in the kriging interpolation K concentration (Fig. 4). When15

using the Euclidean distance metric, there is a heavy influence of the low concentra-

tion observed at the northern end of the smaller tributary on the middle section of the

longer stream. This is exhibited as a light colored region in the interpolation for K con-

centrations the longer stream (Fig. 4). The influence of this low-concentration sample

is lower using the symmetric in-stream distance metric because the sample is farther20

away from the middle section of the longer stream. Using the adjusted distance met-

ric, the kriging interpolation of K concentration becomes, in effect, smoothed out and

more closely resembles the change in landuse composition moving downstream. The

contributing area draining into the northern end of the longer stream reach is covered

by 35% forested land. This composition decreases to only 15% forested landuse at25

the southern end of the reach reflecting the incorporation of more agricultural in the

lowland area. A similar control of landuse on K concentration has been seen in other

watershed studies (e.g., Williams et al., 2005; Tripler et al., 2006) and illustrates an

advantage for interpolation methods using the adjusted distance metric in developing
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hypothesis about the mechanisms controlling landscape-stream connections for differ-

ent constituents (which is the goal of many synoptic campaigns). As another example,

percentage agricultural landuse was the most suitable landscape characteristic for in-

terpolating P concentrations in the stream network (Table 3). This relationship between

P concentrations and landuse agrees with the findings of previous studies in the Catskill5

Region of New York State based on multi-year data (Lyon et al., 2006).

Identifying links between landscape characteristics and stream water chemistry is

difficult and typically requires sampling covering various flow conditions and seasons

at numerous locations. This is specifically true for constituents where the mechanisms

controlling stream water concentration are not well established or understood. The10

question is how one does identify the best location to collect samples in a stream

network? The adjusted distance metric interpolation approach could be used in an

investigatory mode such that first-order controls of stream water chemistry are identi-

fied from an initial synoptic sampling campaign. Then, transition zones (e.g., stream

reaches where the best performing attribute undergoes much change) or hot spots15

(e.g., positions in the stream network where the best performing attribute is extremely

high or low) could then be further targeted in future investigations to gain process-

based understanding connecting in-stream chemistry and landscape characteristics.

This approach could allow more effective sampling strategies and, thus, reduce costs.

The adjusted distance metric, while improving interpolations of water quality obser-20

vations in terms of cross-validation error, comes at a computational cost. By not making

assumptions of mechanisms, we needed to test multiple landscape characteristics to

determine which proves to be “best” performing for interpolation. This means producing

numerous stream network maps describing the contributing area composition for each

“point” in the stream. With the stream network rasterized based on a 10×10 m grid,25

our 37 km
2

study watershed contained a stream network consisting of over 12 000 grid

cells. This is quite a large domain to model especially since we need to compute dif-

ferences between each cell for Eq. (1) (resulting in 12 000×12 000=144 000 000 calcu-

lations per attribute!). An alternative approach for large systems would be to represent
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the stream network treating the stream order as the smallest unit. While computation-

ally “faster”, this method would not be able to show variations at the sub-reach scale

which is often the scale of interest in synoptic campaigns and ecohydrological studies.

Another possible shortcoming of the adjusted distance metric (in the form presented

in this study) is that it is based on a symmetrical representation of in-stream distance.5

It has been pointed out that stream water chemistry is strongly influenced by longitudi-

nal transport mechanisms and movement occurs primarily in the downstream direction

(Closs et al., 2004; Peterson et al., 2006). With this in mind, several recent studies

have focused on developing weighted asymmetrical in-stream distance metrics (e.g.,

Peterson et al., 2006, 2007; Cressie et al., 2006; Ver Hoef et al., 2006). The influence10

of such directionality is likely limited during low-flow conditions. In addition, symmet-

ric in-stream distance may better represent the integration of contributing areas (flow

paths) moving down a single stream reach. It is easy, for example, to imagine a sce-

nario where a point source (or highly concentrated region of non-point source) exists

between two observation positions along a stream. Using an asymmetric metric, any15

interpolations made between these two observation points would not reflect this point

source (since the influence of the point source is felt only by the down stream position).

While this may not matter at larger spatial scales, it is extremely important in smaller

scales which can directly affect the ecology and health of the river system.

5 Concluding remarks20

Synoptic sampling campaigns can be used to represent stream water chemistry at the

watershed scale. It is often desirable to determine a spatial continuous mapping of

stream water chemistry from such campaigns using interpolation techniques (such as

geostatistics and kriging). These techniques are heavily influenced by how we define

distance between points. In this study, we developed and evaluated an adjusted dis-25

tance metric that couples distance between in-stream chemistry concentrations with

landscape characteristics. Ordinary kriging based on this adjusted distance metric bet-
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ter matched observations (i.e. resulted in smaller cross-validation errors) than either

Euclidean or in-stream distance metrics for our test watershed. This adjusted distance

metric can also be used to help identify first-order landscape controls on stream chem-

istry dynamics and target future sampling campaigns.
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Table 1. Constituents including nutrients and major cation and anions measured during synop-

tic sampling campaign with statistical values based on all samples.

Constituent Average Standard Deviation Minimum Observed Maximum Observed

[ppm] [ppm] [ppm] [ppm]

N 0.33 0.53 0.10 3.55

K 1.39 1.43 0.24 10.28

P 0.0122 0.0177 0.0050 0.1470

Ca 6.06 3.27 1.10 18.07

Mg 1.48 0.88 0.43 3.85

Na 2.92 1.96 0.69 9.08

SO4 11.90 27.59 2.11 261.37

Cl 2.50 3.00 0.20 10.77

SiO2 2.62 0.76 0.53 4.85
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Table 2. Landscape characteristics used to determine attributes for defining an adjusted dis-

tance metric with statistical values from compositions of contributing areas draining through all

sampling locations from the synoptic campaign.

Landscape Units Average Standard Minimum Maximum

Characteristic Deviation Observed Observed

Soil Depth meter 1.41 0.26 0.62 1.83

Organic Matter Content % 0.5 0.2 0.0 1.0

Porosity % 40.9 1.9 36.0 45.9

Topographic Wetness Index ln(meter) 7.18 0.33 6.42 8.51

Local Slope degree 0.19 0.24 0.00 0.41

Log of Upslope Area ln(meter
2
) 6.23 1.68 3.22 17.43

Percentage Forest % 51.8 29.2 0.0 100.0

Percentage Agriculture % 47.6 28.9 0.0 100.0
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Table 3. Landscape characteristics and ω values given best performing adjusted distance met-

rics for each constituent measured in the synoptic sampling campaign and the cross-validation

error (KRMSE) associated with ordinary kriging using the Euclidean (EUC), symmetric in-stream

(INS), and adjusted (ADJ) distance metrics with reduction in cross validation shown for each

constituent. Note that the negative reductions in KRMSE for N and P comparing EUC vs. INS

indicate an increase.

Cross-validation Error (KRMSE) Reduction in KRMSE

Constituent Best Performing ω EUC INS ADJ EUC EUC INS

Landscape vs. vs. vs.

Characteristic INS ADJ ADJ

N Percentage Agriculture 0.8 0.24 0.25 0.21 −4.2% 12.5% 16.0%

K Percentage Forest 0.3 1.05 0.82 0.73 21.9% 30.5% 11.0%

P Percentage Agriculture 0.2 0.0083 0.0084 0.0074 −1.2% 10.8% 11.9%

Ca Porosity 0.5 2.31 1.56 1.42 32.5% 38.5% 9.0%

Mg Percentage Forest 0.5 0.58 0.36 0.33 37.9% 43.1% 8.3%

Na Topographic Wetness Index 0.2 1.46 1.08 0.91 26.0% 37.7% 15.7%

SO4 Soil Depth 0.7 10.67 8.84 7.55 17.2% 29.2% 14.6%

Cl Percentage Forest 0.5 2.07 1.29 1.21 37.7% 41.5% 6.2%

SiO2 Topographic Wetness Index 0.2 0.59 0.46 0.43 22.0% 27.1% 6.5%
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Table 4. Exponential semivariogram model parameters for stream concentrations of N, K, and

P using the Euclidean (EUC), in-stream (INS), and adjusted (ADJ) distance metrics.

Parameters

Constituent Distance Nugget Sill Range

Metric [ppm
2
] [ppm

2
] [m/m]

EUC 0.37 0.37 0

N INS 0.30 0.40 0.83

ADJ 0.15 0.20 1.02

EUC 1.57 3.66 0.69

K INS 1.26 3.57 0.65

ADJ 0.83 1.74 0.12

EUC 0.00035 0.00048 0.79

P INS 0.00030 0.00062 0.83

ADJ 0.00012 0.00044 0.57
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Fig. 1. Schematic watershed showing the difference between (a) Euclidean, (b) symmetric

in-stream, and (c) adjusted distance metric for two points i and j . For the adjusted distance

metric, the two points virtually move further apart because the spatial distribution of the selected

landscape characteristic is very different for the two local contributing areas.
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Fig. 2. Site map for the Townbrook Research Watershed in Delaware County, New York show-

ing the locations for the synoptic sampling campaign. The location of the streams shown in the

example using nutrient concentrations (see Fig. 4) is outlined with a dotted line.
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Fig. 3. Semivariograms for nutrient concentrations N, K, and P in the stream (rows) fitted

with exponential models developed using Euclidean (EUC), symmetric in-stream (INS), and

adjusted (ADJ) distance metrics (columns).
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Fig. 4. Example of the ordinary kriging interpolations for nutrient concentrations N, K, and P

(rows) using Euclidean (EUC), symmetric in-stream (INS), and adjusted (ADJ) distance metrics

(columns). The circles in the figure show the locations and concentrations of nutrient observa-

tions. The location of this example relative to the entire watershed is indicated in Fig. 2.
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