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Abstract

Preferential flow features have been found to be important for runoff generation, solute

transport, and slope stability in many areas around the world. Although many studies

have identified the particular characteristics of individual features and measured the

runoff generation and solute transport within hillslopes, no studies have determined5

how individual features are hydraulically connected at a hillslope scale. In this study,

we used dye staining and excavation to determine the morphology and spatial pattern

of a preferential flow network over a large scale (30 m). We explore the feasibility of

extending small-scale dye staining techniques to the hillslope scale. We determine

the lateral preferential flow features that are active during the steady state flow con-10

ditions and their interaction with the surrounding soil matrix. We also calculate the

velocities of the flow through each cross-section of the hillslope and compare them to

hillslope scale applied tracer measurements. Finally, we investigate the relationship

between the contributing area and the characteristics of the preferential features. The

experiment revealed that larger contributing areas coincided with highly developed and15

hydraulically connected preferential features that had flow with little interaction with the

surrounding soil matrix. We found evidence of subsurface erosion and deposition of

soil and organic material laterally and vertically within the soil. These results are impor-

tant because they add to the understanding of the runoff generation, solute transport,

and slope stability of these types of hillslopes.20

1 Introduction

Subsurface flow in hillslopes dominates the hydrological regime, the transport of so-

lutes and nutrients, and can affect slope stability, especially in humid climate on steep,

forested watersheds (Uchida, 2004). Preferential flow has long been identified as an

important factor in these environments (Mosley, 1979). However, the flow pathways25

that water flows through are still largely unknown. Researchers have used dyes and
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excavation to determine how water exploits vertical and lateral preferential flow features

(e.g. Noguchi et al., 1999; Weiler and Fluhler, 2004). This method involves applying

dye solution or paint with sprinklers or line sources to sections of the soil under steady

state conditions. The soil is excavated, photographed, and analysed to determine the

flow paths (e.g. Weiler and Fluhler, 2004). These experiments have been used at the5

smallest scales (less than 2 m) and often focus on the vertical movement of water dur-

ing infiltration. This method is labour intensive and destroys the soil structure, but it has

been proven effective. Less destructive methods such as ground penetrating radar, fi-

bre optics, and electrical conductivity have been tested, but they require expensive

equipment and have seen limited successes (e.g. Holden et al., 2002; Sherlock and10

McDonnell, 2003).

The few hillslope experiments that use excavation have found that hillslopes had

short (generally less than 5 m) preferential flow features (Noguchi et al., 1999; Terajima

et al., 2000). Some steep, forested hillslopes have been reported to have large prefer-

ential flow features, but it was not known how far upslope they extended (Roberge and15

Plamondon, 1987; Tsukamoto and Ohta, 1988; Kitahara, 1993; Uchida et al., 1999).

Even though preferential features are usually short and discontinuous, hillslopes pro-

duce fast tracer velocities and rapid subsurface flow responses (Peters et al., 1995;

Tani, 1997; Hutchinson and Moore, 2000). These fast velocities and subsurface flow

responses have led to the idea of a preferential flow network, which describes a series20

of hydraulically connected preferential features that appear to be physically discontinu-

ous. The exact mechanisms that allow water to exploit these preferential flow pathways

are not known, but it is assumed that a saturated soil provides the connection between

preferential features (McDonnell, 1990; Sidle et al., 2001). As water is redistributed

vertically and laterally the saturated area increases, which increases the number of25

active preferential features and hence increases the subsurface flow response of the

hillslopes (Sidle et al., 2000). This dynamic subsurface flow response behaviour has

been shown to be influenced by antecedent moisture condition, precipitation intensity

and precipitation amount (Tsuboyama et al., 1994; Sidle et al., 1995; Sidle et al., 2000;
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Uchida et al., 2005; Tromp-van Meerveld and McDonnell, 2006a).

The presence of preferential features is also an important factor in slope stability. Of-

ten preferential features are found in landslide scars near the sites where slope failures

are initiated (Fannin and Jaakkola, 1999; Uchida et al., 2001). Once the capacity of

preferential features is exceeded it is believed that they contribute to high pore water5

pressures in the surrounding soils, contributing to a high landslide initiation potential

(Uchida, 2004). Other studies have shown that they can also rapidly drain soils, thereby

decreasing the landslide initiation potential (Pierson, 1983; Fannin et al., 2000). Pref-

erential flow features are created by the actions of plant roots and burrowing animals.

Once formed, subsurface erosion and deposition of material can modify preferential10

features, altering their capacity to transmit water. Erosion of preferential features is

likely to increase their flow capacity, whereas deposition will decrease their capacity,

resulting in a potential increase in local pore pressure. Modification of preferential fea-

tures is affected by soil cohesion (Uchida et al., 1999) and by the volume of water

supplied to the features, which is related to the contributing area (Freer et al., 2002;15

Uchida, 2004). We would expect that higher contributing areas should correspond to

preferential flow networks with larger and more connected features. Most experiments

have focused on the individual preferential flow features and few experiments have ex-

amined the connection to physical factors such as the contributing area. Therefore, we

have very few general principals that can be used to link preferential features to physi-20

cal characteristics; such as contributing area, slopes, or soil types (Uchida, 2004).

In this paper, we test the feasibility of extending the small-scale dye staining tech-

niques to the hillslope scale (30 m). We test the hypotheses that 1) there is a rela-

tionship between the contributing area and the extent and connectivity of preferential

flow features, and 2) that there is evidence that preferential features contribute to the25

subsurface erosion and deposition of material. We also aim to describe lateral pref-

erential flow features that are active during subsurface flow, their interaction with the

surrounding soil matrix, and the velocities of the flow through each cross-section of the

hillslope.

1046

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/1043/2008/hessd-5-1043-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/1043/2008/hessd-5-1043-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD

5, 1043–1065, 2008

Excavation of a

lateral preferential

flow network

A. E. Anderson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

2 Methods

2.1 Study site

The experiment was conducted in the Russell Creek research watershed located on

northeastern Vancouver Island, British Columbia, Canada. The watershed ranges in

elevation from 275 m to 1715 m above sea level (a.s.l.), which places the majority of the5

watershed in the rain-on-snow zone (300–800 m) and the snow zone (above 800 m).

This area has high annual precipitation. Average precipitation at two gauges in the

watershed was 2258 mm/yr at 830 m a.s.l. and 1906 mm/yr at 300 m a.s.l., with the

majority of the precipitation falling in the winter months (80% of total precipitation in

September to April). A moderately steep (30%) hillslope at 400 m a.s.l. that frequently10

produced subsurface flow at the road cut-bank during storms was selected for this ex-

periment. In addition, soil characteristics, vegetation, and slope morphology of this site

is similar to many other sites at Russell Creek. This site was also close to meteoro-

logical instrumentation, gauged streams and piezometers and in winter, access was

relatively easy because the road was in good condition and only an intermittent snow15

pack was expected.

The experiment was performed in the lower 30 m of the approximately 100 m long

hillslope (Fig. 1). We selected this hillslope because it had a range of contributing

areas (determined by the surface topography), a range of soil surface slopes, and rep-

resented the main soil types found at Russell Creek. The topography of this area was20

undulating with wet hollows and drier convex ridges as indicated by changes in herbal

vegetation and soil types. The centre of the lower 10–15 m of the hillslope (Fig. 1)

was typical of a topographical hollow with clay and organic rich soils (Bg and Ah) less

than 1 m deep. The remainder of the hillslope (Fig. 1) was typical of convex and planer

hillslopes with podzols that had a 0–10 cm thick Ae layer, and a Bf layer approximately25

1 m deep. The topography in this watershed was highly variable so it is difficult to

determine the frequency, orientation, or the percentage of the watershed covered by

hollows and corresponding soil types. However, in general the steeper topography (of-
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ten greater than 30%) appeared to have more areas typical of the hillslope soil types.

In the steeper terrain, the hillslopes were also often directly connected to a stream or

exposed gully bank without a noticeable hollow or riparian area. The area with gentler

topography, often closer to the valley bottoms, had a higher percentage of area with

soils and vegetation similar to the wet hollow area in the experimental hillslope. These5

areas were mostly topographical depressions, hollows, and riparian areas.

The parent material and lower bounding layer of the soil was compacted glacial till. A

300 year old, 200 cm diameter, 47 m tall stand Western Hemlock (Tsuga heterophylla)

and Amabilis Fir (Abies amabilis) covered the whole hillslope (stand information from

inventory and observations).10

2.2 Experimental design

Dyes are commonly used to stain the flow paths used by water during infiltration. Vari-

ous tracers have been used, including Methylene Blue (Bouma et al., 1977), Acid Red

1 (Ghodrati and Jury, 1990) Brilliant Blue FCF (Flury and Fluhler, 1995; Weiler and

Fluhler, 2004) and diluted white paint (Noguchi et al., 1999). We used Brilliant Blue15

FCF even though the contrast between the dye and the dark soils found at our site was

expected to be a problem. Brilliant Blue FCF was chosen because it has a relatively

low toxicity, sorption, and high mobility (Flury and Fluhler, 1995). The low sorption and

high mobility properties were important because the dye was required to travel 30 m

through the hillslope. The sorption isotherm is also non-linear which creates a sharp20

boundary at the leading edge of the dye and high contrast to the soil (German-Heins

and Flury, 2000). Dyes are usually applied in solution by sprinkling onto the soil; how-

ever, in order to delineate the lateral preferential features we created a steady state flow

rate laterally through the hillslope similar to the methods used by Noguchi et al. (1999),

but at a much larger scale. Steady state was achieved by diverting water at a rate of25

23.5 l min
−1

from a nearby stream into a trench 30 m above the road cut-bank. The flow

rate of 23.5 l min
−1

was chosen because it was sufficiently high to activate the prefer-

ential flow network as measured during natural storms. Steady state was determined
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with tipping buckets installed at the road cut-bank. Once steady state was achieved,

a concentrated solution of Brilliant Blue dye was added to the trench to create a dye

concentration of 4–5 g/l in the input trench. Dye solution was added for 100 min, which

was the approximate time required for the peak breakthrough of applied NaCl tracer.

The input flow of water was then stopped and the hillslope was left to drain overnight5

(14 h).

Over the next 4 days, the hillslope was excavated. Even though it was extremely

labour intensive, we decided to excavate the hillslope manually, rather than using ma-

chinery so that we could carefully prepare each cross-section. Using machinery could

have damaged the soil because large roots, boulders, and fibrous organic horizons10

extended upslope and disturbing these with machines would damage the upslope soil.

The roots, fallen trees, and boulders made the excavation challenging. To prepare the

cross-sections, roots were cut flush with the soil face with reciprocating saws, pruning

shears and axes. Boulders were moved carefully, but some boulders were too large to

move and were left in place. The large fallen trees were cut into disks with a chainsaw15

and rolled down slope into the previously excavated sections. Sixteen cross-sections

were excavated and prepared for photography. Cross-sections were approximately one

metre apart in the lower 15 m of hillslope. Three additional, one metre-wide trenches

were excavated 3–4 m apart in the upper part of the hillslope. Each of the cross sec-

tions was photographed using a digital camera and surveyed with a Laser Total Station20

resulting in 256 survey points. The entire 100 m hillslope was later surveyed with an

addition 262 survey points so that contributing area could be more accurately deter-

mined.

Automated dye pattern analysis was not well suited to analyse the photographs be-

cause the dark soils made it impossible for image processing algorithms to distinguish25

the stained soil from the surrounding matrix (Weiler and Fluhler, 2004). In addition, the

dye could not stain the large voids in the soil, and at this site, there was flow through

several large soil pipes (5–30 cm diameter). In addition, when some cross-sections

were excavated, dyed water drained from the voids and stained soil that did not trans-
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mit water during the application of the tracer. To determine an accurate measure of

the stained areas, the images were colour corrected, digitally rectified, and scaled so

that one pixel equalled one square millimetre (Weiler and Fluhler, 2004). The mineral

soil, organic soil, stones, pipes, and stained areas were then manually digitized (see

example of the procedure in Fig. 2). Detailed field notes taken during the excavation5

were used to ensure that all the stained areas were correctly digitized.

A Digital Elevation Model (0.5 m grid spacing) of the hillslope was derived from the

518 points Total Station survey points (256 from excavated area and 262 points for the

rest of the hillslope). A single directional flow algorithm (D8) was used to determine

contributing areas for each cross-section based on the surface topography. The local10

average slope for each cross-section was determined by averaging the pixel slopes for

all pixels within 0.5 m of the cross-sections.

2.3 Velocity calculations

We assumed that the total area of the stained soil for each cross-section is equal to the

cross sectional area of flow and therefore the Darcy velocity (V ) could be calculated for15

each cross-section by:

V =
Q

A
(1)

where Q was the steady state flow rate and A was the cross-sectional area of the

stained area including the soil pipes.

3 Results20

All excavated and analyzed cross-sections shown in Fig. 3 are in the proper x location

with the y and z location exaggerated so that the flow pathways between the cross-

sections could be delineated (dashed line). The pathways are not shown in cases

where the distance was too large between the cross sections, or we were unable to
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follow the feature during excavation. The first cross-section starts in the lower left

corner of the first panel of Fig. 3 and then the cross-sections continue on the panels to

the right. The location of each cross section can be seen in Fig. 1. The excavations

revealed flow through soil pipes, zones of highly conductive soils, porous organic soils,

and through the soil matrix. The soils had many live and dead roots in the upper 30–5

50 cm, but the roots often extended down to the till layer. The till layer starts at each

cross section below the defined soil or organic layer. The specific flow processes in the

three dominant soil types found at this site are described in more detail below.

3.1 Clay and organic rich soils in the topographical hollow

The first soil type was shallow (less than 1 m) with a clay-rich mineral horizon (Bg)10

and a generous Ah horizon of well decomposed organic material. In the experimen-

tal hillslope, these soils were located in the topographical hollow (centre portion of

cross-sections 1–9, Fig. 1), and contained a hydraulically connected set of preferen-

tial features, consisting of soil pipes and areas of fine gravel (particle size 2–5 mm).

The dye solution moved almost exclusively through the preferential features, interact-15

ing only minimally with the surrounding soils. Most of the material on the bottom of the

soil pipes (and filling the preferential features in cross-section 4 and cross-sections 10–

13) consisted of fine gravel, similar to sediment found in nearby small streams. This

topographical hollow had the fastest velocities (calculated with Eq. 1), which were one

and two orders of magnitude higher than those at the other cross-sections (Table 1).20

The velocity in sections with pipes (1–3 and 5–9) is underestimated. We assumed that

the soil pipes were completely filled with water during the experiment, while there is

evidence to suggest that the pipes were only partially filled; this was clearly seen in

many larger pipes where only the lower half of the inside pipe wall was stained.
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3.2 Poorly decomposed organic soils

The second type of soil had a deep (30–50 cm), fibrous, and poorly decomposed or-

ganic horizon, which contained many tree and herbaceous vegetation roots. This type

of soil was found in cross-sections 10–16. Cross-sections 10–13 had vertical bands of

dye within a relatively homogenous organic soil horizon. We assumed that this was due5

to flow connecting the upper cross-section 14 to the preferential pathway located below

the organic horizon in cross-sections 10–13. On the other hand, in cross-sections 14–

16 the dye solution was distributed horizontally, indicating that the flow of water used

the organic soils preferentially due to their higher hydraulic conductivity than that of the

mineral soil. This area of hillslope had relatively flat topography as indicated by the10

local slopes (Table 1) with no large preferential flow features.

3.3 Brown mineral soils on the hillslopes

The final soil type observed during the excavations was brown mineral soil (Bf, 0.3–

1.5 m), often with a poorly decomposed dry organic horizon and a small (less than

5 cm) Ae horizon. These soils were found on the smaller hillslopes on the left of cross-15

sections 1–2 and 17–19. These cross-sections corresponded with the smallest con-

tributing areas (Table 1). The stained area in cross-section 17 showed flow through the

organic layer and through layers of coarser mineral soil that were below the organic

layer. Cross-section 18 had flow through organic soil and a Bf horizon. Within the hori-

zon of lower conductivity, a 6-cm diameter soil pipe was discovered in the lower centre20

of cross-section 18 (Fig. 3). In cross-section 19 the soil in the centre of the cross-

section was very shallow because a windthrown tree had removed a large part of the

mineral soil. The flow through this cross-section followed the subsurface topography

and was confined to the organic and mineral soils above the till.

When cross-section 18 was excavated, the soil pipe was severed and dye solution25

poured out under pressure. This soil pipe was circular in cross-section, suggesting that

it was initially formed by a tree root. The bottom and sides of this pipe were lined with
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gravely sediment of approximately 2 mm mean diameter (evidence of past erosion),

and the pipe was completely filled with fine organic material. Dye solution was also

around a dead root in the right-hand portion of the cross-section 18 (right upper stained

area in cross-section 18). However, unlike the other pipe low in the profile, the staining

was limited to the lower half of the root, which suggested that only part of the void5

around the root was contributing to lateral flow.

3.4 Transport of soil and organic material

We speculate that fine clay and organic material were leached and transported to the

hollows where they accumulated. Evidence of buried organic material within this brown

mineral soil type suggested that there was preferential transport of water and fine ma-10

terial to depth within the soil which accumulated in areas with preferential features (old

and new). The lateral and vertical redistribution of fine organic material was also ev-

ident in cross-sections 1, 2, 17, and 18. At the road cut-bank, a low concentration of

dye solution drained from the soil face (left side of the cross-section 1 and 2 in Fig. 3).

Cross-sections 1 and 2 had buried dark soil that could have been preferential features15

filled with accumulated organic material. Although no dye solution was found within

the soil, a weak dye solution was observed exiting the soil at the road cut-bank. These

dark soils were connected to the same preferential flow features that showed strong

response during natural events and the steady state experiments. Cross-section 17

had similar redistribution of organic material into the mineral soil.20

4 Discussion

4.1 Modification of preferential features

As speculated by Uchida (2004) and the first null hypotheses of in this paper, there

appears to be a link between the contributing area and the distribution of preferen-

tial features. It is recognized that subsurface erosion contributes to stream sediment25
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(Onda, 1994; Terajima et al., 1997). This subsurface erosion is thought to be impor-

tant for the modification and maintenance of preferential flow features (Uchida, 2004).

This experiment showed the presence of highly developed preferential flow features

corresponding to the largest contributing areas (greater than 1100 m
2
). These areas

also had the largest percentage of hillslope outflow during rainfall events and for steady5

state experiments. Small contributing areas (less than 400 m
2
) and relatively flat local

topography (less than 15%) coincided with areas with few preferential flow pathways.

This suggests that a soil with a small contributing area might not receive flow rates

large enough to modify and maintain large preferential flow features.

The headwater catchments in these areas often have hillslopes directly connected10

to streams. This connection between the stream and hillslope will allow the subsurface

transport of sediments directly into the streams. Without an “exit” for the sediments,

such as a road cut or stream bank, there will likely be an accumulation of sediment,

as found in most of our excavated cross-sections. This means that the processes that

maintain the preferential flow network also have the ability to fill in some features, re-15

sulting in lower capacity and flow rate. As features in the preferential network are filled

in, water will be forced into other preferential features, causing the network to change

over time. This subsurface erosion and deposition could affect the soil development

and help contribute to the varying soil types found in this watershed. The soils with

small contributing areas contribute fine material to soils with larger contributing areas.20

The soil cross-sections excavated during this experiment were classified into groups in

the results section, which correspond to areas receiving large amounts of water, sed-

iments, and organic material (cross-sections 1–13) and areas losing sediments and

organics (cross-sections 14–19). Preferential transport of fine material was evident

within cross-sections as well. For example, there was evidence of erosion and deposi-25

tion in a preferential flow feature in cross-section 18. There was fine gravely material

on the bottom of the feature, indicating that it was connected to an outlet that allowed

erosion of finer sediments, leaving the gravely material behind. However, the pipe was

filled with fine organic material suggesting that at some point in time the outlet ceased
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to function and the feature began accumulating fine organic material.

4.2 Conceptual models of runoff

The general conceptual model of lateral preferential flow networks relies on a rising

water table. As the water table rises, there is an increase in the connections in the

preferential flow network, causing faster subsurface velocities and increasing the area5

of hillslope contributing to runoff (Tsuboyama et al., 1994; Sidle et al., 2000; Uchida

et al., 2005; Tromp-van Meerveld and McDonnell, 2006b). These excavations support

this conceptual model. It appears that the preferential flow features were connected

by matrix flow through mineral and organic soils. In some areas, this saturated flow

was perched above soil with low hydraulic conductivity and spread out horizontally in10

the overlying layers of more conductive soils. In other areas the flow had vertical com-

ponents because the water was flowing downward to areas with higher conductivities.

These observations showed that a connection may be established by a water table

rising within a small localized area.

The subsurface flow in this hillslope is highly dynamic and depends on the precipi-15

tation characteristics. Trenched hillslopes from around the world have identified differ-

ences in subsurface flow characteristics based on the subsurface topography and the

saturated zone connections of the hillslope and the trench (e.g. Tani, 1997; Hutchinson

and Moore, 2000; Freer et al., 2002; Tromp-van Meerveld and McDonnell, 2006a). The

excavations presented here show that trenches with large contributing areas collect20

flow from preferential flow networks that are efficient at transferring water, due in part

to a high degree of hydraulic connectivity. The soils in these areas could transport

water one order of magnitude faster than other soils. The dye staining also revealed

that there is often little interaction between water in the preferential flow feature and the

surrounding soil matrix unless there was a constriction in the preferential flow network.25

This is important for understanding the transport and dilution of solutes and pollutants.

Solutes deposited in soils with larger contributing areas (hence a well established pref-

erential flow network) will have quicker travel times and minimal interaction with the

1055

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/1043/2008/hessd-5-1043-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/1043/2008/hessd-5-1043-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD

5, 1043–1065, 2008

Excavation of a

lateral preferential

flow network

A. E. Anderson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

water in the soil matrix, compared to solutes deposited in soils with smaller contribut-

ing areas, which will travel further at slower speeds and will have more interaction with

water in the soil matrix (pre-event water). This may result in more dilution and retar-

dation of the solute in soils with small contributing areas relative to those with large

contributing areas.5

4.3 Landslide hazard

Landslide activity and debris flows are common at Russell Creek and surrounding ar-

eas (Fannin and Wise, 2001; Nistor and Church, 2005). Areas with similar topography,

climate, and soil types as this watershed are also prone to landslides. Preferential

features are sometimes found near landslide initiation points (Fannin and Jaakkola,10

1999; Uchida, 2004). The water table depth and the proximity to preferential features

influences the pore water pressure in these types of hillslopes. Preferential features

can rapidly drain the soil water, reducing the water table and the pore water pressure

(Montgomery and Dietrich, 1994 and 1995; Sidle, 1986; Fannin et al., 2000). However,

when preferential features reach their capacity, are in-filled by subsurface deposition, or15

are damaged, preferential flow could increase the landslide hazard by increasing pore

water pressure on the surrounding soils (Uchida et al., 2001). The preferential features

found in cross-section 18 exemplify this phenomenon. The soil pipe in the lower centre

part of the cross-section (Fig. 3) had water that poured out under pressure when the

cross-section was excavated. Even though this pipe was completely filled with organic20

material, it extended up slope and held a volume of dyed water that produced a pres-

sure head even 4 days after the steady state experiment was initiated. For the water

to enter the feature, it had to displace water that was already in the pipe before dye

solution was added to the input trench. Presumably, the dyed solution entered the pipe

when the pore pressure was higher and water was displaced out of the feature down25

slope of cross-section 18. During subsurface flow conditions, this increase in pore

water pressure could increase the landslide initiation hazard. On the other hand, the

subsurface flow that stained the lower half of the dead root in the right side of cross-
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section 18 (Fig. 3) had completely drained and the only evidence of flow was dye on the

root and surrounding soils. This means that this feature was hydraulically connected to

lower slope sections and could drain even under low pore water pressures. At the flow

rate used for the experiment, this feature would likely decrease the landslide initiation

hazard because it would reduce the water table of the local area.5

Soils with large contributing areas are often the initiation site of landslides (Uchida,

2004), which can be attributed to accumulation of subsurface water. However, it could

also in part be due to the linkage between large contributing areas and highly de-

veloped and hydraulically connected preferential features. If the preferential features

observed in the hollow were blocked or their capacity was reached, there is a high10

probability that pore water pressure would increase in the surrounding soils. If there

were no other preferential features transmitting the water, the likely outcomes would

be 1) discharge of water to surface runoff, or 2) if the condition are right, the initiation

of a slope failure. The relationship between the contributing area, subsurface storm

water volume, and the modification and maintenance of preferential features could be15

used to enhance the prediction of areas with high landslide initiation hazard (e.g. Wu

and Sidle, 1995). Nevertheless, we need more larger-scale excavation experiments to

better develop the relationship between topographic units and preferential flow features

in steep forested hillslopes.

5 Conclusions20

We stained a 30 m section of hillslope with a food dye under steady state conditions

and then excavated the hillslope to determine the lateral preferential flow features,

the connections between the features, and velocities through each cross-section. At

this site, the material that connected the preferential flow features was important for

controlling the hillslope velocity, and the dye patterns suggested that saturated flow25

through permeable soil provided connection between the individual preferential fea-

tures. Observations of erosion and deposition of fine soil and organic material within
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the preferential features suggested that preferential flow influenced the redistribution

of the fine soil and organic material within the hillslope. Some preferential features

were only partially filled with water, and others were under pressure. We tested the

hypothesis that the contributing area was linked to the preferential flow network. The

excavations revealed that the largest and most connected features were in the soils5

with the largest contributing area derived from the surface topography. The large fea-

tures (up to 30 cm in diameter and meters in length) transport water and solutes while

interacting minimally with the surrounding soil matrix. These findings have implications

for subsurface flow generation, soil development, solute transport, and slope stability

and could be used to develop better predictions of lateral preferential subsurface flow.10
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Table 1. The area of stained soil, pipe cross-sectional area, velocity of the flow through each

cross-section.

Area of staining

Mineral Organic l Large Darcy velocity Local Contributing

soil Soi Pipes
a

Slope area

Cross-section cm
2

cm
2

cm
2

m hr
−1

% m
2

1
b

195 72.1 13.3 1645

2
b

100 140.9 20.3 1629

3
b

107 131.1 20.4 1604

4 184 59 0 58.0 18.7 1591

5 21 28 163 66.5 23.8 1591

6
b

223 63.1 33.7 1589

7
b

300 47.0 36.4 1588

8 758 289 214 11.2 12.5 1581

9 296 442 330 13.2 21.9 1577

10 238 5628 0 2.4 40.5 1557

11 228 5254 0 2.6 19.6 1197

12 318 2205 0 5.6 28.4 1177

13 1274 1533 0 5.0 16.3 356

14 78 4226 0 3.3 8.3 350

15 214 3228 0 4.1 11.7 343

16 183 2740 0 4.8 15.8 156

17 2883 615 0 4.0 19.2 126

18 249 722 23 14.2 7.7 124

19 390 1276 0 8.5 28.9 79

a
Darcy velocity for the cross-sections with stained soil was as; V =Q/As, where As is the stained

area plus the area of the pipes, where applicable.
b

Staining around pipes was not presumed to be from transmit water flow, but from water

transferred from the soil pipes.
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Fig. 1. Contour map of the experimental hillslope showing the location of the dye injection and

the photographed cross-sections. This map was developed using the 256 total station survey

points for the excavated section and another 262 points for the rest of the hillslope.
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Fig. 2. Cross-section 7, examples of (a) the original photo, (b) the rectified colour corrected

image, and (c) the digitized image shown in Fig. 3.
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Fig. 3. Cross-sections showing the location of the stained soil, the soil pipes, and the observed

flow paths between the cross-sections. The photos and the x locations are to scale but the y

and z locations have been exaggerated so that the photos do not overlap.
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