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Abstract

This paper discusses and shows the heat loss theory and the hydraulic theory for the

analysis of the development of wide channel ice jams. The heat loss theory has been

used in Iceland for a long time, while the hydraulic theory largely follows the classical

ice-jam build-up theories used in known CFD models. The results are combined in a5

new method to calculate the maximum thickness and the extent of an ice jam. The

results compare favorably to the HEC-RAS model for the development of a very large

ice jam in Thjorsa River in Iceland. They are also in good agreement with historical

data, collected where a hydroelectric dam project, Urridafoss, is being planned in the

Thjorsa River.10

1 Introduction

Ice jams are among the most dramatic natural events that occur in a river. Understand-

ing of ice jam formation and break up is very important in river engineering, especially

dams and water diversion works. As a rule, water levels are greatly increased when an

ice jam forms in a river section. Ice jams often lead to potentially unwanted situations15

for the human activities along the banks of the river. Other major difficulties are reduced

flow during the formation of an ice jam and surges of water and ice fragments during

break-ups. Uzuner and Kennedy (1976) developed the hydraulic equation system and

in Beltaos (1993) a model is applied to three case studies of ice jam events and the

results found to compare well with observations. The various model coefficients fall20

within the expected ranges, with only one exception. A thorough description of the

formation and evolution of ice jams is given in Beltaos (1995) and a large number of

publications exist from other authors and institutions as well. Here, the Cold Regions

Research and Engineering Laboratory (CRREL) is an important source. It is therefore

a reason to believe that CFD models can handle the hydraulic behavior of ice jams cor-25

rectly. In this paper the force balance that is used to predict the thickness and shape of
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the freeze-up jams is described (Grondal 2003). Heat loss models have been known

for considerable time. Two models exist, the heat loss model that can only predict for-

mation of ice mass in the river, and the force balance model that can only describe the

ice jam thickness that is in equilibrium with the river flow. It is shown that these models

can be combined through a single equation. The results are compared with field data5

from Urridafoss (Fig. 1) in Thjorsa River in Southern Iceland.

1.1 Freeze-up ice jam at Urridafoss in Thjorsa

Thjorsa River originates at Hofsjokull glacier in Central Iceland and flows to the South-

West where it discharges into the North Atlantic Ocean, see Fig. 1.

The river system has a large hydropower potential that has been developed quite10

extensively in the last four decades, but the development has been concentrated in the

upper reaches. The freeze-up jam under discussion in this article forms in the relatively

flat section just downstream from Urridafoss waterfall, as a consequence of frazil ice

production in the approximately 50 km long river section downstream of the power plant

at Burfell (Fig. 1).15

The Urridafoss ice jam forms almost every winter. It typically extends through the

lower part of the Urridafoss gorge down to the flood plain, in all a distance of about

3–4 km. The width of the jam in the gorge is approximately 100–400 m, and expands

to roughly 700 m on the flood plain. Water levels increases up to about 18 m have been

observed (Rist, 1962). The formation and evolution of the jam was first described by20

Rist (1962). The second author has further investigated the ice conditions, Eliasson

and Gröndal (2006), by applying the HEC-RAS model, Brunner (2001). These investi-

gations are planned to obtain the necessary design data for a dam in the Thjorsa River

at the Urridafoss site and a hydroelectric power plant associated to it.
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1.2 The heat loss model

There is considerable experience in heat loss calculations Carstens (1970) and

Freysteinsson and Benediktsson (1994) report both experimental results and field ob-

servations. In the heat loss model that was used to estimate the volume of the Ur-

ridafoss ice jam two equations are solved, namely a heat transport equation and an ice5

transport equation:

∂T

∂t
+ V

∂T

∂x
= −

S

ρwcpy
; T > 0 (1)

and

∂C

∂t
+ V

∂C

∂x
= +

S

ρiLy
; T = 0 (2)

t time

x distance along longitudinal axis

T water temperature in cross section

C ice concentration in cross section

V flow velocity

S heat loss from water column

y depth of flow

ρw density of water

ρi density of ice

cp specific heat of water

L latent heat of fusion of water

According to Eq. (1) the temperature of the water decreases when there is net heat10

loss from the water surface. As soon as the temperature of the water has dropped

to the freezing point of the water, the temperature decrease stops. Instead, frazil ice

begins to form at the rate corresponding to the heat loss, according to Eq. (2). Thus,
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by solving Eq. (1) and (2) in combination, one can find the total ice produced in a river

section, given that the heat loss, S, can be determined. Heat loss from the river is

governed by

1. Rate of heat exchange with the atmosphere,

2. Rate of heat exchange with the river bed5

3. Heat transfer via groundwater inflow

4. Frictional heating

In Thjorsa, term 1 (Rate of heat exchange with the atmosphere) (Carstens 1970-2)

is the dominating one, and the other terms can be neglected without serious error. Net

rate of heat exchange with the atmosphere is a sum of the effects of terrestrial or long10

wave radiation, heat transfer due to evaporation or condensation of water, sensible

heat transfer due to convection and heat transfer due to precipitation, minus the effects

of incoming solar or short wave radiation. Grondal (2003) discusses methods that can

be used to quantify heat loss caused by these processes.

Figure 2 shows the result of the calculations of ice volume in the winters 1958/195915

to 1963/1964 and 1998/1999 to 2001/2002. Calculations are done for average winter

flow, but the actual river discharge does not affect the ice production directly, it is a

function of the size of open river surface and the weather parameters. According to the

heat loss model about 35 to 40 mil. m
3

of solid ice are produced on the average each

winter. In mid winter accumulated volume is often about 20 mil. m
3
. At this time there is20

often a large ice jam at Urridafoss (Fig. 1). Figure 3 gives an idea how this production

is distributed throughout the winter.

1.3 Forces in an ice jam, hydraulic theory

The external forces acting on the jam arise from following factors: Friction between ice

cover and flowing water, backwater pressure, the longitudinal component of the ice and25

pore water weight. They are balanced by internal normal stresses and boundary shear

stresses at the riverbanks. There are slightly different methods to formulate this so a

brief description of the method applied will be given here.
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h jam thickness

x lengthwise coordinate

B width of jam

Sw slope of water surface

Kx = tan(π/4+φ/2) equivalent Rankine passive pressure coefficient

k0 = tan φ angle of internal friction in jam

k1 coefficient of lateral thrust

Ci cohesion in jam

τi = ρgRiSf shear stress between water and underside of jam

Sf = (VncR
−2/3

i
)
2

friction slope (manning formula)

V flow velocity

nc composite manning roughness

Ri ≈y/2 hydraulic radius ≈ 1/2 FLOW DEPTH Y
γe = 0,5(1 – pJ )(1 – si )ρig cos α
pJ porosity of jam

si = ρi /ρ specific density of ice

ρi density of ice

ρw density of water

g gravity constant

α water surface slope

As the jam lengthens upstream and thickens, the forces acting on the jam increase,

until internal stresses in the jam become too large. At that point the ice jam lengthening

process stops, which may lead to shoving, i.e. consolidation and thickening of the jam.

Broadly speaking, this process then repeats itself while the supply of ice from the river

upstream continues. Here we follow Beltaos (1995) and Uzuner and Kennedy (1976),5

where they derive the one dimensional force balance equation for floating ice jams.

Their analysis leads to the following equation for the thickness of the jam:
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Y1, Y2 water depth at two cross Sects. 1 and 2

Z1, Z2 elevation to channel bottom

V1, V2 average velocities

α1, α2 velocity weighting coefficients

∆H energy head loss

dh

dx
=

si
ρ
gSw2Kxγe +

τi
2Kxγeh

−

(

k0k1

B
h +

Ci

KxγeB

)

(3)

Now it is assumed that the cohesion Ci can be neglected Eq. (3) then reduces to:

dh

dx
=

1

2Kxγe

(

siρgSw +
τi
h

)

−

k0k1

B
h (4)

All the above mentioned authors use quasi-steady momentum and energy equations

for the flow, as local acceleration in natural rivers is very low because of slow changes5

in the flow. For steady state flow, the energy equation is used to calculate the water

surface profile in the jam,

Y1 + Z1 +
α1V

2
1

2g
=Y2 + Z2 +

α2V
2

2

2g
+ ∆H (5)

2 Ice jam thickness and extent

2.1 Properties of the jam thickness equation10

When investigating local behavior of h, it is natural to assume that convective accelera-

tion plays a minor role compared to gravity, and therefore changes in velocity head can

1027
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be neglected. This makes the friction slope equal to the slope of the water level inside

the jam. The water level relation becomes

d (sih + y)

dx
= −Sf + S0 (6)

2.2 Maximum jam thickness

When h and y are constant in the variable x, Sf=S0. Now dh/dx can be zero for two5

values of h, found by solving (4) after inserting Eq. (6) and putting the left side to zero.

The resulting quadratic equation has two roots, one negative but and the other one is

positive

hm =

si +
√

s2
i
+ 4a y

2a
; a =

2Kxγek0k1

ρgS0B
(7)

This is the maximum thickness the jam can reach. Similar result was obtained by10

Beltaos (1995). In Eq. (7) y may be calculated from the Manning equation using Sf=S0

y =

(

Qnc

B
√

S0

)3/5

(8)

Note that Eqs. (6–8) assume internal strength on the ice jam to balance hydraulic forces

on it. Ice jams therefore move during high flow period but sit still on the banks at low

flow periods. As the strength parameters are not time dependent, Q in Eq. (8) should15

therefore be a little higher than the average in the particular period to give a correct

picture of the development of the dam.

2.3 Change of slope

Equation (7) reveals that the hm is directly proportional to S0. The quantity 1/a may be

regarded as the length scale of the jam. When we have a slope change from a large20

1028
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S01 to a small S02 this length scale is reduced and with it hm. Upstream of the point

of slope change we will have an ice jam with increasing thickness in the streamwise

direction, h approaching hm1. Downstream of the point of slope change the maximum

thickness will be hm2<hm1. Figure 4 shows this development and it will be discussed

in Sect. 3.4.5

3 Jam volume and length

3.1 Jam length

If we define Ky=si + y/2h it may be argued that Ky is of the order one in thick jams.

We use this approximation to put Ky constant, insert Eq. (7) in Eq. (4) and get:

dh

dx
=

ρgS0Ky

2γeKxKh

−

k0k1

KhB
h (9)10

One may notice that Eq. (9) produces almost the same maximum as the more accurate

Eqs. (4) and (7), as long as the assumption Ky is of order one, holds. Equation (9)

contains a new constant

Kh = 1 +
K 2
y ρg

2Kxγe
(10)

Equation (9) may be integrated15

h = hm1(1 − exp (−
k0k1

KhB
x)); h = 0 in x = 0 (11)

Equation (11) is valid above a point of slope change and here. As x is a streamwise

coordinate, we see that the jam thickens in the direction of the flow but never quite

reaches the maximum value hm1. If a jam, still under development, extends a distance

L below the zero thickness point Eq. (11) gives the thickness when x=L is inserted.20
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This is the largest thickness of the dam if it is still under development and the volume

in the dam corresponds to the accumulated ice volume produced upstream of x=L.

In an ice jam where there are no sudden changes in the channel parameters (slope

S0 or width B) Eq. (11) thus combines the heat loss and the hydraulic theory into one

equation (Sect. 3.3). It can also be used in a piecewise constant channels.5

But ice jams normally occur where we have sudden changes in the channel param-

eters so this situation is considered in the next sections.

3.2 Change of width and slope

In Eq. (7) change of the width of the river channel, B, has the same effect as change of

slope. Large changes in width do, however, usually bring larger changes in water profile10

than mere changes in slope. Now consider a river profile that suddenly changes from a

large slope with maximum jam thickness hm1 to a smaller one with maximum thickness

hm2<hm1. If actual jam thickness in the slope change point x=0is hm2<hL<hm1, then

the thicker upstream jam will be pushed into and we will have below the slope change

point15

h = hm2 + (hL − hm2) exp (−
k0k1

KhB
(L − x ));

h = hL in x = L
(12)

when the ice jam is fully developed. Care must be taken in using Eq. (12) as the

condition of low convective acceleration may very well not be fulfilled. This condition

may very well hold for gradually funneling river channels, but not for abrupt channel

changes, e.g. at the end of a gorge or down a waterfall, see Fig. 4. Here, ice sludge20

is being carried down the waterfall, below it a jam thick enough to drown the waterfall

can build up. The ice jam will sit on the bottom until the water level inside the jam

is high enough to lift it up. Then we have a ice jam flooding situation, with flooding

levels that will increase until the waterfall is submerged and the ice jam build up can

continue in the upstream reach. Provided ice production continues, the upstream jam25
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will build up until it approaches maximum thickness hm1. The length of this ice jam can

be estimated using Eq. (11).

Below the waterfall the situation is more complicated. The very thick jam is floating on

the flood water and sitting on the bottom instead of being supported by the river banks

only but Eq. (6) will still be valid for the section of the dam where hydrodynamic forces5

of the flowing water and internal forces in the dam are in balance. We can therefore

consider Eq. (12) valid with the thickness of the dam just below the waterfall as the

upstream boundary value hL, and the maximum thickness of the downstream section

hm2 as the downstream boundary value where the force balance Eq. (4) is again active.

In between there may very well be a different length scale in the exponential variation10

between the two values, this is discussed in Sect. 3.7.

3.3 Jam volume

Equations (11) and (12) make it possible to estimate the total volume of the jam,

Eq. (11) are integrated over the reach L and the average ha found, now we have.

ML
jam

= ha LB = hm1LB ((1− exp(−
k0k1L

KhB
))−1

− (
k0k1L

KhB
)−1) ≈ hm1B (L−

KhB

k0k1

)(13)15

As before L is the reach of the jam upstream of the point of slope change and hm1 the

maximum thickness of the jam, the last approximation (preceded by ≈) is valid for very

large L, that is fully developed jams. This remarkably simple estimate is based on that

B and S0 do not vary so much that the integration of Eq. (9) is seriously affected. If

they do piecewise integration along the channel may still be possible.20

To complete the volume estimate for situations like Fig. 4, L is found by successive

approximation using Eqs. (11) for the reach upstream of the sudden slope change

(waterfall) and Eq. (13) for the channel reach downstream of it. We must begin by

estimating how much ice volume, Mjam∗ there is below the reach L. Ice jams form in

the same place from year to year so the start of the downstream reach is known and the25

volume up to the point x=L can be estimated using hL≈hm1 as the first guess. When
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Gröndal

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Mj is estimated from heat loss calculations ML
jam=Mj −Mjam∗ and now an L value that

satisfies Eq. (13) must be found. This is inserted for x in Eq. (11), h=hL calculated, that

used in Eq. (12) to find new Mjam∗ and the procedure continued until the approximation

is completed to the sufficient degree of accuracy, which of cause depends upon the

accuracy of the original data.5

This use of Eqs. (11–13) combines the two theories, the heat loss theory for cal-

culating volume of ice production, and the hydraulic theory for ice jam thickness for

situations like the one in Fig. 4. The heat loss theory gives no information on jam thick-

ness and the hydraulic theory gives no information on ice production. This combination

is new theory that provides both.10

3.4 Flooding because of ice jam building

In theory, the flood from an ice jam can be as high as the water level inside an ice jam

of maximum height. The majority of the ice jam thickness will be below the water level,

so it is on the safe side to estimate the maximum flood equal to hm in Eq. (7) above ice

free water level in the river as the ice jam does not get thicker than that.15

3.5 Building a dam in an ice jam river

When a dam is to be built in a river reach where frazil ice formation and ice jam building

is known to take place, it is necessary to make the dam high enough so the water level

inside the dam does not reach over the crest in the jam flood. The dam must thus

be higher than the maximum thickness for the pond inflow channel hm, if expected ice20

production is large enough to build ice jams up to that level. Otherwise, Eqs. (11–13)

have to be used as indicated in Sect. 3.3.
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3.6 Jam measurements in the years 1956–1962

In the winters 1954–1959 there was a great ice jam build-up, and also in the winter

1961/1962. The maximum extent of the jam at Urridafoss (Fig. 4) was measured and

reported by Rist (1962) Fig. 15. The biggest jams are in December 1958 and Febru-

ary 1961. The average difference in the thickness of these two jams is under 1 m,5

so bearing in mind the uneven surface of a frozen ice jam these two events produce

identical jams, as would be expected from the accumulated ice production in the win-

ters 1958/1959 and 1960/1961. They follow each other closely in the period from mid

December to mid January on Fig. 2. Their surface profile, reported by Rist (1962) is

shown on Fig. 4. Maximum thickness reported is shown in Table 1.10

In Table 2 are the elevation measurements of the large, almost identical, jams in

December 1958 and January 1961 shown. These two are still the largest that are

been reported. It must be stressed, that the fact that these two are identical does not

prove that ice jams in two different years, but at the same location formed by same

accumulated amount of ice production are necessary identical. Both flow discharge15

and periods with temperatures above freezing have their say.

The theory (Sim values in Table 2) are calculated using piecewise integration

(Sect. 3.3) with actual S0 values represented by the River bed line in Fig. 4 and river

discharge Q=300 m
3
/s. The sensitivity of this figure is however small. A double dis-

charge (600) would change the hm figure in distance 21,4 in Table 2 from 9,4 to 10,120

and have no other effect. The effect of division by two is even smaller.

The observations compare very well with theory. However, there are two artificial B
values in the table indicated in italics, using these values changes the L scale shown

in Table 2. The ice free width is 300–500 m in the respective river bed sections. There

is no observed justification for this other than with ice free widths of the river bed the25

jam height will be 3 and 5 m to low. This is discussed in the next section.
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3.7 Discussion

Inspection of Eq. (9) reveals two dimensionless parameters for the development of the

ice jam.

k0k1 L

KhB
and

ρgS0Ky

2γeKxKh

Here L (not to be confused with L in Eqs. 12 and 13), previously called 1/a in Eq. (7),5

is the length scale of the problem. When the two constants are equal for two different

jams they are dynamically similar, i.e. a scale model of each other. The constants

contain the width, the bed slope and the coefficients for the mechanical strength of the

ice jam. They are the natural dimensionless groups to use in dimensional analysis.

In view of the fact that convective acceleration is neglected in the development of10

Eq. (9) this is the result one would have expected a priori. No objections to the use of

Eqs. (11–13) can be found in the composition of these dimensionless coefficients.

As the length scale appears as B/L and not in other context, we see that changes

in B have the same effect as changes in the length scale. Narrow rivers (small B) can

therefore be scale models of wide rivers (large B), provided that the other parameters15

in the coefficients have values that make the coefficients equal for model and prototype.

A partially floating ice jam, i.e. an ice jam pushed down a waterfall or accumulated

around a point of sudden slope change, will partially sit on the shallow bottom near the

banks with an effective width of the mid-channel water flow considerably smaller than

the ice free width. When ice jams start thawing this middle floating section usually dis-20

appears first and exposes the effective middle width section for some time Rist (1962).

The equation system Eqs. (9–13) thus give a realistic picture of the build-up phase

of an ice jam. However, what happens in the break-up phase, Ice jams in Iceland can

be a product of repeated weather periods with frost and thaw. As may be seen in Fig. 3

there are many periods of thaw in between the periods of frazil ice run in one winter.25

Jasek (2003) states, that the interaction between the ice mechanics and unsteady flow
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leads to results that are often unpredictable with open water unsteady flow models. He

also points out considerable differences of opinion on the degree of significance of this

water-ice interaction. His conclusions lead to that considerable more experience has to

be gained in research and analysis before ice jams resulting from complicated weather

history as Fig. 3 presents, can be effectively predicted. A support for this may be5

seen by comparing the ice discharge figures in Fig. 3, bearing in mind that 1960–1961

produce a record ice jam but 1961–1962 only a small one Rist (1962).

4 Conclusions

The ice production model combined with solving the force balance equation can be

used to predict the size of an ice jam, given that the parameters that appear in the10

force balance equation can be estimated. In the analysis at hand, assumptions were

made that allowed for a relatively simple solution. Nonetheless a reasonably accurate

result emerged. By using the heat loss theory to calculate the expected ice mass in an

ice jam, Eq. (12) can be used to find the thickness and extent of a jam that corresponds

to the expected ice production in a river and the results used in designing the storage,15

dam height and other features of the project.

Repeated periods of thaw will disrupt the process and make the estimate of the

extent and volume of the ice jam very difficult.
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Eliasson, J. and Gröndal, G. O.: Estimating development of the Urridafoss ice jam by us-5

ing a river model, INTERNATIONAL COMMISSION ON LARGE DAMS (ICOLD), 22nd

CONGRESS, Barcelona 18–23 June 2006.
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Table 1. Urridafoss jam thickness reported by Rist (1962) and calculated in meters.

Place in Fig. 4 Observ. Eq. (11)

Upstream of waterfall, maximum 9 9,4

Downstream of waterfall, max. 18 17,4

4 km downstream, average 8 N/A

4km downstream, maximum 12 N/A
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Table 2. Urridafoss jam profile reported by Rist (1962) and calculated in meters.

Distance Bottom Width B L scale
−1

hm x 2 Jams Sim. h

km m.a.s.l. m m
−1

m m S. R.1962 m

23,4 38 300 0,000337 23,3 1,5 42 42,1*

22,4 28,1 300 0,000337 12,0 2,5 37 35,7*

21,4 23 300 0,000337 9,4 3,5 33 32,4*

20,9 19 300 0,000337 15,6 30 N/A

20,7 12,4 300 0,000337 5,7 29 N/A

20,4 10 300 0,000337 4,5 0 27,5 27,5**

19,6 8,1 300 0,000337 1,4 0,8 24 24,3**

18,5 7,5 200 0,000225 4,9 1,9 22 21,7**

17,3 6,1 150 0,000169 5,2 3,1 20 19,3**

12,9 5 500 0,000562 4,2 7,5 8 8,1**

Zero thickness distance in Eq. (11), 18,5 km **Limit max. thickness Eq. (12), 4.2 m.
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Fig. 1. The Thjórsá river system with glaciers indicated in grey, scale in km.

1039

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/1021/2008/hessd-5-1021-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/1021/2008/hessd-5-1021-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD

5, 1021–1042, 2008

River ice jam by a

combined model

J. Eliasson and G. Orri
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Fig. 2. Accumulated solid ice volume produced in the river Thjorsa from Burfell to Urridafoss.
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Fig. 3. Calculated ice discharge at Gauging Station 30 at Krokur. River discharge is taken

same as in Fig. 2, 200 m
3

s
−1

. Horizontal bars indicate days with ice observed. Light blue bars

indicate slush or frazil ice runs. Dark blue bars indicate ice cover.
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Fig. 4. Ice jam at Urridafoss in the Thjorsa river, theory compared to observations.
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