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Abstract

Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems,

with contrasting plant functional types (PFTs, e.g., grass and woody vegetation) com-

peting for the water use. Mediterranean ecosystems are also commonly character-

ized by strong inter-annual rainfall variability, which influences the distributions of PFTs5

that vary spatially and temporally. With the objective to investigate interactions be-

tween vegetation dynamics, soil water budget and land-surface fluxes in a water-limited

ecosystem, an extensive field campaign in a Mediterranean setting was performed.

Also a vegetation dynamic model (VDM) is coupled to a 3-component (bare soil, grass

and woody vegetation) Land surface model (LSM). The case study is in Orroli, situated10

in the mid-west of Sardegna within the Flumendosa river basin. The landscape is a

mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork

oaks, different shrubs and herbaceous species. Land surface fluxes, soil moisture and

vegetation growth were monitored during the May 2003–June 2006 period. Interest-

ingly, hydrometeorological conditions of the monitored years strongly differ, with dry15

and wet years in turn, such that a wide range of hydrometeorological conditions can

be analyzed. The coupled VDM-LSM model is successfully tested for the case study,

demonstrating high model performance for the wide range of eco-hydrologic condi-

tions. The use of the VDM in the LSM is demonstrated to be essential when study-

ing the climate-soil-vegetation interactions of these water-limited ecosystems. Results20

demonstrate also that vegetation dynamics are strongly influenced by the inter-annual

variability of atmospheric forcing, with grass leaf area index changing significantly each

spring season according to seasonal rainfall amount.

1 Introduction

Mediterranean semi-arid ecosystems are characterized by water-limited conditions.25

These ecosystems and the goods and services that they provide are increasingly
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threatened by the broad desertification processes produced by both natural (climate

variations, fires, etc.) and human (deforestation, overgrazing, urbanization, pollution,

fires, etc.) influences (e.g., Brunetti et al., 2002; Lelieveld et al.; 2002; Moonen et al.,

2002; Ventura et al., 2002; Ceballos et al., 2004).

These ecosystems are commonly heterogeneous savanna-like ecosystems, with5

contrasting plant functional types (PFTs, e.g., grass, shrubs and trees) competing for

water (Scholes and Archer, 1997; Ramirez-Sanz et al., 2000; Jackson et al., 2002;

Baldocchi et al., 2004; Fernandez et al., 2004; Williams and Albertson, 2004; Detto et

al., 2006). Mediterranean water-limited ecosystems are also commonly characterized

by strong inter-annual rainfall variability (e.g., Ramos, 2001; Cavazos and Rivas, 2004;10

Ceballos et al., 2004), which influences the PFT dynamics (Scholes and Archer, 1997;

Fernandez et al., 2004).

Before making predictions for long-term (e.g., decade or hundred of years) scenarios

related to climate change effects on these heterogeneous Mediterranean ecosystems

(e.g., Vanrheenen et al., 2004; Manabe et al., 2004; Sanchez et al., 2007), there is the15

need to measure and model adequately land surface fluxes, soil moisture and vege-

tation dynamics for a sufficiently long time, including years characterized by different

hydro-meteorological conditions. In this way the impact of the inter-annual variabil-

ity of both the annual and seasonal hydro-meteorological conditions (e.g., rainfall) on

vegetation dynamics and soil water balance of these ecosystems can be investigated.20

With the objective of modeling the dynamic interactions between land surface pro-

cesses and vegetation dynamics recent efforts of land surface models (LSM) and veg-

etation dynamic models (VDM) coupling have been achieved (see, e.g., the review of

Arora, 2002 and Montaldo et al., 2005). A set of efforts used ecological models that

require a wealth of detailed information that is often unavailable in operational hydro-25

logical applications (Kemp et al., 1997; Cox et al., 1999; Reynolds et al., 2000; Arora,

2003), while a set of efforts used mainly empirical and site-specific ecological models

(Haxeltine et al., 1996; Vertessy et al., 1996; Walker and Langridge, 1996).
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An attractive compromise is the coupled VDM and LSM of Montaldo et al. (2005),

which starting from Cayrol et al. (2000) and Nouvellon et al. (2000) VDMs developed

a parsimonious and robust coupled model for grass dynamics only. In the model the

VDM provides the grass leaf area index (LAI) evolution through time, and the LSM uses

this to compute the land surface fluxes and update the soil water contents. They suc-5

cessfully tested the coupled model for two case studies of water-limited grass fields in

California (USA) and North Carolina (USA). Even in such “simple” ecosystems charac-

terized by only one PFT, they demonstrated the significant role of vegetation dynamics

on soil water balance modeling in water-limited conditions, and the importance of in-

cluding the VDM for correctly predicting land surface fluxes and soil water balance.10

Here we further develop the coupled model of Montaldo et al. (2005) for including

3 cover types (bare soil, grass and woody vegetation) typical of more complex hetero-

geneous ecosystems, and test the model for a sufficient long data set including years

characterized by different hydro-meteorological conditions.

The case study site is within the Flumendosa river basin on Sardinia, which is one of15

the regions of Italy most affected by water deficits. There is therefore an urgent need

to exploit advanced observation and simulation technologies to provide a better under-

standing of the water balance regime for the entire island and for its major catchments.

In this sense, the dam system of the Flumendosa river constitutes the water supply for

much of southern Sardinia, including the island’s largest city, Cagliari (about 350 00020

inhabitants in the urban area). The case study site is a natural patchy mixture of grass

and woody vegetation, typical of Mediterranean ecosystems. During May 2003–June

2006 a micrometeorological tower has been installed and an extended field campaign

has been conducted (Detto et al., 2006).

This paper addresses the following objectives:25

1. pointing out the dynamics of land surface fluxes, soil moisture and vegetation

cover for years with different hydro-meteorological conditions of the Sardinian het-

erogeneous ecosystem;
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2. development of a 3-component (bare soil, grass and woody vegetation) coupled

VDM-LSM for modeling land surface dynamics of a water-limited Mediterranean

heterogeneous ecosystem;

3. assess the influence of key environmental factors on the vegetation dynamics for

the different annual hydrologic conditions.5

2 The Orroli case study

2.1 The site

The measurements were conducted at a site in Orroli, Italy, on the island of Sardinia

(39
◦
41

′
12.57

′′
N, 9

◦
16

′
30.34

′′
E, 500 m a.s.l.). The measurement site covers an area

of ∼1.5 km
2

and sits on a gently sloping (approximately 3
◦

from NW to SE) plateau.10

The landscape is a patchy mixture of Mediterranean vegetation types: trees, mainly

wild olive (Olea sylvestris) of height approximately 3.5–4.5 m, and a few cork oaks

(Quercus suber ) of height approximately 6–7 m, shrubs (Asparagus acutifolius and

Rubus ulmifolius), creepers of the wild olive trees (Crataegus azarolus and Smilax as-

pera), and C3 herbaceous (grass) species (Asphodelus microcarpus, Ferula comunis,15

Bellium bellidioides, Scolymus hispanicum, Sonchus arvensis, Vicia sativa, Euphorbia

characias, Dancus cerota, Bellis perennis; monocotyledons: Avena fatua, Hordeum

murinum) that are present in live form only during wet seasons and reach heights of

approximately 0.5 m. The soil thickness varies from 15-40 cm, bounded from below by

a rocky layer of basalt. This impervious layer leads to tree and shrub rooting systems20

that expand horizontally. The root zone depth is coincident with the soil depth for these

thin soils.

The climate at this site is typically Mediterranean–maritime, with a mean historical

(1922–1992) annual precipitation of 690 mm (raingage data from the nearby village of

Nurri), and mean historical monthly precipitations ranging between 103 mm in Decem-25

ber and 12 mm in July (Fig. 1a). Furthermore, historical air temperature has a mean

223

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/219/2008/hessd-5-219-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/219/2008/hessd-5-219-2008-discussion.html
http://www.egu.eu


HESSD

5, 219–255, 2008

Vegetation dynamics

and soil water

balance

N. Montaldo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

annual value of 13.9
◦
C, mean monthly values ranging between 23.1

◦
C in July and 6.1

◦
C

in January (Fig. 1b).

2.2 Field measurements

An extended field campaign was carried out from May 2003 to June 2006, during which

micrometeorological, soil moisture (θ), and vegetation dynamics measurements were5

conducted.

2.2.1 Micrometeorological tower

A 10 m tower was instrumented to measure land-atmosphere fluxes of energy, water,

and carbon in addition to key state variables. The tower is surrounded by wild olive

trees, grass and bare soils. It includes a Campbell Scientific CSAT-3 sonic anemometer10

and a Licor-7500 CO2/H2O infrared gas analyzer at 10 m above the ground to measure

velocity, temperature and gas concentrations at 10 Hz for the estimation of latent heat

(LE), and sensible heat fluxes (H) through standard eddy-correlation methods (e.g.,

Brutsaert, 1982; Garratt, 1992). Half hourly statistics were computed and recorded

by a 23X data logger (Campbell Scientific Inc., Logan, Utah). The effect of the gentle15

slope of the plateau was removed by an axis rotation (Detto et al., 2006) and the Webb-

Pearman-Leuning adjustment (Webb et al., 1980) was applied.

Three infrared transducers, IRTS-P (Apogee Instrument, accuracy of 0.3
◦
C) were

used to measure the surface temperature (Ts) of the different PFTs. One IRTS-P ob-

served the skin temperature of a tree (wild olive) canopy at 3.5 m height above the20

ground and with a canopy view zenith angle of ∼70
◦
, another observed either bare

soil or grass (depending on the season) at 1.6 m above the ground with a canopy view

zenith angle of ∼50
◦
, and the third sensor was placed at a greater height (10 m above

the ground, view zenith angle of ∼40
◦
) to observe a composite mixture of trees and soil

or trees and grasses (depending on the season).25
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The incoming and outgoing shortwave and longwave radiation components were

measured by a CNR-1 (Kipp & Zonen) integral radiometer positioned at 10 m with a

hemispherical field of view. Soil heat flux (G) was measured at two different loca-

tions close to the tower, one in an open patch (4 m from the tower) and one under a

tree canopy of wild olive (5.5 m from the tower), with thermopile plates, HFT3 (REBS),5

buried at 8 cm below the soil surface. Two thermocouples (per plate) were buried at

2 and 6 cm, and one frequency domain reflectometer probe (FDR Campbell CS615)

per plate was buried horizontally at 5 cm, as needed to estimate changes in the stored

energy above the plates (see HFT3 instruction manual edited by Campbell Sci.).

Precipitation was measured by an ARG100 (Environmental Measurements Limited)10

tipping bucket raingauge. Recorded precipitation time series are shown in Fig. 1

(monthly) and Fig. 2 (daily). Data gaps (13.5% of the total half hour values) exist mainly

due to power supply failures and maintenance operations. Rainfall and meteorological

observations during the data gaps are filled with data of nearby stations located close

to the town of Nurri (∼5 km from the tower).15

The two-dimensional footprint model of Detto et al. (2006), previously tested for this

site, was used for interpreting eddy-correlation measurements in the context of the

contributing land cover area. The footprint (source area) of eddy-correlation flux mea-

surements changes in size and direction through time with the wind speed and stability

of the flow. This variation can be exploited to sample various mixtures of the relative20

fractions of the different surface types.

The observed years were characterized by strongly contrasted hydro-meteorological

conditions and offer a wide range of conditions understanding the ecosystem behavior.

A comparison between monthly mean historical (1922–1992) and observed (2003–

2006) precipitation and temperature is provided in Fig. 1. Spring and Summer 200325

were dry with low precipitation and high air temperature. The April and May months,

which are key months for the grass growth in Sardinia, were particularly wet in 2004

(in particular the rain of April, 126 mm, was almost double the mean historical, 67 mm).

Note also that air temperature was particularly high during the Spring 2006.
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2.2.2 Observations of soil moisture and vegetation dynamics

Seven FDR probes (Campbell Scientific Model CS-616) were buried close to the tower

(3.3–5.5 m away) to estimate the mean θ within the root-zone. Four of these were

buried horizontally (two at 15 cm depth and two at 5 cm) and three were installed verti-

cally (i.e., average 0–30 cm). The soil is mainly silt loam (19% of sand, 76% of silt, 5%5

of clay) with a bulk density of 1.38 g/cm
3

and a porosity of 53%. The FDR calibration

(θ=2.456−7.135 τ+6.701 τ
2
−1.884 τ

3
, with τ being the FDR probe output period in

milliseconds) was made using gravimetric water content sampled (a total of 15 samples

during the period of observation) near the probes over a wide range of soil moisture

conditions (0.08<θ<0.52). The averaged θ time series are shown in Fig. 2.10

LAI was measured indirectly through a ceptometer (Accupar model PAR-80,

Decagon devices inc., Washington USA), which measures the Photosynthetically Ac-

tive Radiation (PAR) in the 400–700 nm waveband, and estimates the LAI from these

readings (details in the instruction manual edited by Decagon devices inc.). LAI mea-

surements were performed during the entire observation period, especially during the15

grass growth season (Fig. 3). LAI of the woody vegetation (Olea sylvestris that is the

predominant woody vegetation type and which includes the creepers) changes mod-

erately throughout the year (Fig. 3), whereas, the green leaf area of the herbaceous

species increases rapidly with winter and spring precipitation and vanishes for the dry

summer (Fig. 3).20

Finally, specific leaf areas (LAI divided by dry biomass) of predominant grass

(=0.01 m
2

gDM
−1

) and woody vegetation (=0.005 m
2

gDM
−1

) species were measured

directly (weighing the dry biomass). These values are needed to connect the biomass

estimates of the vegetation dynamics model (discussed below) with the traditional LAI

values, as reported in Fig. 3.25
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2.3 Remote sensing images

For estimating the land cover distribution of the site, two multispectral high spatial res-

olution (2.8 m×2.8 m per pixel) Quickbird satellite images (DigitalGlobe Inc.) were ac-

quired (Day of Year (DOY)=220, 2003 and DOY=138, 2004) (Fig. 4). The two images

depict the contrast between the spring (bottom) and summer (top) land cover present5

surrounding the field site. The top image characterizes the land cover when the soil

moisture conditions are very dry (θ ≈0.08) and green herbaceous cover is absent such

as is typical in the Sardinian Summer. The bottom image depicts the land cover con-

ditions after a long wet period (θ ≈0.4, Fig. 2) particularly propitious for plant growing,

so that the bare soil was nearly absent while the flourishing grasses reached their10

maximum growth in those days.

The 6S model of Vermote et al. (1997) was used to correct the images for atmo-

spheric effects. Details are provided in Detto et al. (2006). A supervised classification

scheme based on the parallepiped algorithm (Richards, 1999) allows for distinguishing

“woody-vegetation” (WV) from “non-woody-vegetation” (NWV, i.e., bare soil or grass15

according to the time period) from the images. The widely used normalized difference

vegetation index (NDVI) (e.g. Gamon et al., 1995; Carlson and Ripley, 1997; Scanlon

et al., 2002) was computed from the surface reflectance values averaged over ranges

of wavelengths in the visible red and NIR regions of the spectrum. Following Detto et

al. (2006), in each map pixel the fraction of woody vegetation cover is estimated as20

NDVIi j /NDVImax, where NDVIi j is the NDVI value of a particular grid cell and NDVImax

is the spatial maximum of the particular NDVI map. The NDVI/NDVImax map of the

field around the tower (the tower is in the center of the map) for the DOY=220, 2003 is

computed (Fig. 5a). Note that NDVI/NDVImax values of WV pixels are greater than 0.6,

so that the color bar of the Fig. 5a is modified for a better contrast of the WV pixels.25

The combined use of the footprint model (see Sect. 2.2.1) and the high-resolution

satellite images allows us to interpret the eddy-correlation observed surface flux and

distinguish the source area of each PFT and bare soil to the measured flux, using the
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methodology of Detto et al. (2006). Figure 5b reports the frequency distribution of the

fraction of WV cover (ff p,W V ) in the footprint of the micrometeorological observations

for the entire dataset. We note that ff p,W V is mainly in the range of 0.1–0.22 with the

peak of the distribution close to 0.15.

3 The 3-component coupled land surface - vegetation dynamic models5

In this section we describe the land surface model (LSM) and the vegetation dynamics

model (VDM). The essence of this modeling coupling is that the VDM provides the

leaf area index (LAI) evolution through time for each PFT, which are then used by the

LSM for computations of the energy partitioning between soil and vegetation. Model

parameters are defined in Table 1.10

3.1 The land surface model

The LSM predicts dynamics of water and energy fluxes at the land surface on a half-

hour time step. It is derived from the LSM of Montaldo and Albertson (2001) including

three components in the land surface: bare soil and two vegetated components (e.g.,

grass and WV). The states of surface temperature and moisture are estimated through15

the force-restore method (Noilhan and Planton, 1989; Montaldo and Albertson, 2001).

The root zone supplies the bare-soil and vegetation with soil moisture for evapotranspi-

ration, and controls the infiltration and runoff mechanisms. The base of the root zone

represents the lower boundary of the LSM. Note that the equations for surface temper-

ature and three components (H , G and the net radiation, Rn) of the energy balance are20

the same as Noilhan and Planton (1989), with the only difference that in the proposed

LSM they are applied separately for each land cover component.

In the unsaturated soil the Clapp and Hornberger (1978) relationships are used to

describe the non-linear dependencies of volumetric soil moisture (θ) and hydraulic

conductivity (k) on the matric potential (ψ). The soil water balance equation of the25
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root zone is computed by

dθrz

dt
=

1

drz

(

fbsIbs + fv,W V Iwv + fv,gr Igr − fbsEbs − fv,W V Twv − fv,grTgr − qD
)

(1)

where θrz is the soil moisture of the root zone, drz is the root zone depth, Ibs is the

infiltration rate on bare soil, Iwv and Igr are the throughfall rates infiltrating into the soil

covered by WV and grass respectively, qD the rate of drainage out of the bottom of5

the root zone, which is estimated using the unit head gradient assumption (Albertson

and Kiely, 2001), Ebs is the rate of bare soil evaporation, Twv and Tgr are the rates of

transpiration of WV and grass respectively, fv,W V is the fraction of green WV area per

unit of ground area, fv,gr is the fraction of green grass vegetation area per unit of ground

area, and fbs(=1−fvt,W V−fvt,gr ) is the fraction of bare soil, where fvt,W V and fvt,gr are10

the total WV and grass vegetation area (including dead vegetation) respectively. The

total evapotranspiration, ET , is equal to fbsEbs+fv,W V Twv+fv,grTgr . As in the original

Noilhan and Planton (1989) model, the throughfall rate is modeled through a balance

equation of the intercepted water by the canopy reservoir (its capacity is a function of

the LAI), which produces throughfall when the reservoir is saturated.15

In the original model of Montaldo and Albertson (2001) the infiltration rate was com-

puted through a saturation excess mechanism, which is not suitable for this case study,

typically characterized by Hortonian overland flow due to the thin soil and the semi-arid

conditions (e.g., Chow et al., 1988). Hence, the infiltration model was updated for in-

cluding the infiltration excess mechanism. According to this mechanism, the actual20

infiltration rate of the x
th

land cover type, Ix, is taken as the minimum of the rainfall

rate (or throughfall in the case of vegetated components) and an infiltration capacity,

I
∗
, based on the Philip’s infiltration equation

I∗ =
1

2
Sst

−
1
2

k
+ Aks (2)

where tk is the time since the onset of infiltration, Ss is the sorptivity, and A is a con-25

stant. Ss and A are estimated by Sivapalan et al. (1987) using expressions in terms of
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soil properties and the root zone moisture content at the start of the storm event. For

eliminating tk , the Milly (1986) approach (based on the time compression approxima-

tion) is used, so that I
∗

only depends on the cumulative infiltration (in addition to Ss and

A).

Transpiration rates are estimated by the Penman-Monteith equation (e.g., Brutsaert,5

1982, p. 224), in which the aerodynamic resistance and the canopy resistance are es-

timated for each PFT distinctly. The canopy resistances that account for environmental

stresses are estimated following Montaldo et al. (2005), and are described in Appendix

A. The aerodynamic resistances are estimated as function of wind velocity through the

transfer coefficient for water vapor, CE (Garratt, 1999, equation 3.57), according to the10

Monin-Obukhov similarity theory. CE and the heat transfer coefficient (used in H es-

timates) account for atmosphere stability (Garratt, 1999, equation 3.47), with the flux

profile functions for stable and unstable conditions estimated through equations (3.35),

(3.36), (3.39) and (3.40) of Garratt (1999).

Finally, the actual rate of bare soil evaporation is determined by15

Ebs = α
(

θg
)

Ep (3)

where Ep is the potential evaporation estimated by the Penman equation (e.g., Brut-

saert, 1982, equations 10.15, 10.16 and 10.19), θg is the surface soil moisture, and

α(θg) is a rate-limiting function, estimated by the polynomial function of Parlange et

al. (1999).20

3.2 The vegetation dynamic model

The VDM computes change in biomass over time from the difference between the rates

of biomass production (photosynthesis) and loss, such as occur through respiration

and senescence (e.g., Larcher, 1995; Cayrol et al., 2000). The VDM distinguishes

WV and grass components, and is adapted from Montaldo et al. (2005), which derived25

a VDM for grass species starting from the Nouvellon et al. (2000) model. Since we

are modeling semi-arid regions, we assume that water availability is the major factor
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limiting plant growth, thus neglecting nutrient limitations (Larcher, 1995; Mouillot et al.,

2001).

In the VDM of WV, four separate biomass states (compartments) are tracked:

green leaves (Bg), stem (Bs), living root (Br ), and standing dead (Bd ). The biomass

[g DM m
−2

] components are simulated by ordinary differential equations integrated nu-5

merically at a daily time step (Nouvellon et al., 2000; Cayrol et al., 2000; Arora and

Boer, 2005; Montaldo et al., 2005):

dBg

dt
= aaPg − Rg − Sg (4)

dBs

dt
= asPg − Rs − Ss (5)

dBr

dt
= arPg − Rr − Sr (6)10

dBd

dt
= Sg − La (7)

where Pg is the gross photosynthesis, aa, as and ar are allocation (partitioning) coef-

ficients to leaves, stem and root compartments (aa + as + ar = 1), Rg, Rs and Rr are

the respiration rates from leaves, stem and root biomass, respectively, Sg, Ss and Sr
are the senescence rates of leaves, stem and root biomass, respectively, and La is the15

litter fall.

The key term of the VDM, Pg, is computed using the approach of Montaldo et

al. (2005) (Table 2). Starting from a simplified form of Fick’s law applied to gas ex-

change in plants (Larcher, 1995; Lambers et al., 1998) and the Nouvellon et al. (2000)

model, Montaldo et al. (2005) derived a simplified expression that estimates Pg by20

mainly the photosinthetically active radiation, PAR, and other routinely monitored vari-

ables (wind velocity, and air humidity and temperature, Table 2 and Appendix A). Other
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terms of the VDM are computed as in Montaldo et al. (2005), while the photosynthe-

sis allocation to leaves, stem and roots is estimated by adapting the new approach

of Arora and Boer (2005) (see this reference for a deeper discussion of the allocation

coefficients behavior). The equations for the photosynthesis allocation estimates and

the other terms of (4)-(7) are described in Table 2 and model parameters are defined5

in Table 1.

The VDM of grass distinguishes only three biomass compartments (green leaves,

roots and standing dead) and the biomass components are simulated using (4), (6)

and (7), respectively.

Leaf area index values are estimated from the biomass through linear relationships10

(Hanson et al., 1988; Nouvellon et al., 2000; Arora, 2003; Montaldo et al., 2005):

LAI = cgBg (8)

LAId = cdBd (9)

where LAI and LAId are the green and dead leaf area index of the x
th

land cover type,

respectively. The total leaf area index LAIt is then estimated by15

LAIt = LAI + LAId (10)

3.3 Coupling the land surface model and the vegetation dynamic model

The LSM is then coupled with the VDM. VDM provides LAI values of WV and grass

daily by (8), which are then used by the LSM for computing the evapotranspiration

estimate (e.g., equation A1), energy flux and the soil water content in the root-zone by20

(1) at half-hour time step.

Leaf area index values are also used for updating the total fraction of vegetation

cover, fvt, of the generic PFT values through (Montaldo et al., 2005):

fvt = fv
LAIt

LAI
(11)

with fv the fraction of vegetation of the generic PFT.25
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4 Results

The coupled VDM–LSM is tested for predicting energy balance terms, soil moisture and

LAI of both PFTs. Since data of several years are available, the model is calibrated with

data from the two first hydrologic years (2003/04 and 2004/05), and then validated for

the last hydrologic year (2005/06). Note that LAI observations of 2005 are unfortunately5

not available (Fig. 3).

An analysis of the influence of key environmental factors on the vegetation dynamics

interannual variability is finally provided.

4.1 The coupled VDM-LSM

The VDM-LSM coupled model was calibrated for the case study, comparing observed10

and simulated time series of the energy balance terms, θ, and LAI through a trial-

and-error procedure. Note that for comparing micrometeorological observations and

model predictions of LE and H we used the time varying footprint of the tower for

estimating the fraction of WV cover (see Sect. 2.2.1), while for the soil moisture budget

we used the fraction of land covers of the field monitored by the soil moisture probes15

(fvt,W V=0.25 and fvt,gr=0.6). The Table 1 reports the calibrated parameter values. Note

that all parameters are held constant throughout the study period.

Observed surface temperature, a key indicator of the energy balance, is well simu-

lated for the three land cover components (Fig. 6). The accuracy of the coupled model

for predicting energy balance terms is demonstrated by the results shown in Figs. 7,20

8 and 9. Net radiation (Rn), sensible heat flux (H) and soil heat flux (G) dynamics are

all well estimated on the whole (Fig. 7). The scatter plots of Fig. 8 are on a daily time

scale.

Daily ET rates and cumulative ET are shown in Fig. 9, and a scatter plot of ET

time series are in Fig. 8c. Cumulative ET , which is important for soil water balance25

purposes, is very well simulated (Fig. 9b), ending with the 99% of the observed total ET.

Note that in the comparison between observed and modeled cumulative ET of Fig. 9b,
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missing observed ET values (28% of the study period) are replaced by modeled values

at that time (30% of total observed ET ).

Root zone soil moisture dynamics are also sufficiently well simulated with rmse of

0.076 for the calibration period and 0.053 for the validation period (Fig. 2). Note that

main inaccuracy of soil moisture modeling are during Summer rain events because5

measured soil moisture peaks do not agree with the rain gage input.

LAI is very well simulated for both grass and WV as can be seen in Figure 3. In

particular, the grass model calibrated for the 2003 and 2004 years is able to simulate

well the 2006 growth and the following decrease of LAI. The dynamics of the WV LAI

confirms the strong tolerance of the WV species to prolonged droughts.10

4.2 Inter-annual variability of vegetation dynamics

The different hydro-meteorological conditions of the observed years (Fig. 1 and

Sect. 2.2.1) affect significantly grass vegetation dynamics, as can be well depicted

by Fig. 10, where LAI grass time series during the early part (DOY 30–180, which coin-

cides with the grass growth season in Sardinia) of each year are compared (Fig. 10a).15

Soil moisture dynamics (Fig. 10b) and Ep, which reflects the relevant atmospheric forc-

ing, including solar radiation, air humidity and wind velocity (Fig. 10c), are also com-

pared. In this case study the dynamics of grass LAI responded readily to meteorologi-

cal forcing due the limited soil depth and the absence of available groundwater, which

is typical in Sardinian basins. In the year 2003 after a average January precipitation20

(Fig. 1a), an extremely high precipitation occurred in February but then precipitation

strongly decreased during the key months for the LAI growth in Sardinia (March, April

and May) so that low LAI values were observed during the high Ep period, and finally

a very dry Summer occurred. During the Spring 2004 the best hydrologic conditions

occurred for this site–high soil moisture until the end of the Spring season, when high25

values of Ep are observed–so that extremely high LAI values were predicted (solid line

in Fig. 10a). In 2005 the environmental conditions were not so favorable and less grass

growth were predicted. Indeed grass growth was limited before (DOY 100–120) due to
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atmospheric conditions (low Ep values) and after due to the soil moisture. Note that

even though LAI was not measured in that year due to faulty instrument operation,

qualitative observations (also recorded with a digital camera) confirm that there was

low grass biomass in the Spring 2005. Interestingly, in the year 2006 LAI values were

close to the 2004 year initially, but after the end of March the soil moisture started to5

decrease limiting the grass growth and LAI couldn’t follow the steep increase of the

2004 year.

Finally an interesting correlation between the grass LAI dynamics and precipitation

during the two typical growth months, April and May, was found. In Fig. 11 the mean

15-day values of LAI versus the aggregated 15-day precipitation values time lagged10

by 15 days are plotted. The scatter plot shows that the grass LAI is correlated with

the precipitation of 15 days before, and a threshold value of LAI=2 is identified for

increasing precipitation values. Note that one point on the plot doesn’t follow this trend:

it is a low LAI value (≈0.55) estimated in the last 15 days of April 2005 in spite of

the high 15-days precipitation (≈63 mm) observed in the first 15 days of April, which15

produced favorable soil moisture conditions for grass growth but was not sufficient due

to the low Ep (Fig. 10c).

5 Conclusions

The monitored 3 hydrologic years in Orroli (Sardinia) were characterized by strong

inter-annual variability of hydro-meteorological conditions, such as is typical of Mediter-20

ranean semi-arid ecosystems. The inter-annual variability of atmospheric forcing sig-

nificantly impacts soil moisture and vegetation dynamics, in particular during the Spring

and early Summer seasons, which are key seasons for Sardinian water resources plan-

ning and management.

The yearly variability of hydro-meteorological conditions offered a wide range of con-25

ditions for testing the developed 3-component (bare soil, grass and woody vegeta-

tion) coupled VDM-LSM model. The model performed well for the whole period of
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observation and was able to accurately predict vegetation dynamics, soil water bal-

ance and land surface fluxes. In particular the evapotranspiration, a key term in these

ecosystem, is very well predicted (to within 99% of the total observed evapotranspira-

tion of the study period).

The typical woody vegetation species of Sardinia, representative of the broader5

Mediterranean water-limited region, confirm a strong tolerance to prolonged drought,

such as occurred in the Summer of 2003. Even with the extreme dry conditions the WV

species didn’t wilt and LAI was still high (>3), showing moderate changes throughout

the year.

Instead, the dynamics of grass LAI responded readily to meteorological forcing due10

the limited soil depth and the absence of available groundwater, which is typical in

Sardinian basins. This allowed to find an interesting correlation between the precip-

itation, and the grass LAI dynamics during the Spring season, the growth season in

Sardinia. The correlation was found to be high when the values of precipitation and

LAI are aggregated at 15-day time intervals, and there is a sufficient time lag (15-days)15

between the forcing (precipitation) and the answer (LAI). The relationship between LAI

and precipitation is not linear showing a threshold value of LAI for the highest precipi-

tation values. These results highlight the high correlation between grass dynamics and

precipitation forcing in these ecosystem, and seem encouraging the climate change

warning that is pervading the Mediterranean European community. Indeed, if climate20

change effects are producing warmer conditions together with decreases of precipita-

tion and increases of drought durations in many semi-arid regions (Feddema, 1999;

Lelieveld et al.; 2002; Moonen et al., 2002; Ragab and Prudhomme, 2002; Ventura

et al., 2002) the impact on vegetation (i.e., land cover types and distribution) will be

significant.25
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Appendix A

The canopy resistance (rc) is used both in the LSM for the transpiration estimates using

the Penman-Monteith equation and in the VDM for the photosynthesis estimate (see

Table 2). Following Montaldo et al. (2005) it is estimated with a typical Jarvis (1976)

approach:5

rc =
rs,min

LAI

[

f1 (θ) f2 (Ta) f3 (VPD)
]−1

(A1)

where f1, f2 and f3 are stress functions of soil moisture, air temperature (Ta), and vapor

pressure deficit (VPD). The soil moisture effect is treated differently for grass and WV

due to the particular resistance to water stress of WV species modeled in this Sardinian

ecosystem (see Detto et al. (2006) for details on this function)10

f1 (θ) =











0, if θ ≤ θwp
θ−θwp
θlim−θwp

, if θwp < θ < θlim

1, if θ ≥ θlim

for grass

{

−26.56θ
2
+ 10.62θ, if θwp < θ < θlim

1, if θ ≥ θlim

for WV

(A2)

where θl im and θwp depend on the type of vegetation (e.g., Larcher, 1995; Eagleson,

2002). The effect of temperature on the stomata is treated by (Nouvellon et al., 2000;

Larcher, 1995)

f2 (Ta) =











0 for Ta ≤ Ta,min and Ta > Ta,max

1 −
Ta,opt−Ta
Ta,opt−Ta,min

for Ta,min < Ta < Ta,opt

1 for Ta,opt ≤ Ta ≤ Ta,max

(A3)15
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where Ta,min, Ta,opt and Ta,max are characteristics of the plant types (Larcher, 1995;

Eagleson, 2002). Finally, the effect of VPD on stomata opening is treated by (Jarvis,

1976)

f3 = 1 −ωVPD (A4)
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Table 1. Model parameters (VDM-LSM model) for the Orroli site.

Parameter Description Value
∗

Source
grass WV

LSM-VDM parameters

rs,min [s m
−1

] minimum stomatal resistance 100 280 L1995
Tmin [ ˚ K] minimum temperature 272.15 272.15 L1995
Topt [ ˚ K] optimal temperature 295.15 292.15 L1995
Tmax [ ˚ K] maximum temperature 313.15 318.15 L1995
θwp [-] wilting point 0.08 0 D2006
θl im [-] limiting soil moisture for vegetation 0.15 0.15 D2006

ω [HPa
−1

] Slope of the f3 relation 0.01 0.01 J1976
Only VDM parameters

cg [m
2

gDM
−1

] Specific leaf areas of the green biomass in growing season 0.01 0.005 obs.

cd [m
2

gDM
−1

] Specific leaf areas of the dead biomass 0.06 0.07 cal.
ke [-] PAR extinction coefficient 0.5 0.5 E2002
ξa [-] Parameter controlling allocation to leaves 0.6 0.55 cal.
ξs [-] Parameter controlling allocation to stem 0.1 0.1 A2005
ξr [-] Parameter controlling allocation to roots 0.4 0.35 Cal.
Ω [-] Allocation parameter 0.8 0.8 A2005

ma [d
−1

] Maintenance respiration coefficients for aboveground biomass 0.012 0.0009 A1984
ga [-] Growth respiration coefficients for aboveground biomass 0.22 0.45 N2000

mr [d
−1

] maintenance respiration coefficients for root biomass 0.007 0.002 cal.
gr [-] growth respiration coefficients for root biomass 0.1 0.1 cal.
Q10 [-] Temperature coefficient in the respiration process 2.5 2 A2001

da [d
−1

] death rate of aboveground biomass 0.023 0.0045 cal.

dr [d
−1

] death rate of root biomass 0.005 0.005 cal.

ka [d
−1

] rate of standing biomass pushed down 0.23 0.35 cal.
Only LSM parameters

zom,v [m] Vegetation momentum roughness length 0.05 0.5 D2006
zov,v [m] Vegetation water vapor roughness length zom/7.4 zom/2.5 B1982
zom,bs [m] Bare soil momentum roughness length 0.015 D2006
zov,bs [m] Bare soil water vapor roughness length zom/10 B1982
θs [-] saturated soil moisture 0.65 Cal.
b[-] slope of the retention curve 6.8 C1978

ks [m/s] saturated hydraulic conductivity 7×10
−6

C1978
ψs [m] air entry suction head 0.79 C1978
drz [m] root zone depth 0.25 obs.

A1984: Amthor (1984); A2001:Aber and Melillo (2001); A2005: Arora and Boer (2005);
B1982: Brutsaert (1982); C1978: Clapp and Hornberger (1978); K1992: E2002: Eagleson
(2002); J1976: Jarvis (1976); L1995: Larcher (1995); N2000: Nouvellon et al. (2000); obs.:
approximate value from field observations; cal.: value from model calibration;

∗
for the vegetation related parameters two values are provided for grass and WV, while

for the soil parameters one value is provided only.
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Table 2. Equations and references of the terms in (4)-(7)

Ecophysiological term Equations Source

Photosynthesis Pg = εP (PAR) fPARPAR
1.37ra+1.6rc,min

1.37ra+1.6rc
M2005

εP (PAR) = a0 + a1PAR + a2PAR
2

fPAR = 1 − e
−keLAI

Allocation For woody vegetation: A2005

aa =
ξa

1+Ω[2−λ−f1(θ)]

as =
ξs+Ω(1−λ)

1+Ω[2−λ−f1(θ)]

ar =
ξr+Ω(1−f1(θ))

1+Ω[2−λ−f1(θ)]

ξa + ξs + ξr = 1; λ = e
−keLAI

For grass

aa =
ξa+Ωλ

1+Ω[1+λ−f1(θ)]

ar =
ξr+Ω(1−f1(θ))

1+Ω[1+λ−f1(θ)]

ξa + ξr = 1
Respiration Rg = maf4 (T )Bg + gaaaPg C1986;

Rs = msf4 (T )Bg + gsasPg N2000;

Rr = mr f4 (T )Br + grarPg M2005

f4 (T ) = Q
Tm
10

10
with Tm=mean daily temperature M2005

Senescence Sg = daBg N2000;

Ss = dsBs M2005
Sr = drBr

Litterfall La = kaBd N2000;
M2005

C1986: Charles-Edwards et al. (1986); C2000: Cayrol et al. (2000b); N2000: Nouvellon et
al. (2000); A2005: Arora and Boer (2005); M2005: Montaldo et al. (2005).
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Fig. 1. Comparison between monthly mean historical (1922–1992) and observed (2003–2006)
value of (a) precipitation and (b) temperature.
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Fig. 2. Mean daily observed and modeled volumetric soil moisture (θ) time series for the Orroli
case study. In the secondary ordinate axis daily precipitation values are reported.
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Fig. 3. Observed and modeled LAI of grass and woody vegetation for the Orroli case study.
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Figure 4. Two multispectral high spatial resolution (2.8 m × 2.8 m per pixel) Quickbird satellit

Fig. 4. Two multispectral high spatial resolution (2.8 m×2.8 m, per pixel) Quickbird satellite
images (DigitalGlobe Inc.) of (top panel) DOY=220, 2003 and (bottom panel) DOY=138, 2004.
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Fig. 5. (a): The map of NDVI/NDVImax of WV of the field around the tower (the tower is in
the center of the map) determined from the Quickbird image for DOY=220, 2003; note that
NDVI/NDVIMAX values of WV pixels are greater than 0.6, so that the color bar is modified for a
better contrast of the WV pixels. (b): The histogram of the fraction of WV cover (ffp, WV) in the
footprint of the micrometeorological observations for the entire dataset the time series.
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Fig. 6. Mean daily observed and modeled time series of surface temperature of (a) WV cover
and (b) NWV cover (bare soil or grass or both depending the period of the year).
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Figure 7. Mean daily observed and modeled time series of a) net radiation (R ), b) sensible heat 

Fig. 7. Mean daily observed and modeled time series of (a) net radiation (Rn), (b) sensible heat
flux (H) and (c) ground heat flux (G).
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Fig. 8. Mean daily values of observed vs modeled time series of (a) net radiation (Rn), (b)

sensible heat flux (H), evapotranspiration (ET ) and (d) ground heat flux (G).
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Fig. 9. (a) mean daily modeled and observed evapotranspiration rates, and (b) their cumulative
values (black dots indicate missing observed values).
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Figure 10. Superimposed time series of a) grass LAI simulated by VDM-LSM, b) soil moisture 

Fig. 10. Superimposed time series of (a) grass LAI simulated by VDM-LSM, (b) soil moisture
simulated by VDM-LSM, and (c) potential evaporation (Ep) during the 30–180 day period of the
2003, 2004, 2005 and 2006 years.
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Fig. 11. Averaged 15-day values of grass LAI of April and May months vs. precipitation aggre-
gated from the previous 15-day period.
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