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Abstract

The estimation of the peak river flow for ungauged river sections is a topical issue in

applied hydrology. Spatially distributed rainfall-runoff models can be a useful tool to

this end, since they are potentially able to simulate the river flow at any location of the

watershed drainage network. However, it is not fully clear to what extent these models5

can provide reliable simulations over a wide range of spatial scales. This issue is in-

vestigated here by applying a spatially distributed, continuous simulation rainfall-runoff

model to infer the flood frequency distribution of the Riarbero Torrent. This is an un-

gauged mountain creek located in northern Italy, whose drainage area is 17 km
2
. The

results were checked by using estimates of the peak river flow obtained by applying a10

classical procedure based on hydrological similarity principles. The analysis highlights

interesting perspectives for the application of spatially distributed models to ungauged

catchments.

1 Introduction

Estimation of the peak discharge for an assigned probability of exceedance (the design15

flood NERC, 1975) is frequently carried out in applied hydrology to design flood control

measures. In the case of ungauged or scarcely gauged catchments this is not an easy

task. Several applications of rainfall-runoff models in the framework of continuous sim-

ulations have been recently proposed by the scientific literature (Naden et al., 1996;

Lamb, 1999; Cameron et al., 1999, 2000a,b; Blazkova and Beven, 1997, 2002). The20

simulation approach is based on the use of rainfall-runoff models of various complex-

ity for transforming a precipitation records in river discharge. The aim is to generate

a synthetic series of peak river flows that are used for inferring the flood frequency

distribution at a given site. This approach presents many advantages (Moretti and

Montanari, 2004). Spatially distributed rainfall-runoff models, that are potentially able25

to produce synthetic river flows at any locations of the watershed river network, can be

2
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a valuable tool in the context of the simulation approach. However, it is still not fully

clear to what extent these models are able to simulate the river flow over a wide range

of spatial scales (Brath et al., 2004).

This issue is investigated here by applying a continuous simulation, spatially dis-

tributed rainfall-runoff model to the 1214 km
2

gauged Secchia River basin, located in5

northern Italy, for which discharge data are available at the outlet and some internal

cross sections. The model has been parameterised by using hourly rainfall over the

basin and discharge records at the basin outlet. Then, the model has been validated

by simulating a 100-year long sequence of hourly river flows and then comparing ob-

served and simulated frequency distributions of annual peak flows. The above com-10

parison was carried out both for the basin outlet and for the internal Cavola Bridge

cross section, where the drainage area is 337 km
2
, which was treated as ungauged.

Finally, the model has been used to estimate the peak flow for a given probability of

exceedance (or return period) for the ungauged Riarbero Torrent, a tributary of the Sec-

chia River. The result has been compared with an estimate of the peak river flow for15

the Riarbero Torrent obtained by applying a classical procedure based on hydrological

similarity principles.

The model herein used is AFFDEF (Moretti and Montanari, 2007) which has been

shown to be parameter parsimonious and not computer intensive. Therefore it is suited

for scarcely gauged basins and for performing long term continuous simulations. The20

results of the flood frequency estimation for the Riarbero Torrent are promising and

indicate AFFDEF as a valuable tool for inferring the hydrological regime of ungauged

catchments.

2 Description of the case study

The simulation approach herein proposed was applied in order to infer the shape of25

the flood frequency distribution of the Riarbero Torrent, which is a right tributary to the

Secchia River, that is located in northern Italy. The Secchia River flows northwards

3
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in the Apennine Mountains and is a left tributary to the Po River. The contributing

area at the Bacchello Bridge river cross section, which is located in the vicinity of the

basin outlet, about 62 km upstream the confluence in the Po River, is 1214 km
2
. The

maximum altitude is the Mount Cusna, which is 2121 m above sea level (a.s.l.) high,

while the main stream length up to Bacchello Bridge is about 98 km and the basin5

concentration time is about 15 h. The mean annual rainfall depth ranges over the basin

area between 700 and more than 2000 mm/y. Intense meteoric events can occur in

each season, even though the most critical precipitation typically occur in Autumn. The

peak flow observed at Bacchello Bridge in the period 1923–1981 is 823 m
3
s
−1

(20 April

1960).10

The Secchia river basin is monitored by raingauges and hydrometers managed by

the Italian National Hydrographic Service. For the purposes of the present analysis,

historical hourly river discharges at the Bacchello Bridge river cross section for the

year 1972 have been collected. In addition, annual peak flows are available at both the

Bacchello Bridge and Cavola Bridge river cross sections (55 and 16 values, respec-15

tively). The drainage area at Cavola Bridge is 337 km
2
. Annual peak discharges are at

disposal as well for the period 1955–1961 (6 observations), at the Cerreto Alpi cross

section, where the drainage area of the Secchia River is 12 km
2
. All the river flow mea-

surements were collected by observing the river stage, which is then converted to river

discharge by means of rating curves derived on the basis of flow velocity measures20

and field surveys of the cross river section geometry.

Hourly temperature data and hourly rainfall depths over the Secchia River basin

for the years 1972 and 1973 have been gathered for five gauging stations located

in the basin area or in the vicinity. Depth duration frequency curves of rainfall are

also available for the five raingauges for storm duration ranging from 1 to 24 h and25

return period ranging from 20 to 100 y. They were derived by fitting long records of

annual maximum rainfall depths for different storm durations. The topography of the

Secchia River basin is described by a Digital Elevation Model (DEM), whose resolution

is 250×250 m. An extensive data base of soil type and soil use at local scale is at

4
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disposal, retrieved from recent surveys.

The Riarbero Torrent origins from the slopes of Mount Ischia (1724 m a.s.l.) and

Mount Scalocchi (1727 m a.s.l.) in the Apennine Mountains and flows in a narrow val-

ley, joining the right bank of the Secchia River in the neighbourhood of Collagna, few

kilometres downstream of Cerreto Alpi. The main stream length is 7 km, while the5

drainage area is 17 km
2
. The drainage basin has an average altitude of 1360 m a.s.l.

and is mostly covered by high altitude meadows and woods. The Riarbero Torrent is

located within a national park and is immersed in a natural environment of significant

value.

Estimation of the peak river flow for the Riarbero Torrent is an important issue as10

there is the need to design erosion control works along the river main stream. Being

the Riarbero Torrent ungauged, it is usual practice for professional hydrologists in Italy

to estimate the required design flow on the basis of hydrological similarity principles.

This technique is briefly described in Sect. 3.1 and provided an estimate of the peak

river flow which may be not reliable, being extremely high (see Sect. 3.1). Therefore15

the river flow simulation study described in Sect. 3.2 was implemented for inferring

the shape of the flood frequency distribution, with the aim to derive further indications

about the magnitude of the peak river flows.

3 Description of the analysis

The estimation of the peak river flow for the Riarbero Torrent was first of all performed20

by applying a traditional procedure based on hydrological similarity principles. Sub-

sequently, the simulation study was performed, which is structured in the following

steps: a) calibration and validation of the spatially distributed rainfall-runoff model for

the whole Secchia River basin by using the historical rainfall data and the river flow

record referred to Bacchello Bridge. b) Calibration of a rainfall simulation model and25

generation of a 100-year long record of hourly rainfall data over the basin and hourly

river flows at Bacchello Bridge and Cavola Bridge, in order to check the simulation

5
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reliability by comparing observed and simulated flood frequency distributions. c) Gen-

eration of a 100 y long record of hourly rainfall data and river flows for the Riarbero

Torrent basin, in order to infer the shape of the unknown flood frequency distribution.

3.1 Estimation of the peak river flow for the Riarbero Torrent through hydrological

similarity5

It was mentioned above that it is usual practice in Italy to apply hydrological similarity

principles for estimating the peak river flow in ungauged catchments. In particular, the

peak river flow, q(T ), per unit catchment area (specific peak flow) and return period

T , for a catchment of area A, is estimated through the following monomial relationship

(Maione, 1995):10

q (T )=q′ (T )

(

A

A′

)

−2/3

, (1)

where q′

(T ) is the specific peak flow for return period T in a catchment of area A′
,

which is hydrologically similar to the study catchment. q′

(T ) was estimated here by

fitting the observed record of the Secchia River annual peak flow at Cerreto Alpi (see

Section 2) with a type I extreme value probability distribution (Gumbel distribution).15

It should be noted that such record comprises only 6 observations and therefore the

derived estimate of the peak flow may be affected by a relevant uncertainty, especially

for high return periods. Moreover, by looking at the Cerreto Alpi flow record, one notes

the presence of two very high values, around 250 m
3
/s for a watershed area of 12 km

2
.

These values are unusual for the geographical context and therefore one may suspect20

that the rating curve is unreliable when extrapolated in the high flow domain.

Applying (1) as described above in order to estimate the peak flow for the Riarbero

Torrent, for a return period of 20 y, one obtains a value of 295 m
3
/s, that would be the

design flow suggested by the hydrological similarity procedure. This is a very high flow

value, which is likely to be unreliable since it implies an extension of the wetted perime-25

6
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ter of the river cross section which appears to be not consistent with the vegetation

cover along the main stream.

3.2 Estimation of the peak river flow for the Riarbero Torrent through hydrological

simulation

3.2.1 The rainfall-runoff model5

The rainfall-runoff model applied here is AFFDEF (Moretti and Montanari, 2007). Ba-

sically, it was developed in order to satisfy the following general requirements: (a) the

model should be reliable in making predictions for ungauged or scarcely gauged catch-

ments or where little information about the contributing area is available; (b) the model

should allow a spatially distributed description of the geomorphological characteristics10

of the catchment in order to generate river flow data at any cross-section of the river

network; (c) the model should have some physical basis in order to constrain the range

of some parameters by means of in situ measurements or physical reasoning and in

order to decrease parameter uncertainty; (d) the model should be computationally in-

expensive in such a way that long simulation runs could be performed at short time15

steps in a reasonably limited time, even for medium size basins.

Therefore, AFFDEF was conceived in order to be applicable to a wide spectrum

of real world case studies, even when only a limited data base of hydrometeorological

and geomorphological records is available. It is a continuous simulation and conceptual

approach, which is primarily in charge of providing a sufficiently reliable reproduction20

of the peak flows. Some of the hydrological processes involved in the rainfall-runoff

transformation have been schematised using conceptual schemes. These need to

be parameterised on the basis of some historical hydrometereological records and

therefore the need for observed data is not eliminated. However, extensive analyses

(Brath et al., 2001) proved the efficiency and the robustness of the model when applied25

to data limited catchments, especially in comparison with lumped approaches. Such

efficiency is believed to be due to the capability of the model to take advantage from

7
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the spatially distributed description of the basin topography, soil type and use.

The catchment hydrologic response is determined by the composition of the two

processes of hillslope runoff and channel propagation along the river network. The

model discretises the basin in square cells coinciding with the pixels of the DEM. The

river network is automatically extracted from the DEM itself by applying the D-8 method5

(Band, 1986; Tarboton, 1997), which allows one to estimate the flow paths and the

contributing area to each cell. In detail, the network determination is carried out by

first assigning to each DEM cell a maximum slope pointer and then processing each

cell in order to organise the river network. Digital pits are filled in a preprocessing

step, before extracting the channel network from the DEM of the catchment. Each cell10

receives water from its upslope neighbours and discharges to its downslope neighbour.

For cells of flow convergence, the upstream inflow hydrograph is taken as the sum of

the outflow hydrographs of the neighbouring upslope cells.

Distinction between hillslope rill and network channel is based on the concept of con-

stant critical support area (Montgomery and Foufoula-Georgiou, 1993). Accordingly, rill15

flow is assumed to occur in each cell where the upstream drainage area does not ex-

ceed the value of the critical support area A0, while channel flow occurs otherwise.

The interaction between soil, vegetation and atmosphere is modelled by applying a

conceptual approach. The model firstly computes the local gross rainfall Pl [t, (i , j )], for

each DEM cell of coordinates (i , j ), by interpolating the observations referred to each20

raingauge through an inverse distance approach. Then, for each cell a first rate of

rainfall depth is accumulated in a local reservoir (interception reservoir) which simulates

the interception operated by the vegetation. The capacity of such interception reservoir

is equal to CintS (i , j ), being Cint a parameter, constant in space and time, and S (i , j )
the local storativity. The latter is computed depending on soil type and use accordingly25

to the Curve Number method (CN method, Soil Conservation Service, 1987; Chow et

al., 1988).

Once the interception reservoir is full of water, the exceeding rainfall reaches the

ground. Then, surface and sub surface flows are computed accordingly to a modified

8
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CN approach that is able to simulate the redistribution of the soil water content during

interstorm periods. In detail, it is assumed that a linear reservoir (infiltration reservoir),

which collects the infiltrated water, is located in correspondence of each DEM cell at

the soil level. The local surface runoff and the infiltration are computed accordingly to

the relationship:5

Pn [t, (i , j )]

P [t, (i , j )]
=
F [t, (i , j )]

H · S (i , j )
(2)

where P [t, (i , j )] is the rainfall intensity that reaches the ground at time t, Pn [t, (i , j )] is

the intensity of surface runoff, F [t, (i , j )] is the water content at time t of the infiltration

reservoir located in correspondence of the cell (i , j ), and H · S (i , j ) is the capacity of

the infiltration reservoir itself, computed by multiplying the calibration parameter H by10

the soil storativity previously introduced. The quantity I [t, (i , j )]=P [t, (i , j )]−Pn [t, (i , j )]
represents the intensity of the infiltrated water. The outflow W [t, (i , j )] from the infiltra-

tion reservoir to the sub surface river network, which is assumed to coincide with the

surface one, is given by the linear relationship

W [t, (i , j )]=
F [t, (i , j )]

HS

(3)15

where HS is a calibration parameter. H and HS are assumed to be constant with respect

to both space and time.

The hourly intensity of potential evapotranspiration EP [t, (i , j )] is computed at local

scale by applying the radiation method (Doorenbos et al., 1984). When some wa-

ter is stored in the interception reservoir, the effective evapotranspiration E [t, (i , j )] is20

assumed to be equal to EP [t, (i , j )] and is subtracted from the water content of the

interception reservoir itself. When this latter is empty, or is emptied while subtracting

the evapotranspiration rate, the remaining part of EP [t, (i , j )] is subtracted from the

water content of the infiltration reservoir. In this case, it is assumed that E [t, (i , j )] is

varying linearly from 0 when F [t, (i , j )]=0, to EP [t, (i , j )] when F [t, (i , j )]=H · S (i , j ).25

9
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Evapotranspiration is the only source of water losses in the model, which primarily de-

pends on the capacity of the interception reservoir and hence on the parameter Cint.

Therefore a first estimation of Cint can be obtained by comparing observed and sim-

ulated runoff coefficients. Figure 1 shows the scheme of the interaction among soil,

vegetation and atmosphere operated by the model.5

The continuity equation applied to the infiltration reservoir can be written as:

I [t, (i , j )]−W [t, (i , j )]=
dF [t, (i , j )]

dt
. (4)

By combining (2), (3) and (4) and taking the effective evapotranspiration into account,

the mass balance equation for the infiltration reservoir becomes

dF [t, (i , j )]

dt
=−

F [t, (i , j )]

HS

−E [t, (i , j )]+P [t, (i , j )]

{

1 −

F [t, (i , j )]

H · S (i , j )

}

. (5)10

Surface and sub surface flows are propagated towards the basin outlet by applying

the variable parameters Muskingum-Cunge model. Extensive details can be found in

Cunge (1969) and Orlandini et al. (1999) for surface and sub surface propagation,

respectively. For the surface flow, the kinematic celerity is computed by considering

rectangular river cross section with fixed width/height ratio. The latter parameter and15

the channel roughness can assume different values along the river network and on

the hillslopes. In particular, the channel roughness in the river network is allowed to

vary from a minimum to a maximum value depending on the contributing area. For

the subsurface flows, the kinematic celerity is instead computed as a function of the

saturated hydraulic conductivity of the soil.20

It is interesting to note that the model describes in a simplified manner the dynamics

of the sub surface flows. In particular, it does not distinguish between near surface and

deep water flow, and assumes that the calibration parameters H and HS are constant

with respect to both space and time. This simplified description has been used in order

to reduce the number of model parameters and, consequently, the amount of historical25

data required for model calibration. On the other hand, one may expect a significant

10
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approximation in the simulation of the low river discharges, especially when referring

to highly permeable basins.

Moreover, the formation of the surface runoff is modelled accordingly to a scheme

that is very similar to the one adopted by the CN method, which is considered by many

authors as an infiltration excess approach (Beven, 2000). Therefore one may expect5

that the proposed model is better suited for basins characterised by low permeability

and prevalently impervious hillslope, where the surface runoff is more likely to be given

by excess of infiltration instead of excess of saturation.

3.2.2 Application of the rainfall-runoff model to the Secchia River basin

AFFDEF has been calibrated for the Secchia River basin by using historical rainfall10

data and the river flow record observed at Bacchello Bridge cross section. Most of

the model parameters have a well defined physical meaning and were estimated on

the basis of in situ surveys. However, it was necessary to optimise some of them by

means of a trial and error procedure through a manual calibration which has been

performed by comparing observed and simulated river flows for the year 1972. Table 115

reports a list of the model parameters and indicates which ones were estimated by

in situ measurements or physical reasoning and which ones were instead derived by

manual calibration. A dispersion diagram of observed versus simulated 1972 hourly

flows is reported in Fig. 2. The efficiency and explained variance of the simulation are

0.81 and 0.83, respectively.20

3.2.3 Generation of a long sequence of river flow data for the Secchia River

The goodness of the fit provided by the model has been validated by simulating a

100-year hourly sequence of river flows at the Secchia outlet and by comparing the

observed and simulated frequency distributions of the annual peak flows. The same

comparison has been performed for the Secchia River at Cavola Bridge cross section,25

where 16 observed annual peak flows are at disposal.

11
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For performing the hydrological simulation, a 100-year multisite hourly rainfall record

was firstly generated, by using the multivariate Neyman-Scott rectangular pulses

model, which represents the total rainfall intensity at time t as the sum of the inten-

sities given by a random sequence of rain cells active at time t. Extensive details can

be found in Cowpertwait (1996). The model is a generalisation of the well known single5

site Neyman-Scott rectangular pulses model (Rodriguez-Iturbe et al., 1987; Burlando,

1989) and is capable of generating a synthetic multisite record referred to the five rain-

gauges displaced over the basin and considered within this study. The rainfall model

has been parameterised by using the method of moments for fitting selected statistics

of the hourly rainfall records observed in the years 1972 and 1973 in the five rain-10

gauges. Estimated parameters have been adjusted through a trial and error procedure

in order to match the simulated mean areal Depth Duration Frequency (DDF) curve

for rainfall over the basin, estimated for a return period of 50 y, with the corresponding

DDF curve computed by fitting extreme rainfall data collected for storm duration rang-

ing from 1 to 24 h in the above five raingauges. The synthetic rainfall record for the15

Secchia River basin will be referred to with the symbol P ∗

l (t, s), where the subscript l
stands for gross rainfall, the subscript * indicates that the record is synthetic, t is time

and s=1, ...,5 indicates the raingauge.

Then, a 100-year record of hourly temperature data was generated by using a

stochastic model, namely, a fractionally differenced ARIMA model (FARIMA). This kind20

of model has been shown in many applications to be able to well fit the autocorrelation

structure of temperature series which, for increasing lag, is very often affected by a

slow decay that may suggest the presence of long term persistence. FARIMA models,

which are characterised by a high flexibility in their autocorrelation structure, are ca-

pable of fitting long term persistence by means of the fractional differencing operator.25

More details on FARIMA models and the simulation procedure herein applied for the

temperature data can be found in Montanari (2003) and Montanari et al. (1997).

The synthetic rainfall and temperature data have been subsequently routed through

the calibrated rainfall-runoff model, therefore obtaining a 100-year long sequence of

12
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river flows referred to Bacchello Bridge and Cavola Bridge. 100 values of annual peak

flow were then extracted and compared with the actual observations. The comparison

between observed and simulated sample frequency distributions of annual peak flow

is shown in Fig. 3. It can be seen that the model operates a slight overestimation of

the peaks. In detail, the mean value of the annual peak flow is overestimated of about5

20% at both the river cross sections. However, this is not detrimental for the purpose

of the present analysis, since it leads to a precautionary estimation of the design flood.

This approximation might be due to the uncertainty in the generation of synthetic data.

In particular it might be ascribed to the limited number of raingauges available, which

prevents an accurate representation of the spatial variability of rainfall.10

Overall, the frequency plots show a satisfactory fit of the sample frequency distribu-

tions, even at the Cavola Bridge cross section, which was treated as ungauged. This

result provides some support to the application of this procedure for estimating the

design flood of the Riarbero Torrent.

3.2.4 Application of the simulation procedure to the Riarbero Torrent and uncertainty15

analysis

Given the small size of the Riarbero Torrent, a key point of the simulation study is the

generation of the rainfall record. In fact, a good representation of rainfall at the spatial

scale of the whole Secchia basin does not assure that rainfall is well reproduced at

local scale as well. In particular, when the focus of the analysis is restricted to the20

Riarbero Torrent, one may note that the nearest of the five raingauges used for cali-

brating the rainfall model is located in Ligonchio and therefore may not provide a good

representation of the rainfall regime over the Riarbero watershed. In fact, Ligonchio is

located at a much lower altitude (about 930 m a.s.l., against an average altitude of the

Riarbero River basin of 1360 m a.s.l.).25

In order to provide a better fit of the local climatic forcing, the parameters of the rain-

fall model were adjusted through a trial and error procedure, by matching the simulated

DDF curve referred to the Riarbero watershed with the DDF curve of the Lagastrello

13
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Pass raingauge. This latter is located outside the Secchia River basin at an altitude of

about 1200 m a.s.l. and is the highest rainfall measuring station placed in the vicinity

of the Riarbero watershed. Figure 4 shows a comparison between simulated and ob-

served DDF curves at the Lagastrello Pass for a return period of 50 y after adjusting

the rainfall model parameters. 100 y of hourly rainfall were subsequently generated.5

This record will be referred to with the symbol P ∗

l (t, R) where R stands for the location

of the Riarbero watershed.

In order to account for the presence of uncertainty in the simulation procedure, the

generation of synthetic river flows for the Riarbero Torrent was done by allowing some

of the parameters of the rainfall-runoff model to vary within a feasible range, therefore10

applying the Generalise Likelihood Uncertainty Estimation (GLUE; Beven and Binley,

1992). Accordingly to this procedure, we rejected the concept of an optimal parameter

set for AFFDEF, given that several parameter combinations may provide equally likely

simulations in the presence of uncertainty (Cameron et al., 2000a).

It is important to note that GLUE does not provide a statistically based uncertainty15

estimation. By allowing the parameter set of the rainfall-runoff model to change, GLUE

implicitly accounts for the presence of uncertainty in the modelling process, therefore

evaluating the approximation in the results that might be induced by model misspecifi-

cation. This type of uncertainty assessment is subjective (for an extensive discussion

see Montanari, 2005, 2007,and Beven, 2006). Therefore it is necessary to make clear20

the underlying assumptions so that GLUE can provide the user with an indication of

the variability of the response depending on the rainfall-runoff model uncertainty and

sensitivity.

In detail, the GLUE simulation was performed as follows. 3000 parameter sets for

AFFDEF were generated by allowing the parameters H , HS , ksv and wv to vary uni-25

formly in the range ±20% of their optimal values calibrated for the Secchia River and

shown in Table 1. These parameters were selected as they are the most effective on

the AFFDEF response (Moretti and Montanari, 2007). For each of the sets, the hourly

synthetic rainfall data set P ∗

l (t, s), s=1, ...,5 previously generated for the Secchia River

14
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basin was routed through AFFDEF therefore obtaining a 100-year long simulation of

hourly flows at Bacchello Bridge. The annual peak flows were extracted and a sam-

ple frequency distribution was derived by plotting them against the related Gumbel

reduced variate, therefore obtaining a diagram like Fig. 3 (left) for each parameter set.

By linearly interpolating the obtained points the simulated peak flow corresponding to5

the sample frequency of the observed annual maxima was derived, therefore obtaining

an estimate of the simulated flow corresponding to the frequency of occurrence of the

observed data. Then, a Nash efficiency was computed in the reproduction of the ob-

served flood discharge for the given frequency of occurrence. Those parameter sets

that did not provide a minimum efficiency of 0.50 were rejected as non behavioural.10

At the end of this simulation procedure for the Secchia River, 565 sets were retained

as behavioural. The efficiency Ej , j=1, . . ., 565 of each behavioural simulation were

rescaled in order to make
∑565

j=1 Ej=1 and associated to the parent set.

Then, AFFDEF was run for the Riarbero Torrent by using in turn each of the behav-

ioral parameter sets, by utilising as input the 100-year synthetic local climatic forcing15

P ∗

l (t, R) and the synthetic temperature series generated as described in Sect. 3.2.2.

Therefore, 565 peak flows were obtained for each year of the simulation period. A prob-

ability distribution was then constructed for the peak flow of each year as follows: the

565 annual maxima for year t were ranked in ascending order. The rescaled efficiency

Ej of the parent parameter set was associated to each value. Finally, an uncertainty20

range and a median simulation for the annual maximum flow of year t were identified

by selecting the river flow values corresponding to a cumulative rescaled efficiency of

0.025, 0.975 and 0.5, respectively. The frequency distributions for the median simula-

tion and uncertainty range for the whole simulation period are shown in Fig. 4. By fitting

a type I extreme value probability distribution to the median simulation one obtains an25

estimate of about 102 m
3
/s for the 20-year return period peak flow.

One should note that this type of GLUE approach does not account explicitly for the

presence of uncertainty in the rainfall and temperature data. Input uncertainty could be

explicitly evaluated by routing through AFFDEF many synthetic rainfall and temperature

15
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series for different parameter sets of the respective generating models. However, we

believe such procedure, which is extremely computer intensive, it is not strictly neces-

sary as any contribution to the formation of the global uncertainty is implicitly accounted

for by GLUE. As a matter of fact, it is the threshold value of the Nash efficiency, which

is selected to identify the behavioural simulations, that determines the width of the un-5

certainty range. Therefore, the user should select such threshold value accordingly to

expert knowledge, in order to effectively identify what is a reasonable performance of a

behavioural model. In the presence of limited uncertainty the user should select a high

threshold efficiency, while he should be much more tolerant when there is the feeling

that uncertainty is relevant. In the context of the present study, in consideration of the10

limited availability of historical data, it was deemed that an efficiency of 0.5 could be

a reasonable threshold value, that allows GLUE to implicitly account for any source of

uncertainty.

3.3 Is the hydrological simulation satisfactory for the right reason?

In recent times, hydrologists are becoming more concerned about the physical funda-15

ment of hydrological models. In fact, it is deemed increasingly important to check that

the model is working well for the right reasons (Kirchner, 2006). This is not an obvious

task as in real world applications the interaction among many types of uncertainties

within a hydrological simulation may induce compensation among errors. For instance,

it is well known that parameters may compensate for an erroneous input or a wrong20

model structure. In such a case, if the user only looks at the goodness of the fit of

observed data he may erroneously conclude that the model is good. However, if the

model is not correctly schematising the underlying physical process its performances

might abruptly decrease if the model is applied to ungauged/scarcely gauged basins.

In fact, the limited data availability might not allow the user to tune the parameter val-25

ues to compensate for the inherent uncertainties. Indeed, such abrupt decrease of

performance in non ideal situations is frequently experienced in hydrology. Getting the

right answer for the right reasons is compelling in order to improve our ability to under-

16
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stand, schematise and effectively model hydrological processes. The concern about

the possibility that a hydrological model might work well for the wrong reason should

arise any time that multiple sources of uncertainties are potentially interacting.

Indeed, many types of uncertainty are involved in the case study considered herein.

The uncertainty in the observed and synthetic rainfall and temperature data may inter-5

act with the uncertainty in the AFFDEF structure and all the others uncertainties related

to the AFFDEF input data (for instance, digital elevation model and CN values). These

uncertainties could be compensated by the AFFDEF parameters, therefore leading to

a typical situation where the results presented here could be satisfactory for the wrong

reason.10

It is well known that to evaluate the goodness of the schematisation operated by a

mathematical model of complex hydrological processes is not an easy task. For the

case of multistep simulations like the one we performed here it is advisable to check

the goodness of the results not only at the end of the simulation itself, but also during

the intermediate steps. Other important indications may be derived by using indepen-15

dent sources of information to check the model accuracy (orthogonal observations,

Winsemius et al., 2006) at the intermediate and final steps of the simulation.

For the case of the simulation performed here, we believe all the available infor-

mation was used to check the consistency of the approach at different steps. First,

the accuracy of AFFDEF in performing continuous time simulation of hourly flows at20

the Secchia River basin outlet was checked in calibration mode. Second, the capa-

bility of the Neyman-Scott model to reproduce the statistics of the observed hourly

precipitations in the five raingauges was assessed again in calibration mode. Third,

an independent information, that is, the depth duration frequency curves for rainfall,

was used to improve the fit provided by the rainfall simulation. Furthermore, another25

independent information, that is, the annual peak flows observed at the Secchia outlet

and at the intermediate section of Ponte Cavola, allowed us to check the capability

of AFFDEF to reproduce the frequency behaviours of peak flows at different spatial

scales in validation mode. Finally, a soft information was used to check the reliability

17
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of the final estimate of the peak flow for the Riarbero Torrent. In fact, the obtained

peak flow was critically analysed in view of the status of the vegetation along the main

stream. Finally, the AFFDEF parameter values were carefully checked in view of their

consistency with the physical processes they represent and the values they assumed

in previous applications.5

We believe that all the above considerations provide substantial support to the cred-

ibility of the overall simulation procedure.

4 Conclusions

The design flood of 102 m
3
/s obtained through hydrological simulation for the Riarbero

Torrent is much smaller in comparison with the value of 295 m
3
/s provided by the hydro-10

logical similarity procedure involving the Riarbero Torrent at its outlet and the Secchia

River basin at the Cerreto Alpi cross section. In view of the robustness of the model

simulations proved at the cross sections of Bacchello Bridge and Cavola Bridge, and

in view that the estimate provided by the hydrological similarity procedure seems to

be too high when compared with the type of vegetation cover along the Riarbero Tor-15

rent banks, the authors believe that the estimate obtained by hydrological simulation

may provide a useful indication. However, it has also to be taken into account that the

reliability of the rainfall-runoff model at medium scale (the contributing areas at Bac-

chello Bridge and Cavola Bridge are 1214 and 337 km
2
, respectively) does not imply

that such reliability is preserved also at the very small scale of the Riarbero Torrent20

watershed. In the latter case, local conditions of climate, river cross section geometry,

soil type and vegetation cover may exert significant forcing on the river flow magnitude,

thus inducing a significant uncertainty in the peak flow estimate.

However, it should be considered that the required design flood is needed for the

purpose of sizing river engineering works in aimed at controlling river bed erosion con-25

trol along the Riarbero Torrent, whose watershed is inhabited. Therefore, a failure of

erosion control works would not imply loss of lives but only a economical loss result-

18
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ing from a possible need to re-structure the erosion control works. Furthermore, one

should note that sizing the erosion control works on the basis of the design flood de-

rived from hydrological similarity would imply the construction of massive engineering

structures. This option would lead to loosing part of the great environmental value of

the Riarbero watershed. On the light of these considerations we believe that it is not5

unreasonable to utilise the outcome of the hydrological simulation for the design of the

required erosion control works.
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Table 1. Rainfall-runoff model parameters and their values. These latter were partly optimised

by calibration (C) and partly estimated by in situ measurements or physical reasoning (E ).

Strickler roughness for the hillslopes ksv [m
1/3

s
−1

] C 0.906

Channel width/height ratio for the hillslopes wv [–] C 500000

Maximum and minimum Strickler

roughness for the channel network k0
sr , k

1
sr [m

1/3
s
−1

] E 10-22

Channel width/height ratio for

the channel network wr [–] E 20

Constant critical source area A0 [km
2
] E 1

Saturated hydraulic conductivity Ki [m s
−1

] C 0.05

Width of the rectangular cross section

of the sub surface water flow BP [m] C 0.5

Bottom discharge parameter for

the infiltration reservoir capacity HS [s] C 5000000

Multiplying parameter for the

infiltration reservoir capacity H [–] C 0.1092

Multiplying parameter for the

interception reservoir capacity Cint [–] C 0.1
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Fig. 1. Schematisation operated by the model of the interaction among soil, vegetation and

atmosphere.
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Fig. 2. Dispersion diagram of observed versus simulated hourly discharges at the Bacchello

Bridge river cross section; year 1972.
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Fig. 3. Sample frequency distribution of the annual peak flows at the Bacchello Bridge (left)

and Cavola Bridge (right) river cross sections.
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Fig. 4. Comparison of the 20-year return period DDF curves derived by simulated rainfall over

the Riarbero catchment and rainfall extremes observed at Lagastrello Pass (left) and median

simulation with uncertainty range for the frequency distribution of the annual peak flows for the

Riarbero Torrent (right).
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