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Abstract

A data mining, regression tree algorithm M5 was used to review the understanding of

mutual hydrological and seasonal settings which control the streamwater nitrate flush-

ing during hydrological events within a forested watershed in the southwestern part

of Slovenia, characterized by distinctive flushing, almost torrential hydrological regime.5

The basis for the research presented an extensive dataset of continuous, high fre-

quency measurements of seasonal meteorological conditions, watershed hydrological

responses and streamwater nitrate concentrations. The dataset contained 16 recorded

hydrographs occurring in different seasonal and hydrological conditions. Based on pre-

defined regression tree pruning criteria, a comprehensible regression tree model was10

obtained in the sense of the domain knowledge, which was able to adequately de-

scribe most of the streamwater nitrate concentration variations (RMSE=1.02 mg/l-N;

r=0.91). The attributes which were found to be the most descriptive in the sense of

streamwater nitrate concentrations were the antecedent precipitation index (API) and

air temperatures in the preceding periods. The model was most successful in describ-15

ing streamwater concentrations in the range 1–4 mg/l-N, covering large proportion of

the dataset. The model performance was poorer during the periods of high streamwa-

ter nitrate concentration oscillations (up to 7 mg/l-N during the summer hydrographs

and 14 mg/l-N during the extreme November hydrograph) related to highly variable hy-

drological conditions, which would require a less robust regression tree model.20

1 Introduction

In recent years, the export of nitrogen from forested watersheds has become an impor-

tant research area and a public policy issue since nitrogen leaching can strip nutrients

from forest soils, acidify streams and cause eutrophication (Vitousek et al., 1997; Fenn

et al., 1998; Lovett et al., 2002; Wade et al., 2002; Fitzhugh et al., 2003). The variabil-25

ity in nitrogen loss from forested watersheds is high and has been ascribed to many
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causes, including differences in atmospheric nitrogen inputs (Stoddard, 1994; Aber et

al., 2003), pedology (Gundersen et al., 1998), forest history (Goodale et al., 2000) and

hydrology (Hornberger et al., 1994; Creed et al., 1996).

The hydrologically induced mobilization of nitrate as the most mobile form of nitrogen

from the undisturbed, forested watersheds has received considerable attention in re-5

cent hydrological and biogeochemical studies (Creed et al., 1996; McHale et al., 2002;

Beachtold et al., 2003; Weiler and McDonnell, 2006). Nitrate concentrations in the

streamwater draining forested watershed provide the fundamental information about

biogeochemical processing of nitrogen in the forest ecosystem (Burns, 1998; Goodale

et al., 2002). At seasonal boundaries, accumulation of labile dissolved inorganic ni-10

trogen in excess of physical and biological retention capacity tends to occur (Likens

and Boremann, 1995; Cirmo and McDonnell, 1997; Lovett et al., 2002; Vanderbilt et

al., 2003). Both autumn and spring streamwater nitrate pulses are usually observed,

with autumn increases in the nitrate concentration associated with a greater amount

of precipitation and diminished biological assimilation, whereas spring pulses are re-15

ported mainly from watersheds with snowmelt driven hydrology (Arheimer et al., 1996;

McHale et al., 2000; Langusch and Matzner, 2002; Sickman et al., 2003; Clark et al.,

2004).

The understanding of how hydrological conditions trigger flushing of labile nutrients

on a watershed scale is still rather poor, especially when we move from the timescale20

of seasonal variability towards the timescale of a single hydrological event. The main

differences in the explanation of the hydrologically driven export of nitrate found in the

literature are not necessarily contradictory as they can be ascribed to discrepancies in

basic hydrological and climatological conditions, topography, forest soil characteristics

and biogeochemical behavior of forest ecosystems (Cirmo and McDonnell, 1997; An-25

dersson and Lepisto, 1998; Aber et al., 2002; Worall et al., 2003; Stieglitz et al., 2003;

Binkley et al., 2004).

The inability to obtain an insight into the interactions between the hydrological and

biogeochemical states, which control the nitrate flushing mechanisms, lies in the com-
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plexity of event-scale hydro-biogeochemical observations. Studies of the hydrologically

induced nitrate export behaviour from forests are observed mainly at low time frequen-

cies, which do not allow tracing the behavior of nitrate export during a particular hydro-

logical event. In order to understand how hydrological flowpaths affect stream chem-

istry and, conversely, to use stream chemistry to decipher hydrological processes, we5

need chemical measurements at time scales that correspond to the hydrological dy-

namics of an observed hydrologic unit (Kirchner et al., 2004).

Our study presents an investigation of interacting seasonal and hydrological condi-

tions which strongly influence the export of nitrate from a forested watershed in the

SW part of Slovenia. The continuous high-frequency measurements of streamwater10

nitrate concentration in the periods of hydrological events in different seasons provided

the ability to study the nitrate export behaviour predefined by seasonal meteorologi-

cal settings and conditioned by the hydrological events observed. The results of the

measurements show that seasonal biogeochemical settings play an important role in

controlling the size of the forest soil nitrate pool which is available for further mobiliza-15

tion through hydrological mechanisms.

The continuous tracing of nitrate concentration in streamwater requires substantial

effort and resources. Based on our continuous observations of nitrate export dur-

ing more than 15 recorded floodwaves, a considerable amount of data was acquired.

This paper aims at presenting the application of data mining (DM) and knowledge dis-20

covery from database (KDD) tool, namely regression or model trees, for gaining new

knowledge about the observed behaviour of seasonally and hydrologically influenced

mobilization of nitrate during hydrological events and applying this knowledge to better

understand the streamwater nitrate concentration behaviour.

2 Study area25

The Padež stream watershed is situated in the southwestern part of Slovenia and com-

prises 42.1 km
2

(Fig. 1). The Padež stream is a tributary of the Reka river, one of the
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widest known sinking streams of the Classic Karst area in Slovenia; the Padež water-

shed reaches deeply into the hilly area of Brkini in the south (altitude up to 815 m a.s.l.).

The studied area consists of Eocene flysch (mainly marl and sandstone layers) under-

lain by deep cretaceous carbonate bedrocks which also surround the wider area of the

Brkini flysch pool. Spatially, the hydrological characteristics of the Padež watershed5

are uniform, characterized by the low permeability of erodible flysch layers and, con-

sequently, a well developed, dense and highly incised stream channel network with a

drainage density of 1.94 km/km
2
. The lowest parts of the main valleys (the Padež and

Suhorka stream valleys) are covered by up to 4-m thick alluvial deposits. The hydraulic

conductivity of flysch is low (in the range 10
−6

m/s to 10
−5

m/s), the hillslopes are steep10

(average slope derived from the digital elevation model amounts to 33%), the average

slope of the Padež stream channel being almost 3%. In year 2006 the mean discharge

of the Padež stream amounted 0.633 m
3
/s; the long-term mean annual discharge of

the Padež stream is 1.1 m
3
/s. The hydrological response of the watershed is very fast,

which is reflected in the flushing, almost torrential regime of the Padež stream and15

short times to hydrograph peaks which can, in conditions of combined preceding wet-

ting of the watershed and high rainfall intensities, vary between 2 and 3 h. Most of

the year, stream water is present only in the Padež stream and its major tributary, the

Suhorka stream, other smaller streams in the watershed being intermittent.

The Brkini hilly area is a climatic transitional area between the mediterranean and20

continental climate with a mean annual temperature of 9.6
◦
C. The mean annual pre-

cipitation is approximately 1440 mm (Rusjan et al., 2006). The prevailing movement of

the wet air masses is in the southwest–northeast direction. The majority of the pre-

cipitation falls during the October–March period with periodical snowfall on the highest

parts of the Brkini hills, which does not have substantial influence on the watershed25

hydrology.

Spatially, soils in the study area are uniform. According to the WRB 2006 soil clas-

sification they are classified as Haplic Cambisol (Humic, Hyperdystric, Endoskeletic);

the hydraulic conductivity of clayish and silt soils is low.
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The Padež stream watershed is minimally disturbed by human activity; it has already

been used for drinking water supply and, as such, it is also foreseen as an additional

source of drinking water for the water-deficient area of the Slovenian coastal region.

According to the CORINE 2000 land cover data, 82% of the watershed is covered

by forest (79% by broad-leaved forest), and 18% of the watershed comprises complex5

cultivation patterns (mainly meadows with significant areas of natural vegetation) which

are all in the state of successive afforestation. Lower parts of the watershed are almost

completely covered by deciduous

forest. Main tree species that can be found in the Padež watershed are Sessile

oak (Quercus petraea), Black alder (Alnus glutinosa), Beech (Fagus sylvatica L.), and10

Hornbeam (Carpinus betulus) (Slovenian Forest Service, 2000).

3 Methods

3.1 Monitoring system

The monitoring system at the Padež watershed is shown in Fig. 1. Precipitation data

were obtained from tipping bucket rain gauges located within the Padež watershed;15

the meteorological data were gathered from the automatic meteorological station posi-

tioned in the middle of the watershed (Fig. 1). Water level was recorded continuously

with a 5-min time step on four locations using a 1-D Doppler instrument with an in-

tegrated logger. Flow was gauged on stream sections equipped with limnigraphs us-

ing two instruments. During low flow conditions, a salt-dilution flowmeter was used,20

whereas during middle to high flows, a 2-D/3-D handheld Doppler velocimeter was

used. The resulting water-level records were converted to volumetric discharges by

empirical ratings that were validated by gauging at different flow levels.

Stream chemistry was measured continuously on a 30-min time step using a water

quality multi-parameter data-sonde. The multi-parameter sonde is designed for on-site25

and flow-through applications and measures water chemistry parameters simultane-
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ously (Brilly et al., 2006). The multiple parameters include: nitrate, temperature, elec-

tric conductivity, depth, dissolved oxygen, Total Dissolved Solids (TDS), Oxidation Re-

duction Potential (ORP) and pH. Additionally, grab water samples were taken biweekly

from January to November 2006 at the site where the multi-parameter sonde was in-

stalled for laboratory analysis in order to control the multi-parameter sonde readings.5

The samples were collected and preserved according to SIST EN ISO 5667-6 and

SIST EN ISO 5667-3 standards, respectively. Nitrate was measured according to SIST

EN ISO 10304-1 standard with the ion chromatograph. A comprehensive description

of the monitoring system settings is given by Rusjan et al. (2007)
1
.

3.2 Regression trees10

Regression trees as a subgroup of decision trees are a representation for piece-wise

constant or piece-wise linear functions. Like classical regression equations, they pre-

dict the value of a dependent variable (called class) from the values of a set of indepen-

dent variables (called attributes) (Džeroski, 2001; Witten and Frank, 2005). Regression

trees are an especially attractive type of models for three main reasons. Firstly, they15

have an intuitive representation, the resulting model is easy to understand and assim-

ilated by humans (Breiman et al., 1984). Secondly, the regression trees are nonpara-

metric models, no intervention being required from the user, and thus they are very

suited for data mining (DM) and knowledge discovery from database (KDD) (Džeroski,

2001; Atanasova and Kompare, 2002). Lastly, the accuracy of decision trees is com-20

parable or superior to other models (Witten and Frank, 2005). Compared to neural

networks, a more commonly used machine learning method in hydrological studies,

regression trees can give a structural insight into the hydrological processes being

modeled (Štravs and Brilly, 2007).

1
Rusjan, S., Brilly, M., and Mikoš, M.: Flushing of nitrate from a forested watershed:

An insight into hydrological nitrate mobilization mechanisms through seasonal high-frequency

stream nitrate dynamics, J. Hydrol., submitted, 2007.
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The regression tree construction proceeds recursively, starting with the entire set of

training examples. At each step, the most discriminating attribute is selected as the root

of the (sub)tree and the current training set is split into subsets according to the values

of the selected attribute. The split variable selection is one of the main components of

classification tree construction. The quality of the split selection criterion in tree nodes5

has a major impact on the quality (generalization, interpretability and accuracy) of the

resulting tree. For regression trees, the selected split is the one that maximizes the

homogeneity of the two resulting groups with respect to the response variable (Prasad

et al., 2006). In order to avoid the overfitting of the regression trees to the training

data, many techniques, called pruning, have been proposed in the literature (Witten10

and Frank, 2005).

In our study of the nitrate flushing, a re-implementation of the well known regres-

sion tree induction algorithm M5 (Quinlan, 1992) within the software package WEKA

(Wang and Witten, 1997; Witten and Frank, 2005) was used. Each leaf of the gen-

erated regression tree contains a linear regression equation which is used to model15

the dependant class inside the subset of instances classified to the particular leaf. The

prediction accuracy of the constructed models was evaluated performing 10-fold cross-

validation (Kohavi, 1995). In the 10-fold cross-validation, the dataset is randomly split

into 10 disjoint subsets of approximately the

same size, and 10 experiments are performed. In each of these, 1 of the 10 subsets20

is withheld, the prediction method trained on the union of the remaining 9, then tested

on the unseen examples from the withheld subset. The reported accuracies are the

averages of the 10 experiments.

The attribute selection considered in the data mining applications should be based on

the domain knowledge of the modeled processes (Hall et al., 2002; Zaffron, 2005). The25

attributes which were considered in the dataset used for the construction of regression

tree models of the streamwater nitrate concentration are listed in Table 1. The dataset

consisted of 1257 records of attributes which were temporally adjusted on an hourly

time step containing 16 hydrographs, and every combination of attributes obtained at
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a certain time step represents an instance used in the data mining process.

Within a particular region or forest stand, mineralization and nitrification rates vary

considerably in response to two key factors: temperature and moisture (Arheimer et al.,

1996; Andersson and Lepisto, 1998; Bernhardt et al., 2002; Vanderbilt et al., 2003).

Furthermore, Clark et al. (2004) used mean monthly air temperature to describe the5

mean monthly streamwater nitrate concentrations in forested watersheds, however,

without a detailed consideration of the possible effect of changed hydrological con-

ditions. With particular attribute selection we therefore tried to capture the possible

hydrological and seasonal characteristics which most likely play an important role in

regulating streamwater nitrate responses during the observed hydrological events. In10

order to describe the preceding watershed wetness state we used the antecedent pre-

cipitation index (APIx) for a selected period of x preceding days using the method of

Linsley et al. (1982), whereas the characteristics of the hydrological events are cap-

tured through the sums of rainfall (Psum) for 3, 6, 12, 24 and 48 preceding hours and

the observed discharges of the Padež stream. Additionally, the characteristics of the15

rainfall runoff formation are considered within the data about the proportion of event

water in the total discharge (EW). The proportion of event water in the total discharge

was obtained performing the two-component hydrograph separation using electrical

conductivity of rainfall and streamwater as a natural tracer (Rusjan et al., 2007
1
). On

the other hand, possible seasonal implications in the sense of temperatures are con-20

sidered through the data about average hourly air temperatures for the periods of 1, 3,

7 and 14 preceding days and the streamwater temperatures.

4 Results and discussion

In order to obtain an overview of the great complexity of seasonally and hydrologically

induced streamwater nitrate concentrations and to make the resulting regression tree25

models more comprehensive, Fig. 2 shows the recorded hydrological events in differ-

ent seasons and associated streamwater nitrate oscillations which were included into

4219
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the data mining process. The streamwater nitrate concentrations during the baseflow

conditions were generally in the range of 1–1.5 mg/l-N. During the first two recorded

hydrographs in early spring (March and April hydrographs), the streamwater nitrate

concentrations showed no responsiveness to the changed hydrological conditions. The

concentrations remained around 2 mg/l-N. On the other hand, the hydrological events5

in late spring and summer during the sequences of May, June and especially August

expressed the strong influence of changed hydrological state on the streamwater ni-

trate concentration increases up to 7 mg/l-N. The greatest increase in the streamwater

nitrate concentration was observed during the hydrological event in November, when

streamwater nitrate concentrations exceeded 14 mg/l-N.10

4.1 Regression tree model

The size of the generated trees which depends on the predefined number of instances

that reach a tree leaf as a pruning factor is shown in Fig. 3. The resulting perfor-

mances of the trees in predicting the streamwater nitrate concentration expressed

through RMSE and correlation coefficient r are given in Fig. 4. The regression trees15

with a small number of instances in the leaves are extremely big; in the case of only

five instances in a leaf, the generated regression tree has 73 rules – linear regres-

sion equations in leaves. The performance of the trees with a large number of rules

is suspiciously high (in the case of the tree with 73 rules the RMSE=0.40 mg/l-N and

r=0.99).20

However, a tree of such size is practically incomprehensive and very likely overfit-

ted to the training data. In order to avoid the problem of overfitting and improve the

comprehensiveness of the resulting regression trees we have opted for a more drastic

pruning of the regression tree by increasing the number of the instances in the leaves.

Satisfactory prediction accuracies have been obtained generating regression trees with25

100 and 125 instances in leaves which have 14 and 10 rules, respectively. If we fur-

ther increased the number of instances in the leaves, the performance of the resulting

regression trees decreased substantially (Fig. 4). The performance measures for the
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two suitable regression trees are: in the case of a regression tree with 100 instances

in leaves RMSE=0.97 mg/l-N and r=0.92; in the case of 125 instance regression tree

RMSE=1.02 mg/l-N and r=0.91. The decrease in the performance of the two regres-

sion trees is relatively small whereas the size of the regression tree with 125 instances

in leaves is additionally decreased (10 rules) vs. regression tree with 100 instances in5

the leaves (14 rules). We have therefore decided for the regression tree with 125 in-

stances in the leaves. In Table 2, a list of linear regression equations – rules generated

for the leaves of the resulting regression tree is given with a schematic representation

of the regression tree.

The splitting attribute selected in the root node of the resulting regression tree is the10

antecedent precipitation index for the period of 5 preceding days API5. According to

the splitting value of the API5=17.9 mm the two resulting branches interpret the states

of high hydrological wetness of the watershed (values above 17.9 mm), whereas the

branch defined by values of API5 below 17.9 mm is used to describe the hydrologically

less moist periods. On the second split level, avgT3 (value 10.1
◦
C) and avgT14 (value15

11.6
◦
C) were selected to describe the seasonal character of the hydrological events.

The result of the splitting on the first two split levels is four branches of the regression

tree (Table 2). The split of the dataset into four branches according to the conditions

imposed on the first two split levels of the regression tree is shown in Fig. 5. From

the temporal point of view, branch 1 covers the data obtained during the hydrologically20

less moist, early spring period (March and April) and the short period before the oc-

currence of the November hydrograph. Branch 2 includes the data obtained during the

rising limbs of the first hydrographs in the sequences of the late spring and summer

hydrographs in May, June, August and September, whereas branch 4 covers the rest of

the data obtained during the late spring and summer periods. Branch 3 comprehends25

the November hydrograph and part of the March hydrograph.

On the lower, third split level, we can find Psum12 h and Psum24 h, which characterize

the properties of the hydrological events in more detail. On the fourth and fifth split lev-

els avgT14, avgT7 and API14 are selected for further splitting. Interestingly, the resulting
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regression tree model does not include the data about discharge Q and streamwater

temperature TW as a split attribute nor as an attribute included into the linear models

in the leaves. However, the discharge is considered indirectly through the EW attribute,

which appears in the linear models Nos. 8 to 10 (Table 2).

The measured streamwater nitrate concentrations vs. streamwater nitrate concen-5

trations predicted by the regression tree model are shown in Fig. 6. The regression tree

model successfully predicts low to medium nitrate concentration (1 mg/l-N to 4 mg/l-N).

The accuracy of the model prediction decreases with an increase in the streamwa-

ter nitrate concentration. The regression tree model with 10 leaves seems to be too

robust to be able to more accurately predict high streamwater nitrate concentrations10

(above 5 mg/l-N concentrations) which occur only during short periods of hydrograph

peaks (Fig. 2). Furthermore, the model does not predict nitrate concentrations above

9 mg/l-N, while the measured concentrations during the November hydrograph peak

discharges rose to 14 mg/l-N.

4.2 Interpretation of the model results in the light of domain knowledge15

The structural transparency of the regression tree models offers additional opportuni-

ties to interpret not only the model results in the sense of performance but also model

structure in the light of the domain knowledge of the modelled process. As the primary

splitting attribute in the generated regression tree model, the antecedent precipitation

index calculated for the period of 5 preceding days API5, was chosen. The selection of20

the API as a primary split attribute was very likely imposed by its definition. The values

of the API are defined on the daily time step, whereas other attributes were included

into the dataset on the hourly time step. However, the time step definition of the API

does not prevail over the further construction of the regression tree since on the second

split level other attributes, namely average hourly air temperature during 3 (avgT3) and25

14 (avgT14) preceding days, are selected as splitting attributes.

The values of the antecedent precipitation indexes are defined empirically based

on the selection of the recession constant, which tend to simulate the drying of the
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watershed depending on the characteristics of the watershed. From the domain knowl-

edge point of view, the exact values of the API do not offer the exact information about

the hydrological nitrate mobilization process traced through continuous streamwater

nitrate concentration measurements, however, they provide an insight into the tempo-

ral changes of the hydrological state of the Padež watershed responsible for nitrate5

flushing.

The values of the avgT3=10.1
◦
C and avgT14=11.6

◦
C are from the biogeochemical

point of view much more interesting. Temperature together with soil moisture conditions

significantly affects the mineralization and nitrification rates in forest soils (Arheimer et

al., 1996; Andersson and Lepisto, 1998; Knoepp and Swank, 2002). Whereas maxi-10

mum mineralization is reported for the forest soil temperature range between 20 and

28
◦
C (Nicolardot et al., 1994), the mineralization becomes strongly inhibited at tem-

peratures below 10
◦
C (Knoepp and Swank, 2002). Presuming that air temperatures

indirectly address the temperature of the forest soils, the values of avgT3>10.1
◦
C and

avgT14>11.6
◦
C, used for splitting in the regression tree model, define the periods15

of more effective mineralization, nitrification and nitrate accumulation in forest floors,

which is in the periods of changed hydrological conditions available for hydrological

mobilization. In Fig. 5 these conditions correspond to the periods covered by branches

Nos. 2 and 4.

Figure 7 shows the temporal performance of the regression tree model predicting20

streamwater nitrate concentrations as regards to the measured streamwater nitrate

concentrations during the observed hydrographs. The errors indicate the difference

between the modelled and measured streamwater nitrate concentrations. The regres-

sion tree model successfully predicts the streamwater nitrate concentrations during

spring and summer hydrographs, when the error rarely exceeds 2 mg/l-N.25

During the November hydrograph the concentrations of the nitrate were extremely

high if compared to other observed hydrographs. Increased exports of the nitrate

from forested watersheds are known to occur during seasonal transitions as a con-

sequence of changed biochemical and hydrological conditions (Likens and Boremann,
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1995). The high nitrate concentrations during the November hydrograph could be as-

signed to the extremely warm autumn period in 2006 (average daily air temperatures

generally around 15
◦
C) and absence of substantial rainfall in the early autumn period

(September, October and first half of November), the biogeochemical and hydrological

conditions being favourable for accumulation of nitrate in forest soils. Additionally, the5

vegetation nitrogen uptake is strongly reduced in autumn (Likens and Boremann, 1995;

Beachtold et al., 2003). The streamwater nitrate concentrations are not satisfactorily

described by the regression tree model during the November hydrograph as the error

exceeds 4 mg/l-N. The changes in the nitrate concentrations occurred abruptly, there-

fore the regression tree model generated using the 125 instances in the leaf pruning10

criteria is too robust to be able to more accurately describe the streamwater nitrate con-

centration changes during a single November hydrological event. In order to enable the

regression tree to more precisely predict the streamwater nitrate concentrations during

the November hydrological and biogeochemical setting we could reduce the pruning

factor – number of instances in the leaves, while increasing the risk of overfitting the15

algorithm to the extreme situation that occurred in November. Furthermore, the dataset

included only one such extreme situation, therefore, to improve the regression tree al-

gorithm performance, more autumn hydrological event observations would have to be

included into the dataset, as it is the case for spring and summer hydrographs.

The data about the discharge Q and temperature of streamwater TW were not found20

to be important for the regression tree algorithm; the discharge is considered indirectly

through the event water contribution to the total discharge (EW ) in linear regression

equations Nos. 8 to 10, which can be found under branches 3 and 4. These two

branches cover the part of the dataset which can be characterized as hydrologically

moist periods (API5>17.9 mm) when the event water contribution to the total discharge25

can be substantial. It can be seen from the dataset (Fig. 2) that beside some gen-

eral positive relation between the discharge and streamwater nitrate concentration,

similar hydrographs in the sense of the discharge peaks cause various concentration

responses.
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It is possible to remove Q, TW and EW attributes from the dataset in order to apply

the model for predicting the streamwater nitrate concentrations solely on the API, rain-

fall and air temperature data as indicators of intermediate hydrological and seasonal

variations which control the nitrate flushing responses. Considering the same pruning

criteria – 125 instances in a leaf, the resulting regression tree performance remains5

almost unchanged (RMSE=1.03; r=0.90); however, a regression tree model structure

is slightly changed in a part where EW was used in the regression tree equations re-

sulting in a larger regression tree with 13 leaves.

5 Conclusions

Regression trees proved to be a powerful and useful data mining tool in extracting new10

knowledge from a given database, which helps to review and improve the existent do-

main knowledge about the mutual seasonal and hydrological controls of the streamwa-

ter nitrate pulses. Based on an extensive enlistment of attributes, which were expected

to describe a general hydrological and biogeochemical framework of the forested wa-

tershed on the temporal scale of more than 50 days of hourly attribute collection, the re-15

gression tree generating algorithm successfully described complex streamwater nitrate

concentration responses while enabling the conceptual explanation of the resulting re-

gression tree structure. The regression tree model recognized the hydrological and

seasonal patterns which lead the forested watershed from the states of being nitrate

source limited (early spring hydrographs in March and April), in excess of hydrological20

mobilizing mechanisms, to the states, when the availability of the hydrological mecha-

nisms was exceeded by the size of the accumulated nitrate in the forested watershed

(late spring, summer hydrographs and especially the autumn hydrograph).

However, possible limitations of the regression tree applications were also evident.

Due to the extreme and fast streamwater nitrate response and the scarcity of the data25

in the autumn period (there was only one hydrograph in November) the resulting re-

gression tree model was not able to adequately represent the streamwater nitrate con-
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centrations during the November hydrograph with a given pruning threshold.

The question that remains to be addressed for future applications of the regression

tree model is whether a given dataset really contains a range of “typical” hydrological

and biogeochemical conditions which could be, through the regression tree generation,

recognized and used for the prediction of the nitrate flushing and assessment of the5

export of nitrate from a forested watershed on different timescales.
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Rusjan, S., Brilly, M., Mikoš, M., Padežnik, M., Vidmar, A.: Hydrologic and water chemistry5
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Štravs, L. and Brilly, M.: Development of a low-flow forecasting model using M5 machine learn-

ing method, Hydrolog. Sci. J., 52, 466–478, 2007.

Vanderbilt, C. L., Lajhta, K., and Swanson, F. J.: Biogeochemistry of unpolluted forested wa-

tersheds in the Oregon Cascades: Temporal patterns of participation and stream nitrogene25

fluxes, Biogeochemistry, 62, 87–117, 2003.

Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W.,

Schlesinger, W. H., and Tilman, D. G.: Human alteration of the global nitrogen cycle: Sources

and consequences, Ecol. Appl., 7, 737–750, 1997.

Wade, A. J., Neal, C., Butterfield, D., and Futter, M. N.: Assessing nitrogen dynamics in Euro-30

pean ecosystems, integrating measurement and modeling: conclusion, Hydrol. Earth Syst.

Sci., 8, 846–857, 2002,

http://www.hydrol-earth-syst-sci.net/8/846/2002/.

4229

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/4211/2007/hessd-4-4211-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/4211/2007/hessd-4-4211-2007-discussion.html
http://www.egu.eu
http://www.hydrol-earth-syst-sci.net/8/846/2002/


HESSD

4, 4211–4239, 2007

Hydrological and

seasonal controls

over the nitrate

flushing

S. Rusjan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Wang, Y. and Witten, I. H.: Induction of model trees for predicting continuous classes, Proceed-

ings of the poster papers of the European Conference on Machine Learning, University of

Economics, Faculty of Informatics and Statistics, Prague, 1997.

Weiler, M. and McDonnell, J. J.: Testing nutrient flushing hypotheses at the hillslope scale: A

virtual experiment approach, J. Hydrol., 319, 339–356, 2006.5

Witten, I. H. and Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques

(Second edition), Morgan Kaufmann, 525 pp., 2005.

Worall, F., Swank, W. T., and Burt, T. P.: Changes in stream nitrate concentrations due to land

management practices, ecological succession, and climate: Developing a systems approach

to integrated catchment response, Water Resour. Res. 39, 1177–1191, 2003.10

Zaffron, M.: Credible classification for environmental problems, Environ. Modell. Softw., 20,

1003–1012, 2005.

4230

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/4211/2007/hessd-4-4211-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/4211/2007/hessd-4-4211-2007-discussion.html
http://www.egu.eu


HESSD

4, 4211–4239, 2007

Hydrological and

seasonal controls

over the nitrate

flushing

S. Rusjan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 1. Attributes selected for the construction of regression trees.

Attribute Description

NO3 Nitrate concentration in streamwater [mg/l-N]

API3 Antecedent precipitation index determined for 3 preceding days prior the day of the hydro-

graph peak occurrence [mm].

API5 Antecedent precipitation index determined for 5 preceding days prior the day of the hydro-

graph peak occurrence [mm].

API7 Antecedent precipitation index determined for 7 preceding days prior the day of the hydro-

graph peak occurrence [mm].

API14 Antecedent precipitation index determined for 14 preceding days prior the day of the hydro-

graph peak occurrence [mm].

Psum3 h Sum of rainfall during last 3 preceding hours prior the occurrence of hydrograph peak [mm].

Psum6 h Sum of rainfall during last 6 preceding hours prior the occurrence of hydrograph peak [mm].

Psum12 h Sum of rainfall during last 12 preceding hours prior the occurrence of hydrograph peak

[mm].

Psum24 h Sum of rainfall during last 24 preceding hours prior the occurrence of hydrograph peak

[mm].

Psum48 h Sum of rainfall during last 48 preceding hours prior the occurrence of hydrograph peak

[mm].

avgT1 Average hourly air temperature during 1 preceding day prior the occurrence of the hydro-

graph peak[
◦
C].

avgT3 Average hourly air temperature during 3 preceding days prior the occurrence of the hydro-

graph peak [
◦
C].

avgT7 Average hourly air temperature during 7 preceding days prior the occurrence of the hydro-

graph peak [
◦
C].

avgT14 Average hourly air temperature during 14 preceding days prior the occurrence of the hydro-

graph peak [
◦
C].

TW Temperature of streamwater [
◦
C].

Q Discharge [m
3
/s]

EW Event water contribution to total discharge [–].
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Table 2. Schematic representation of the selected regression tree with a list of generated linear

regression equations in the leaves.

Regression tree scheme Linear regression equations

Split level

1 2 3 4 5

↓ ↓ ↓ ↓ ↓
API5 <= 17.914 :

| avgT3 <= 10.118 [Branch 1]

| | Psum12 h <= 0.3 :

| | | avgT14 <= 7.331 : LM1

| | | avgT14 > 7.331 : LM2

| | Psum12 h > 0.3 : LM3

| avgT3 > 10.118 [Branch 2]

| | Psum48 h <= 22.3 :

| | | API14 <= 23.564 :

| | | | avgT7 <= 15.398 : LM4

| | | | avgT7 > 15.398 : LM5

| | | API14 > 23.564 : LM6

| | Psum48 h > 22.3 : LM7

API5 > 17.914 :

| avgT14 <= 11.633 [Branch 3]

| | avgT1 <= 9.899 : LM8

| | avgT1 > 9.899 : LM9

| avgT14 > 11.633 : LM10 [Branch 4]

LM1: NO3 = + 0.0008 * Psum24 h + 0.0006 * Psum48 h + 0.0017 *

API5 + 0.0017 * API14 − 0.0008 * avgT3 + 0.0095 * avgT7 + 0.0017

* avgT14 + 1.7664

LM2: NO3 =+ 0.0008 * Psum24 h + 0.0006 * Psum48 h + 0.0017 *

API5 + 0.0017 * API14 − 0.0008 * avgT3 + 0.0095 * avgT7 + 0.0008

* avgT14 + 1.9596

LM3: NO3 = −0.0014 * Psum12 h + 0.0008 * Psum24 h + 0.0006

* Psum48 h + 0.0017 * API5 + 0.0017 * API14 − 0.0008 * avgT3+

0.0095 * avgT7 − 0.0029 * avgT14 + 1.6483

LM4: NO3 = 0.0016 * Psum12 h + 0.0008 * Psum24 h + 0.0025 *

Psum48 h + 0.0017 * API5 + 0.0071 * API14 − 0.0006 * avgT3 −
0.008 * avgT7 − 0.0073 * avgT14 + 2.1905

LM5: NO3 = 0.0016 * Psum12 h + 0.0008 * Psum24 h + 0.0025

* Psum48 h + 0.0017 * API5 + 0.0071 * API14 - 0.0006 * avgT3−
0.0068 * avgT7 − 0.0073 * avgT14 + 1.6814

LM6: NO3 = 0.0016 * Psum12 h + 0.0008 * Psum24 h + 0.0025 *

Psum48 h + 0.0017 * API5 + 0.0082 * API14 − 0.0006 * avgT3 +

0.0082 * avgT7 − 0.0073 * avgT14 + 2.3035

LM7: NO3 = 0.0016 * Psum12 h + 0.0008 * Psum24 h + 0.0072 *

Psum48 h + 0.0017 * API5 + 0.0068 * API14 − 0.0006 * avgT3 +

0.014 * avgT7 − 0.0073 * avgT14 + 2.889

LM8: NO3 = 0.2417 * EW + 0.0004 * Psum12 h + 0.0067 * Psum24 h

+ 0.0181 * API5 − 0.0129 * API14 + 0.2743 * avgT1+ 0.0013 * avgT3

+ 0.0076 * avgT7 − 0.0277 * avgT14 + 0.4859

LM9: NO3 = 0.2417 * EW + 0.0004 * Psum12 h + 0.0067 * Psum24 h

+ 0.0181 * API5 − 0.0129 * API14 + 0.168 * avgT1 + 0.0013 * avgT3

+ 0.0076 * avgT7 − 0.0277 * avgT14 + 6.7974

LM10:NO3 = 4.4079 * EW + 0.0004 * Psum12 h + 0.0183 *

Psum24 h − 0.0203 * API5 + 0.0587 * API14 + 0.007 * avgT1+

0.0013 * avgT3 + 0.0076 * avgT7 + 0.1929 * avgT14 − 2.5505
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Fig. 1. The Padež stream watershed and the monitoring system.
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 Fig. 2. Recorded hydrological events and associated streamwater nitrate concentrations in-

cluded into the data mining process.
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Fig. 3. Size of the generated regression trees.
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Fig. 4. Prediction accuracies of the generated regression trees.
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 Fig. 5. Split of the dataset into four branches according to the conditions imposed on the first

two split levels of the regression tree.
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Fig. 6. Measured streamwater nitrate concentrations vs. predicted streamwater nitrate concen-

trations.
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 Fig. 7. Temporal performance of the regression tree model predictions.

4239

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/4211/2007/hessd-4-4211-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/4211/2007/hessd-4-4211-2007-discussion.html
http://www.egu.eu

