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Abstract

This paper investigates the value of observed river discharge data for global-scale hy-

drological modeling of a number of flow characteristics that are required for assessing

water resources, flood risk and habitat alteration of aqueous ecosystems. An improved

version of WGHM (WaterGAP Global Hydrology Model) was tuned in a way that simu-5

lated and observed long-term average river discharges at each station become equal,

using either the 724-station dataset (V1) against which former model versions were

tuned or a new dataset (V2) of 1235 stations and often longer time series. WGHM is

tuned by adjusting one model parameter (γ) that affects runoff generation from land

areas, and, where necessary, by applying one or two correction factors, which correct10

the total runoff in a sub-basin (areal correction factor) or the discharge at the station

(station correction factor). The study results are as follows. (1) Comparing V2 to V1,

the global land area covered by tuning basins increases by 5%, while the area where

the model can be tuned by only adjusting γ increases by 8% (546 vs. 384 stations).

However, the area where a station correction factor (and not only an areal correction15

factor) has to be applied more than doubles (389 vs. 93 basins), which is a strong draw-

back as use of a station correction factor makes discharge discontinuous at the gauge

and inconsistent with runoff in the basin. (2) The value of additional discharge informa-

tion for representing the spatial distribution of long-term average discharge (and thus

renewable water resources) with WGHM is high, particularly for river basins outside of20

the V1 tuning area and for basins where the average sub-basin area has decreased

by at least 50% in V2 as compared to V1. For these basins, simulated long-term aver-

age discharge would differ from the observed one by a factor of, on average, 1.8 and

1.3, respectively, if the additional discharge information were not used for tuning. The

value tends to be higher in semi-arid and snow-dominated regions where hydrological25

models are less reliable than in humid areas. The deviation of the other simulated flow

characteristics (e.g. low flow, inter-annual variability and seasonality) from the observed

values also decreases significantly, but this is mainly due to the better representation
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of average discharge but not of variability. (3) The optimal sub-basin size for tuning

depends on the modeling purpose. On the one hand, small basins between 9000 and

20 000 km
2

show a much stronger improvement in model performance due to tuning

than the larger basins, which is related to the lower model performance (with and with-

out tuning), with basins over 60 000 km
2

performing best. On the other hand, tuning5

of small basins decreases model consistency, as almost half of them require a station

correction factor.

1 Introduction

Hydrological models suffer from uncertainties with regard to model structure, input data

(in particular precipitation) and model parameters. In catchment studies, time series10

of observed river discharge are widely used to adjust model parameters such that a

satisfactory fit of modeled and observed river discharge is obtained. Parameter ad-

justment, i.e. model calibration or tuning, leads to a reduction of model uncertainty

by including the aggregated information about catchment processes that is provided

by observed river discharge. River discharge is a unique hydrological variable as it is15

the final outcome of a large number of (vertical and horizontal) flow and transfer pro-

cesses within the whole catchment of the discharge observation point. River discharge

measured at one location therefore reflects system inflows (like precipitation), outflows

(like evapotranspiration) and water storage changes (e.g. in lakes and groundwater)

throughout the whole upstream area. Measurements of all other hydrological variables,20

e.g. evapotranspiration and groundwater recharge, at any one location reflect only local

processes, and a large number of observations of these quantities within a catchment

would be necessary for characterizing the overall water balance of the catchment. Dis-

charge observations are available for many rivers of the world. Measurement errors are

considered to be small (except in the case of floods) as compared to the errors in areal25

precipitation estimation where interpolation errors add to measurement errors (Moody

and Troutman, 1992; Hagemann and Dümenil, 1998; Adam and Lettenmeier, 2003).
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Even though the value of discharge information is widely recognized in catchment-scale

hydrological modeling, and thus models are calibrated against measured discharge to

improve model performance, continental- or global-scale modeling of river discharge

rarely makes use of river discharge observations. The low density of precipitation and

other input data at these large scales, which increases model uncertainty, makes it5

imperative to take advantage of the integrative information provided by measured river

discharge.

Land surface modules of climate models do not use river discharge data at all (ex-

cept for validation), and the computed river discharge values are generally very differ-

ent from observed values even when the models are driven by observed climate data10

(e.g. Oki et al., 1999). Döll et al. (2003) reviewed how river discharge information was

taken into account by continental- and global-scale hydrological models. This ranges

from no consideration at all in earlier years (Yates, 1997; Klepper and van Drecht,

1998) over global tuning of some model parameters (Arnell, 1999) to basin-specific

tuning of parameters to measured river discharge. Within the latter group, the global15

WBM model was tuned to long-term average discharge at 663 stations not by adapt-

ing model parameters but by multiplying, in basins with observed discharge, model

runoff by a correction factor which is equal to the ratio of observed and simulated

long-term average discharge (Fekete et al., 2002). The only global models for which

basin-specific tuning of parameters has been done are the VIC (Nijssen et al., 2001)20

and the WGHM (WaterGAP Global Hydrology Model) model (Döll et al., 2003).

Using time series of observed monthly river discharge at downstream stations of 22

large river basins world-wide, Nijssen et al. (2001) adjusted four VIC model parame-

ters individually for each basin. Even after calibration, simulated long-term average

discharges still showed an absolute deviation from the observed values between 1%25

and 22% for 17 out of the 22 basins. For the Senegal basin, VIC overestimated dis-

charge by 340%, while for Brahmaputra, Irradwaddy, Columbia, and Yukon, deviations

of 50–100% were not reduced due to obvious under- or overestimation of precipita-

tion. Excluding those five basins, basin-specific tuning reduced the relative root-mean-
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

square error of the monthly flows from 62% to 37% and the mean bias in annual flows

from 29% to 10%. Please note that in the version of VIC used by Nijssen et al. (2001),

the impact of human water consumption on river discharge was not yet taken into ac-

count, which may explain the overestimation of 22% in the Yellow River. Haddeland

et al. (2006) modeled the effect of irrigation and reservoirs on river discharge in VIC5

but did not recalibrate the model. Döll et al. (2003) used observed river discharge at

724 stations world-wide to force WGHM to model long-term average river discharge at

these stations with a deviation of less than 1%. This provided a best estimate of renew-

able water resources. They adjusted one model parameter only but had to introduce,

in many basins, two types of correction factors to achieve this goal, even though river10

discharge reduction due to human water consumption was taken into account. Döll et

al. (2003) agreed with Nijssen et al. (2001) in their conclusion that two main reasons for

the need of corrections factors are unrealistic precipitation data and problems in mod-

eling important hydrological processes in semi-arid and arid areas. In these areas,

evaporation from small ephemeral ponds, loss of river water to the subsurface, and15

river discharge reduction by irrigation are likely to influence the water balance strongly.

In WGHM, only the latter is modeled albeit with a high uncertainty as, for example,

modeled irrigation requirements may overestimate actual irrigation water consumption

in case of water scarcity.

While global-scale information on precipitation has not become significantly more re-20

liable during the last years, additional information on river discharge has been compiled

by the Global Runoff Data Centre (GRDC) in Koblenz, Germany (http://grdc.bafg.de).

New station data became available, and time series length for some of the old stations

increased. In the most recent version of WGHM (WGHM 2.1.f), which also takes into

account improved data on irrigation areas, we took advantage of this new information25

and used observed discharge at 1235 instead of 724 (in WGHM 2.1d, Döll et al., 2003)

stations to tune the model. Almost all of the additional stations are located upstream

of the WGHM 2.1d stations, i.e. zero-order river basins are now divided into smaller

sub-basins than before (Fig. 1).
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In this paper, we analyze the value of this additional discharge information for im-

proved representation of observed river discharge by the global hydrological model

WGHM. Obviously, long-term average discharge at the new stations will be represented

better due to tuning, but to what extent is the simulation of other flow characteristics

like inter-annual variability of annual flows, seasonality of flows and low flows improved5

both at the new stations and the respective downstream stations?

Besides, with more stations available, the question of optimal station density for tun-

ing arises. Even though large areas of the globe still suffer from very limited discharge

information (e.g. parts of Africa, Asia and South America) so that any additional infor-

mation should be valuable, in other regions (e.g. in Europe and North America) avail-10

able station density is high compared to the 0.5
◦

by 0.5
◦

spatial resolution of WGHM. On

the one hand, if station density is chosen too coarse, existing spatial heterogeneities

of the tuning parameters would remain unrepresented (Becker and Braun, 1999). On

the other hand, larger sub-basins might be advantageous insofar as they hold a better

chance for (model and data) errors to balance out. For example, gridded 0.5
◦

precipi-15

tation used as model input (Mitchell and Jones, 2005) is based, for almost all areas on

the globe, on much less than one station per grid cell, and the poor spatial resolution

leads to increased errors of basin precipitation for smaller basins which might make it

impossible even for the optimal model to simulate basin discharge correctly. Thus, with

decreasing sub-basin size, we may expect that fewer sub-basins can be forced to simu-20

late the observed long-term average discharge by only adjusting the model parameter,

i.e. without using correction factors. At the same time, increased station density is ex-

pected to allow an improved modeling of downstream station discharge, as (long-term

average) inflow into the downstream sub-basins is equal to observed values. A priori,

it is not clear how these two effects balance.25

To determine the value of integrating the additional river discharge information into

WGHM, two variants of WGHM 2.1f were set up: V1, where WGHM 2.1f was tuned

against the old 724-station dataset used for tuning WGHM 2.1d as described in Döll et

al. (2003), and V2, where WGHM 2.1f was tuned against the new 1235-station dataset.
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V2 represents the standard for WGHM 2.1f. Simulation results of model variants V1

and V2 are compared in order to answer the central questions of this study:

– Does increased river discharge information promote tuning WGHM by only one

model parameter?

– To what extent does tuning against more discharge observations improve model5

performance?

– What is the impact of basin size on model performance and basin-specific tuning?

In the next section, we shortly present WGHM 2.1f, focusing on model improvements

since WGHM 2.1d (Döll et al., 2003), and discuss the discharge data used for tuning.

Besides, we describe the indicators of model performance that we used to assess the10

value of the additional river discharge information. In Sect. 3, we show the results of

the comparison of the two model variants and answer the above research questions,

while in Sect. 4, we draw conclusions.

2 Methods and data

2.1 Model description15

WaterGAP (Döll et al., 1999; Alcamo et al., 2003) was developed to assess water re-

sources and water use in river basins worldwide under the conditions of global change.

The model, which has a spatial resolution of 0.5
◦

geographical latitude by 0.5
◦

geo-

graphical longitude, has been applied in a number of studies dealing with water scarcity

and water stress (Smakhtin et al., 2004; Alcamo et al., 2007) and the impact of climate20

change on irrigation water requirements as well as on droughts and floods (Döll, 2002;

Lehner et al., 2006). WaterGAP combines a global hydrological model with several

global water use models, taking into account water consumption by households, indus-

try, livestock and irrigation. It is driven by monthly 0.5
◦

gridded climate data. WGHM,
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the hydrological model of WaterGAP, is based on spatially distributed physiographic

characteristics such as land cover, soil properties, hydrogeology and the location and

area of reservoirs, lakes and wetlands. A daily water balance is calculated for each of

the 66 896 grid cells, considering canopy, snow and soil water storages. Runoff gen-

erated within a cell contributes to river discharge after passing groundwater or surface5

water storages. River discharge of one grid cell integrates local inflow and inflow from

upstream cells, taking into account reduction of discharge by human water consump-

tion as computed by the WaterGAP water use models. Discharge is routed to the basin

outlet in two-hour time steps through a river network derived from the global drainage

direction map DDM 30 (Döll and Lehner, 2002). WGHM is tuned based on observed10

river discharge at stations around the world such that the tuning parameter is adjusted

individually for each sub-basin (see Sect. 2.2). In untuned basins, the value of the

tuning parameter is determined based on multiple regression, with long-term average

temperature, fraction of surface water area and length of non-perennial rivers as predic-

tor variables. Model results include monthly time series of surface runoff, groundwater15

recharge and river discharge. Compared to version 2.1d of WGHM described by Döll

et al. (2003), the current version 2.1f comprises enhancements in several modules as

well as updates for a number of input datasets.

Computation of river discharge reduction by human water consumption. All four wa-

ter use model (domestic, industrial, irrigation, livestock) have been updated and provide20

time series of water withdrawal and water consumption from 1901 until 2002. Input data

for the domestic water use model have been improved in particular for Europe (Flörke

and Alcamo, 2004). The industrial water use model has been revised to distinguish

water for cooling thermal power plants and manufacturing water use, as these two

uses differ significantly in spatial distribution, driving forces and their consumption-to-25

withdrawal ratio (Vassolo and Döll, 2005). The current computation of irrigation water

use includes an update of the “Global map of irrigation areas” (Siebert et al., 2005)

that is the main model input. The map is based on the combination of up-to-date sub-

national irrigation statistics with geospatial information on the position and extent of

4132

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/4125/2007/hessd-4-4125-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/4125/2007/hessd-4-4125-2007-discussion.html
http://www.egu.eu


HESSD

4, 4125–4173, 2007

River discharge data

in global-scale

hydrological

modeling

M. Hunger and P. Döll
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irrigation schemes. In river basins with extensive irrigation, changes in irrigation areas

can be assumed to significantly influence river discharge.

The water required for consumptive water use is subtracted from river or lake stor-

age. As water requirements cannot be satisfied in any cell at any time, WGHM permits

to extract the unsatisfied portion from a neighboring cell. Before model version 2.1f,5

one neighboring cell, from which additional water could be extracted, was predefined

for each cell. From the eight surrounding cells, the one with the highest long-term av-

erage discharge (1961–1990) was selected based on previous model tuning rounds.

In WGHM 2.1f, the allocation is done dynamically during runtime at each time step

to allow a more flexible fulfillment of demand. In case of a deficit in water supply for10

anthropogenic use, the model at each time step selects the neighboring cell with the

highest actual water storage in rivers and lakes as donor cell. However, this dynamic

allocation of water withdrawal from neighboring cells could not be implemented in the

tuning run for technical reasons, and like in former model versions, the donor cell has to

be determined based on the long-term average discharge as simulated by the untuned15

model. This restriction can lead to discrepancies between modeled and observed av-

erage discharge, particularly in very small basins where water use dominates the water

balance.

Climate input and surface water data. Version 2.1f uses an updated set of climate in-

formation extracted from data of the Climate Research Unit (Mitchell and Jones, 2005).20

The new climate time series cover the time span from 1901 to 2002, extending the for-

mer data (1901 to 1995) by seven years. As in version 2.1d, precipitation data are not

corrected for observational errors, which are expected to lead to an underestimation

of precipitation by globally 11% and by up to 100% in snow-dominated areas (Legates

and Willmott, 1990). GLWD, the Global Lake and Wetland Database (Lehner and Döll,25

2004), provides information on freshwater bodies for WGHM. For version 2.1f, it has

been supplemented by 64 additional reservoirs.

Snow modeling. In WGHM, snow accumulation and melting depends on daily tem-

peratures that are derived from monthly data using cubic splines. Accumulation is
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assumed to occur at temperatures below 0
◦
C and melting above this value. In former

versions, this resulted, in most grid cells, in one winter period where all precipitation fell

as snow, and there was no melting at all. The snow balance simulation has been im-

proved by refining the spatial resolution of the snow module (Schulze and Döll, 2004).

In WGHM 2.1f, the snow water balance is computed no longer for the whole 0.5
◦

grid5

cell but for 100 sub-grids per 0.5
◦

cell, taking into account the effect of elevation (based

on 30” elevation data) on temperature (−0.6
◦
C/100 m). This provides a more differen-

tiated temperature distribution within the 0.5
◦

cells and allows for simultaneous snow

accumulation and melting in one cell if the mean temperature is close to 0
◦
C. The new

snow algorithm resulted in an improved modeling of monthly river discharge in more10

than half of the 40 snow-dominated test basins, and the improvement was most signif-

icant in mountainous basins. Modeling efficiency of monthly river discharge in the 40

basins increased from 0.26 to 0.42 (Schulze and Döll, 2004).

Modeling of lakes and wetlands. Computation of the water balance of lakes and

wetlands has been improved by making evaporation a function of water level (water15

storage), reflecting the dependence of surface area, from which evaporation occurs,

on the amount of stored water. Please note that the lakes and wetlands taken into

account in WGHM are based on maps, and their areas are likely to represent the

maximum extent (Lehner and Döll, 2004). Like in former versions of WaterGAP, an

active storage volume of 5 m and 2 m (multiplied by a constant lake or wetland area20

as available from maps) is assumed for lakes and wetlands, respectively, as there is

a lack of data about lake and wetland water volume as a function of area available at

the global scale (Döll et al., 2003). Outflow is modeled as a function of water storage.

Wetlands, but not lakes, are assumed to disappear if storage is zero, with evaporation

and outflow being zero, too.25

In former versions, lake storage could vary between 5 m (then all inflow directly be-

comes outflow) and 0 m (then there is no outflow), but also reach very negative values,

if the water balance is negative due to high evaporation and small inflows. Evaporation

from lakes only depended on potential evaporation and the constant surface area, and
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was thus likely to be overestimated in case of very low sea levels that go along with a

decline of surface area. As a consequence, some lakes, particularly in semi-arid and

arid regions, showed long-term downward trends of lake storage in former WGHM ver-

sions. In some cases, e.g. Lake Malawi, this precluded outflow from these lakes even

for a number of relatively wet years.5

To avoid this implausible behavior of lake storage dynamics in WGHM 2.1f, maximum

evaporation is reduced as a function of lake storage level by multiplying it with a lake

evaporation reduction factor r , which is computed as

r = 1 −

(

|S − Smax|

2 · Smax

)p

(1)

with S actual lake storage [m
3
], Smax maximum lake storage [m

3
] and p reduction ex-10

ponent [−]. Thus, evaporation reduction depends on actual lake storage. If S equals

Smax, no reduction is applied, and if S equals –Smax, evaporation is reduced to zero.

Therefore, lake storage cannot decline below −Smax. The exponent p is set to 3.32

such that evaporation is reduced by 10% for S=0. The new approach mainly affects

lakes with low or highly variable inflow and high potential evaporation which are mostly15

found in semi-arid or arid regions. During dry season the water balance of these lakes

is predominantly controlled by evaporation and actual storage regularly drops below

zero. With the new approach, such lakes are prevented from dropping to unrealistic

low levels, such that outflow can occur in wet years even after extensive dry periods.

Comparisons between simulated and observed discharge at stations downstream of20

large lakes and reservoirs, e.g. Lake Malawi, showed that the new approach also leads

to a better representation of average outflow. Lakes with higher and more constant

inflow are hardly affected as their storage levels mostly vary within the positive range.

In contrast to lakes, water storage in wetlands cannot become negative in the model.

In former versions of WGHM, wetland surface area and thus evaporation was assumed25

to be independent of water storage until, abruptly, evaporation was set to zero at S=0.

Thus, the likely decline in surface area and thus evaporation with decreasing water

4135

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/4125/2007/hessd-4-4125-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/4125/2007/hessd-4-4125-2007-discussion.html
http://www.egu.eu


HESSD

4, 4125–4173, 2007

River discharge data

in global-scale

hydrological

modeling

M. Hunger and P. Döll
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storage in the wetland was not taken into account. Recognizing a generally stronger

decline of surface area with declining water levels in the case of wetlands as com-

pared to lakes, in WGHM 2.1f, the following wetland evaporation reduction factor is

introduced:

r = 1 −

(

|S − Smax|

Smax

)p

(2)5

with S actual wetland storage [m
3
], Smax maximum wetland storage [m

3
] and p wetland

reduction exponent (p=3.32). Wetland evaporation is reduced by 10% when the actual

storage is half of the maximum storage and becomes zero when the storage is empty.

The new algorithm has little effect under wet conditions, as evaporation is hardly re-

duced with an actual storage exceeding 50% of maximum storage. However, impacts10

are significant under dry conditions. As a consequence of reduced evaporation, drying

up of wetlands by evaporation becomes slower, while replenishment by inflow becomes

faster. The outflow curve is smoother, as complete desiccation, with outflow becoming

zero, is less likely.

2.2 Model tuning against observed river discharge15

WGHM is tuned against river discharge observed at gauging stations around the world.

For each station, 30 years of discharge data were used (or fewer years if less than 30

years of data were available). If the discharge data contained more than 30 years, the

30 year period that corresponded best with the period from 1961 to 1990 was selected,

as WaterGAP climate input is most reliable for this time span. The goal of model tuning20

is to adjust the simulated long-term average discharge at the outflow point of the sub-

basin to the observed long-term average discharge (Döll et al., 2003).
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2.2.1 Tuning factors

In order to avoid overparameterization (Beven, 2006) and to make tuning in a large

number of sub-basins feasible, only the soil water balance is tuned by adjusting one

model parameter, the runoff coefficient. The runoff coefficient γ determines the fraction

of effective precipitation (precipitation or snowmelt) Peff [mm/d] that becomes runoff5

from land Rl [mm/d] at a given soil water saturation:

Rl = Peff

(

Ss

Ssmax

)γ

(3)

with Ss soil water content within the effective root zone [mm] and Ssmax total available

soil water capacity within the effective root zone [mm]. γ is adjusted in a sub-basin spe-

cific manner, i.e. all grid cells within the inter-station area are given the same value. The10

values of γ are allowed to range only between 0.3 and 3. However, for many basins,

observed long-term discharge cannot be simulated with a deviation of less than 1%

by adjusting γ. This is due to a number of reasons, among them errors in input data

(e.g. precipitation and radiation), errors in the estimation of human water consumption

and neglecting important processes like river water loss to subsurface and evapora-15

tion of runoff e.g. in small ephemeral ponds. Besides, the water balance of lakes and

wetlands remains unaffected by adjusting the model parameter, but can be very impor-

tant for the water balance of a basin. In these cases, an areal correction factor CFA

is computed which adjusts total runoff (the sum of runoff from land and surface water

bodies) of each cell in the sub-basin equally. As there are sub-basins that contain both20

cells with positive (precipitation > evapotranspiration) and negative (evapotranspiration

> precipitation) cell water balance, CFA can take two values symmetric to 1.0 within

one sub-basin. If it is necessary to increase runoff in a basin, a CFA greater than one

(e.g. 1.2) is used for cells with positive mean water balance and CFA is set to the cor-

responding value below one (e.g. 0.8) for cells with negative water balance. In former25

model versions, a CFA range from 0 to 2 was allowed, which however may lead to prob-

lems particularly in small and/or dry downstream basins, where observed inflow and
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outflow are very similar. In some of these cases, CFA was set to zero, impeding runoff

generation at every single time step, which is not plausible. To avoid this unwanted

effect, CFA is restricted to a range from 0.5 to 1.5 in WGHM 2.1f.

CFA does not suffice to simulate observed long-term average river discharge in

all sub-basins if the impact of errors and misrepresentations mentioned above is too5

strong. Furthermore, even minor errors of discharge measurement may inhibit that sub-

basin runoff can be adjusted by CFA in small sub-basins at middle or lower reaches of

rivers with comparatively high discharge. Thus an additional station correction factor

CFS is required for several basins to assure correct average inflow into downstream

subbasins. CFS simply corrects discharge at the grid cell where the gauging station is10

located such that the simulated long-term average discharge at that grid cell is equal

to the observed value (Döll et al., 2003).

Please note that in basins where correction factors are used, the dynamics of the

water cycle are no longer modeled in a consistent manner. Where CFA is used, cell

runoff from all grid cells within a basin is adjusted such that the sum of grid cell runoff is15

equal to the difference between the long-term average discharge of the basin’s station

and the next upstream station(s), but cell runoff is no longer consistent with soil water

storage or evapotranspiration. In basins with CFA, the model serves to interpolate

measured discharge in space and time. For these basins, application of CFA in model

simulations allows a more realistic simulation of runoff, discharge and water storage20

dynamics in groundwater and surface waters.

When, in addition, CFS is required, discharge becomes discontinuous along the

river, from the cell downstream of the station to the cell where the station is located.

Grid cell runoff remains unaffected by CFS and thus discharge is inconsistent with

runoff. The advantage of using CFS is that the long-term inflow to downstream sta-25

tions is set to the observed value, which increases the chance of adequately simulate

downstream discharge.
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2.2.2 Observational data

WGHM 2.1f was tuned against discharge observed at 1,235 gauging stations. These

data were provided by the Global Runoff Data Center (GRDC) in Koblenz, Germany.

In this paper, the resulting model variant is called V2. Variant V1 was tuned against

the discharge dataset that was used for tuning WGHM 2.1d (and 2.1e), consisting of5

724 stations. Both station sets had to be co-registered with the drainage direction

map DDM30 (Döll and Lehner, 2002), which required considerable checking and some

adjustment of geographical location. The V1 and the V2 station data were selected

according to the same rules (Döll et al., 2003; Kaspar, 2004):

– minimum basin size area of the most upstream station: 9000 km
2

10

– minimum inter-station basin area: 20 000 km
2

– minimum length of observed time series of monthly river discharge: four years

In V2, 133 of the 1235 stations have a time series length of less than 10 years, 245

stations of 10–19 years, 375 of 20–29 years, and for 482 stations, 30 years of discharge

were used for tuning. Figure 1 shows the location of tuning stations in variants V1 and15

V2. Of the 724 V1 stations, 627 were kept in V2. 97 V1 stations were not considered

in the new dataset, as stations with longer or more recent time series were available

in the vicinity. The remaining 608 stations that are used in V2 were not yet included in

V1. Please note that in case of 102 of the 627 stations that are in both V1 and V2, the

available discharge time series have changed significantly. At 83 stations, time series20

length has increased by more than 20% (V1 average: 14 years, V2 average: 25 years),

while for the remaining 19 stations, the time period of the tuning years shifted to more

recent years by more than 20% of the tuning period (average shift: 10 years towards

present).

V2 represents a distinct densification of stations especially in North America and25

northern Asia. Densification is low in Europe as V1 already includes a relatively dense
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station net there. In South America, most new stations are located in Brazil, and in

Australia, in the Murray-Darling basin. In central and southern Asia, the Aral lake basin

has been particularly densified, and in Africa, the Congo basin. The total basin area

covered by V2 (69.9 million km
2

or 48.7% of the global land area without Greenland

and Antarctica) exceeds the area covered by V1 by about 3.4 million km
2

or 2.4% of5

the total land area. The largest additional areas are located within the Niger (Africa),

Paraná (South America) and Khatanga (Siberia) basins as well as in northern Canada

and Alaska.

2.2.3 Technical constraints to tuning

Despite tuning, long-term average observed and simulated discharges differ by more10

than 2% in case of 29 of the 724 stations of V1 and in case of 83 of the 1235 stations

of V2. Of the 627 stations that are common to V1 and V2, 31 stations are concerned.

This problem is due to two technical constraints in the tuning procedure of WGHM.

First, in normal model runs, water consumption requirements can be fulfilled by taking

water from a neighboring cell which even may be located outside the basin where the15

requirement exists. This could not be implemented in the tuning process and leads

to discrepancies particularly in small, narrow and water scarce basins with intensive

water use. This applies to around 90% of the affected basins in V2. Most of them

are located in the semiarid regions of the USA and Mexico, while a few others can be

found in central and southern Asia. Besides, model initialization in tuning runs starts20

5 years before the specific tuning period of a station. The two model runs V1 and

V2 examined in this study, however, were started in 1901 and thus generally have

a longer forerun until they reach the evaluation period, i.e. the tuning period. As a

consequence, discrepancies in the fill level of the basins’ water storages can occur at

the beginning of the evaluation period. The variations are mostly negligible as at least25

five years ahead of the evaluation period are identical in both cases. However, in eight

V2 basins located in Alaska and Siberia that are dominated by surface water bodies,

discrepancies in discharge are noticeable.
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2.3 Indicators of model performance

In order to characterize model performance and quality, it is assessed how well the

model simulates six observed river flow characteristics (Table 1). Certain flow charac-

teristics are particularly relevant for specific water management fields like water supply

(in particular long-term average flow, low flows, variability of annual and monthly flows),5

flood protection (high flows) and ecosystem protection (seasonality of flows, low flows).

Time series of simulated (S) and observed (O) monthly river discharge values are com-

pared with respect to these flow characteristics, and the goodness-of-fit is quantified

by indicators.

A common measure for the goodness-of-fit in hydrology is the modeling efficiency E ,10

or the Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970):

E = 1.0 −

n
∑

i=1

(Oi − Si )
2

n
∑

i=1

(

Oi − Ō
)2

(4)

It is defined as the mean squared error normalized by the variance of the observed

data subtracted from unity. Thus it represents model success with respect to the mean

as well as to the variance of the observations. While a coefficient of one represents a15

perfect fit of simulated and observed time series, values below zero indicate that the

average of observed discharge would still be a better estimation than the model. The

problem with using E to compare two variants is that one cannot distinguish whether

the higher E -value is due to a lower mean error or to a better representation of the

variance.20

To overcome this problem, in this study two measures are applied that allow a distinct

evaluation of the model with respect to the simulation of the variance and the mean.

The first measure is the well known coefficient of determination (R
2
) with a range from

zero to one, which describes how much of the total variance in the observed data is
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explained by the model:

R2
=























n
∑

i=1

(

Oi − Ō
) (

Si − S̄
)

[

n
∑

i=1

(

Oi − Ō
)2
]0.5 [ n

∑

i=1

(

Si − S̄
)2
]0.5























2

(5)

In analyses of time series, R
2

evaluates linear relationships between the observed and

the modeled data. It is not sensitive to systematic over- or underestimations of the

model, concerning magnitude of the modeled data (mean error) as well as its variabil-5

ity (Legates and McCabe, 1999; Krause et al., 2005). Besides, R
2

– like the coefficient

of efficiency E – tends to be sensitive to outliers, which may lead to a bias in model

evaluation towards high flow events and has to be considered regarding the results.

Nevertheless, R
2

is assumed to provide fundamental information on how well the se-

quence of higher and lower flows in an observed discharge time series is represented10

by the model.

As second measure, we introduced the “symmetric deviation factor” SDF which de-

scribes the mean error of discharge simulation as the ratio of observed and simulated

discharge values (or vice versa). It can be applied to both time series and aggregated

values. SDF is defined as15

SDF =

{

S
O

for S ≥ O
O
S

for S < O

}

. (6)

SDF ranges from plus one to infinity, with values close to one representing good fits

between simulated and observed values. SDF reflects that an underestimation by a

factor of 2 (S=0.5*O), for example, represents reality as well (or badly) as overestima-

tion by a factor of two (S=2*O). In both cases, SDF is equal to 2. This understanding20

of goodness-of-fit is, however, not mirrored by the usually applied error measures like

absolute error or relative error, which are bounded below. In case of underestimation,
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the error cannot be larger than the observed value or 100%, while in case of overes-

timation, error values are unlimited. For the above example, the relative error would

be −50% in the case of underestimation, but 200% in the case of overestimation. This

asymmetric character makes interpretation difficult, in particular when these measures

are averaged. SDF is symmetric and unlimited both in case of over- and of underesti-5

mation.

SDFs of long-term average, low and high flows are computed by inserting the re-

spective simulated and observed values (one per basin and variant) in Eq. (6). SDFs

of time series (annual, monthly and mean monthly flows) are determined by first cal-

culating SDF for each year, month or the twelve monthly means of the observation10

period, and then computing the median; thus SDF represents the median deviation of

the values. For computation of R
2
, the annual, monthly or mean monthly values are

inserted into Eq. (5).

For overall assessment of model performance, all indicators are averaged over sta-

tions. For R
2
, the arithmetic mean was chosen, while the median was preferred for15

SDF, as it is not sensitive to single outliers. SDF can become very large if either the

simulated or the observed discharge is very close to zero. In case that simulated or

observed discharges equal zero at a certain time step, the respective value is excluded

from SDF averaging.

3 Results and discussion20

We will now answer the three questions posed in Sect. 1 which will help to assess the

value of (additional) river discharge information in global hydrological modeling.
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3.1 Does increased river discharge information promote tuning WGHM by only one

model parameter?

Comparing variant V2 to variant V1, the area for which tuning was done increases by

5.1% to 69.9 million km
2
, which is equivalent to 48.7% of the global land area excluding

Greenland and Antarctica (Table 1). Figure 2 shows for which river basins WGHM 2.1f5

could be tuned by adjusting only the runoff coefficient γ, with an error of less than 2%,

in case of V1 (724 stations) and V2 (1235 stations). There are two major effects of

densification of river discharge information. On the one hand, in several very large

basins, in particular in Siberia, that cannot be tuned with V1, the finer discretization of

V2 allows tuning of at least some sub-basins (Fig. 1). On the other hand, a few V210

sub-basins of larger V1 sub-basins that can be tuned as a whole with V1 (e.g. Ganges,

Congo), cannot adjusted with V2 (Fig. 2). In all world regions, there are basins, that

can be tuned in V1 only and not in V2, and basins that can be tuned in V2 only and not

in V1. Only in Siberia and Australia, a positive effect of densification is obvious (more

stations can be tuned in V2).15

In case of V1, 384 of the 724 sub-basins or 31.3 million km
2

could be tuned by adjust-

ing only the runoff coefficient γ (Table 2). In case of V2, the number of these sub-basins

increases to 546 and the area to 33.9 million km
2
. The fraction of sub-basins that could

be tuned decreases from 53.0% for V1 to 44.2% for V2, but the respective tuning basins

area, as a fraction of total tuning basins area (total land area, except Greenland and20

Antarctica) increases slightly from 47.0% (21.8%) for V1 to 48.5% (23.7%) (Table 2). It

has to be pointed out that tuning success or failure can not directly be linked to model

performance. A highly subdivided river basin with only a few successfully tuned sub-

basins might be much closer to reality than an entirely adjusted spacious basin where

errors balance out by chance at the outlet.25

The basin area where only γ and the areal correction factor CFA had to be adjusted

increased from 247 to 300, but the corresponding basin area decreased strongly from

38.2% to 22.3%. At the same time, the area where the station correction factor CFS
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had to be introduced, increased strongly from 6.9% of the land area to 14.2% (Table 2),

and the number of corrected stations increased from 93 to 389. V2 basins which

require CFS are mainly located in snow dominated (e.g. Alaska, northern Canada and

northern Siberia) and very dry areas (e.g. northern Africa, Central Asia), where the

model can not account for all essential processes of the water cycle.5

One reason for the increased amount of sub-basins that can only be adjusted by

CFS might be the decreased average sub-basin size in V2. CFA is adjusted by com-

paring simulated and observed runoff generation within a sub-basin. Observed runoff

generation is determined as observed discharge at the outflow station minus the sum

of discharges at upstream stations. In sub-basins that are located in middle or lower10

reaches of a river the relative influence of local runoff generation on total river discharge

gets lower as the sub-basin area becomes only a small fraction of the total basin area.

Thus, the benefit of tuning against more discharge observations is that the basin area

where long-term average discharge can be computed correctly by adjusting only the

model parameter γ has increased by more than 8%, and that the number of stations15

(but not the percentage of stations) where this is possible also increased. Siberia,

where station density is very low in V1, shows the most pronounced increase in area.

However, the cost of tuning against more discharge observations is high, as the area

where a station correction factor is required doubles. This means that the area with

inconsistent runoff generation and discharge, and with discontinuous discharge values20

along the river network, doubles.

3.2 To what extent does tuning against more discharge observations improve model

performance?

The question is to what extent and in which cases the adjustment of long-term average

river discharge at more stations (and using changed observation time series) improves25

the simulation of the other five flow characteristics in Table 1. For a comprehensive

answer of this question, four research questions are posed:
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A) Does tuning against longer or more recent discharge time series improve model

performance?

B) Does tuning against discharge at more stations improve model performance. . .

B1) . . . within the total V1 tuning area?

B2) . . . outside the total V1 tuning area?5

C) To what extent does the segmentation of a station’s basin into sub-basins improve

model performance at that station?

D) To what extent does the segmentation of a station’s basin into sub-basins improve

model performance inside the basin?

These research questions are answered in Sects. 3.2.2 to 3.2.5, taking into account10

the 6 flow characteristics listed in Table 1.

Five question-specific subsets of the entire station dataset were generated. To an-

swer question A, 60 stations were selected that 1) belong to both V1 and V2, 2) have

the same basin in V1 and V2 and 3) comprise significantly changed time series of

observed discharge (subset A). To answer questions B to D, only those stations were15

considered where the time series has not changed significantly from V1 to V2. Subsets

B1 and B2 combined include all of these stations, except those with the same basins

in V1 and V2. The resulting 747 stations are used to evaluate the overall change in

model performance due to discharge observations at more stations inside V1 tuning

area (subset B1: 691 stations) and outside V1 tuning area (subset B2: 56 stations).20

Subset C, with 117 stations, is applied to investigate the effects of finer watershed seg-

mentation on the discharge simulation at the outflow points of the respective basins

(question C). It contains only those stations of subset B that are common to V1 and V2

and that have more upstream stations in V2 than in V1. Finally, question D is answered

based on subset D that includes 387 tuning stations located within zero-order basins25

(i.e. basin draining into the ocean or terminal internal sinks) showing a considerable
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

increase of station density in V2 as compared to V1, i.e. where average sub-basin size

decreases by at least 50%.

To demonstrate typical effects of refined tuning on the simulation of flow characteris-

tics and on the associated indicators Fig. 3 displays evaluation results at two exemplary

discharge stations in the USA. The station at Old Hickory, Cumberland River, belongs5

to subsets B1 and D, i.e. it is not part of the V1 dataset and is located in a zero-order

basin with significantly increased tuning station density (Fig. 3a). After tuning against

long-term average discharge, the annual hydrograph of V2 primarily shows a significant

shift towards the observed hydrograph, while its variance remains virtually unchanged

as compared to V1. This is reflected by a decrease in average deviation of annual vari-10

ability (median SDF V1: 1.31, V2: 1.11), while R
2

hardly changes. The mean monthly

hydrograph of V2 additionally indicates a better representation of flow variance, which

is distinctly underestimated by V1. With V2, particularly the representation of receding

and rising discharges between May and December is improved. Consequently, both

SDF and R
2

values of monthly flow characteristics (seasonal and monthly variability)15

are significantly better in V2. However, monthly variance is still underestimated by

the model. This becomes evident regarding monthly Q90 which is improved but still

overestimated, and monthly Q10 which is underestimated by V2.

The station at Dalles, Columbia River, belongs to subsets B1 and C, i.e. it is a tuning

station in both V1 and V2 (Fig. 3b). While its sub-basin covers 192 000 km
2

in V1, it20

is subdivided into 8 smaller sub-basins in V2 with an average area of 24 000 km
2
. In

contrast to the Old Hickory Dam station, there is no general shift between simulated

hydrographs of V1 and V2, as they are both adjusted against average discharge. The

left hydrograph shows that changes in annual discharges are negligible which is also

reflected by unchanged SDF and R
2

of annual variability. SDF values of all monthly25

characteristics, including seasonal and monthly variability as well as low and high flows,

indicate slight improvements, while R
2

of the variability characteristics remains rather

constant. Regarding the mean monthly hydrographs, representation of flows in spring

and autumn becomes somewhat better, however, changes between V1 and V2 ap-
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pear rather insignificant compared to the remaining discrepancy between observed

and simulated hydrographs. This discrepancy is caused by assuming, in WGHM 2.1f,

that man-made reservoirs behave like natural lakes.

As a first analysis step, the impact of additional discharge information on the capa-

bility of WGHM to represent long-term average discharges, i.e. renewable freshwater5

resources, is analyzed in Sect. 3.2.1 by looking at the spatial pattern of changes.

3.2.1 To what extent does tuning against more discharge observation improve the

representation of long-term average river discharge?

Figure 4 depicts the deviation of long-term average discharge as computed with WGHM

2.1f V1 from the observed value at V2 stations. The map shows the value of additional10

stations and prolonged time series. The larger the SDF, the less accurate WGHM

would have computed long-term average discharge without the information included

in V2, and the higher is the value of the additional discharge information. In variant

V2, all SDFs should be zero. However, as described in Sect. 2.2.3, 83 sub-basins,

concentrated in the semi-arid, heavily irrigated parts of the USA and Mexico, could not15

be tuned satisfactorily due to technical constraints in the tuning procedure. Hence, their

SDF values differ from 1 not only in V1, but also in V2 and the improvements achieved

by applying V2 are lower than expressed by the SDF of V1. Therefore, in Fig. 4, the

values for these basins were corrected by subtracting (SDFV2–1.0) from SDFV1. If,

for instance, SDFV1 equals 1.5 and SDFV2 equals 1.2, the corrected value would be20

1.5–(1.2–1.0)=1.3.

In most regions of Europe, where the network of tuning stations has already been

dense in V1, the additional discharge information in V2 does not improve model rep-

resentation of long-term average discharge much. Only few sub-basins show SDF

values above 1.5 (e.g. in northern Spain and Scandinavia), i.e. sub-basins where dis-25

charge computed without the additional information is off by a factor of more than 1.5.

Improvements are somewhat more pronounced in eastern Europe (Volga basin), and

distinctly higher in the large Siberian basins of Ob, Yenisey and Lena where the tun-
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ing dataset has been significantly densified in V2. In the basin of the Tobol River, a

contributory to the Ob River, SDF even reaches values above 6. In central, southern

and southeastern Asia additional discharge information is scarce, and the majority of

the few refined basins show SDF values above 1.5, and even above 3 in the Aral Sea

basin. In Australia, performance improvements are large in the Murray-Darling basin5

because the number of stations has increased from 2 to 8 and the basin is strongly

affected by human intervention, i.e. irrigation withdrawals and locks (reservoirs). Ob-

viously, the impact of irrigation and reservoirs is not modeled accurately enough by

WGHM. In Africa, the majority of additional tuning stations are located in the Niger and

Kongo basins. The map shows SDF values between 1.1 and greater than 6 in most of10

their sub-basins. In southern Africa, where only the tuning time series changed (dotted

sub-basins in Fig. 4) but no new tuning stations were added, SDF values remain below

1.5 except for one small basin. In the lower Paraná and upper Amazon basins as well

as in some smaller South American basins, SDF is between 1.1 and 1.5, while in the

Rı́o Colorado/Rı́o Salado basin, tuning with a more recent discharge time series leads15

to an even more pronounced performance. In North America, the value of additional

stations is particularly high in semi-arid basins like the Colorado River and Rio Grande

basins and in the western sub-basins of the Mississippi. Besides, several sub-basins

of the Yukon and the Mackenzie show SDF values above 3. In all these areas the den-

sity of tuning stations increased distinctly. In the eastern, more humid parts of North20

America, SDF is below than 1.1 in most sub-basins.

In summary, WGHM representation of long-term average discharge (i.e. renewable

freshwater resources) is strongly improved by additional discharge information in the

case of large basins that have been significantly subdivided in V2, like in the large

Siberian basins, the Congo basin or the Murray-Darling basin. The value of the ad-25

ditional discharge information tends to be higher in semi-arid and snow dominated

regions where results of WGHM, and hydrological models in general, are typically less

reliable (e.g. the western part of North America). Conversely, the value of additional

discharge information is lower in basins where the model (including its input data like
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precipitation) is more reliable and tuning station density is already high in V1 (e.g. in

Central Europe). In general, the value of additional stations is higher than the value

of longer time series, but the performance gains can be significant in case of formerly

very short time series, e.g. for the Indus (formerly 4, now 14 years) and the Orange

River (9 and 29 years, respectively).5

3.2.2 Does tuning against longer or more recent discharge time series improve model

performance?

Subset A used to investigate this question comprises 46 discharge observation sta-

tions with significantly extended time series (by more than 20%) and 14 stations with

a tuning period shifted to more recent years (by more than 20% of the tuning period).10

The upper left diagram in Fig. 5 compares V1 and V2 with regard to deviation between

observed and simulated discharges (determined by SDF) at 60 stations for the six flow

characteristics. While results for low flows, high flows and annual variability show only

very small improvements with V2, improvements are somewhat more pronounced for

long-term average, seasonal variability and monthly variability. The diagram on the15

lower left depicts the percentage of stations where SDF improved, did not change or

declined in V2 as compared to V1, according to the flow characteristics. A SDF change

of at least 3% is considered to be significant. Regarding long-term average discharge,

two thirds of the stations improved, whereas the rest did not change. As the model is

tuned against average discharge and the evaluation period corresponds with the V220

tuning period a decline could only occur due to tuning errors. For low and high flows

60–70% of the stations show changed SDF results in V2. Improved stations are prevail-

ing in both cases over declined stations, although results are somewhat better for high

flows. Annual, seasonal and monthly variability changes are less pronounced. The

majority of stations indicate no SDF change. While the ratio of improved to declined25

stations is clearly positive for annual and monthly variability (3.4 and 2.3), seasonal

variability holds exactly the same number of improved and declined stations (13).

Diagrams on the right in Fig. 5 display the R
2

results, as a measure of goodness-of-
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fit with respect to the variance. Comparing versions V1 and V2 (upper right diagram),

none of the characteristics show a significant change in mean R
2
. The percentage

of all stations where R
2

did not change significantly (i.e. by more than 3%) ranges

from 92% for seasonal variability to 97% for annual variability (lower right diagram),

indicating that a significant change occurred at only 2 to 5 out of 60 stations. This5

indicates that the improved SDF of the time series of annual and monthly discharges

and of the mean monthly discharges is almost exclusively due to shift in the long-term

average discharge, but not due to better representation of the variability of flow.

To summarize, the presented results show that tuning against longer or more recent

discharge time series leads to a noticeable impact regarding the deviation between10

modeled and simulated flow characteristics. Benefits are most pronounced for long-

term average discharge, seasonal variability and monthly variability. Changed obser-

vation time series, however, have hardly any effect on the model’s representation of

flow variability.

3.2.3 Does tuning against discharge at more stations improve model performance15

within and outside the total V1 tuning area?

Subset B1 is applied to answer the first part of this question and comprises 691 tuning

stations with altered sub-basin structure. It contains a number of stations that have

already been part of V1 as well as all additional V2 stations that are located within the

V1 tuning area and thus provides an overall evaluation of the performance changes20

that are associated to the densification of the tuning dataset. Median SDF is signif-

icantly improved for all flow characteristics (Fig. 6 top). The improvements are most

obvious for long-term average discharge and decrease slightly towards the right of the

diagram. The fraction of stations with significantly reduced deviation between simu-

lated and observed flow characteristics is considerable. It covers more than half of the25

tuning stations regarding long-term average, high flows and annual variability, while

the remaining flow characteristics still show 43.3% (monthly variability) to 48.4% (low

flows) of improved stations (Fig. 6 bottom). The percentage of stations with declined
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

performance is low for all flow characteristics except low flows where it amounts to

about 30% of the stations. The fraction of stations with improved performance out-

weighs the fraction of stations by declined performance by a factor of 1.6 (low flows)

to 6 (annual variability). The positive impact of tuning long-term average discharge at

more stations on simulating flow variability is very small but higher than in the case of5

changed time series (Fig. 5 right).

In subset B2, only those 56 stations are considered that are located outside the total

V1 tuning area. In V1, discharge in these basins is computed with a regionalized tuning

parameter γ that depends on three basin-specific characteristics (see Döll et al., 2003,

for details). Thus, subset B2 provides information on how tuning changes model per-10

formance in basins where there was even no information of observed discharge further

downstream. Not surprisingly, improvements of median SDF are much higher than for

subset B1 (Fig. 6). On average, long-term average discharge at these ungauged sta-

tions differ, without tuning, by a factor of 1.8 from the observed value. The additional

discharge information also strongly improves the simulation of high flow and annual15

variability. Please note, however, that the SDF of all flow characteristics for V2 except

annual variability are higher than the corresponding SDFs in subset B2. Figure 7 (lower

left diagram) shows that for 80–95% of the B2 basins high flow, annual variability and

long-term average discharge are significantly better estimated if taking into account

the additional discharge information. Low flow estimation, however, is effected neg-20

atively in most basins even though the SDF of low flows improves. This, the overall

lower performance as compared to subset B1 and the strong improvement of the long-

term average may be explained by the fact that most of the B2 basins are located in

snow-dominated or semi-arid regions where model results and in particular low flow

are generally less reliable. Like for subset B1, the positive impact of tuning long-term25

average discharge at more stations on simulating flow variability is very small (Fig. 7

right), with 60–70% of the stations showing no significant change of R
2
. The number

of stations with improved performance outweighs that with declined performance by a

factor of around 1.4 for all three flow characteristics.
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3.2.4 To what extent does the segmentation of a station’s basin into sub-basins im-

prove model performance at that station?

Tuning at upstream stations is expected to improve model performance at the down-

stream station, as tuning may make the simulated partitioning of precipitation into

evapotranspiration and runoff more realistic, such that the dynamics or at least the5

magnitude of basin inflow are simulated better. The performance improvements are

expected to be lower than for subsets B1 and B2, as discharges at the basin outflow

stations themselves were used for tuning in both variants. To test this hypothesis, the

model performance indicators of Table 1 are computed for subset C, i.e. all stations

that are common to V1 and V2 and where the upstream basins have changed.10

Comparing both model variants (not displayed in a figure) indicates that, even though

the number of basins with improved performance is higher than the number of basins

with declined performance (by factors ranging from 1.4 to 3.4) for all flow characteristics

except annual variability (0.8), median SDFs of all flow characteristics hardly show any

changes. As changes in the representation of flow variances are even more insignifi-15

cant, it is supposed that overall the segmentation of a station’s basin into sub-basins

does not improve model performance at that station.

3.2.5 To what extent does the segmentation of a station’s basin into sub-basins im-

prove model performance inside the basin?

With this question, we would like to determine the effect of a significant reduction of20

sub-basin size on model performance inside a zero-order river basin (like in case of

the Murray-Darlin basin). Subset D, which is a subset of B1, includes only V2 tuning

stations located within zero-order basins where average V2 sub-basin area is reduced

to less than half of the V1 basin area. Differences in model performance between V1

and V2 (Fig. 8) are somewhat more distinct than in case of subsets B1 (Fig. 6). The25

SDFs of all six flow characteristics are higher for subset D than for subset B1 for V1, but

more similar for V2. The fraction of stations with improved performance outweighs the
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fraction of stations by declined performance by a factor of 1.3 (low flows) to 2.3 (monthly

variability). Like for the other subsets, the positive impact of tuning long-term average

discharge at more stations on simulating flow variability is insignificant. Please note for

all subsets, seasonal variability, with mean R
2

values ranging between 0.63 and 0.75,

is generally better modeled than annual variability (0.37–0.59) and monthly variability5

(0.38–0.50).

3.3 What is the impact of basin size on model performance and basin-specific tuning?

The basin sizes of the discharge stations used for tuning WGHM 2.1f V2 range from

9000 km
2

up to 1 244 000 km
2
, with a mean of about 56 000 km

2
. As already discussed

in the introduction, basins size is an important factor with respect to model performance10

and tuning. To evaluate the impact of basin size, subsets B1 and B2 were merged.

The new subset contains all 747 V2 stations that have an altered basin structure as

compared to V1. The subset was divided into five size classes. Class boundaries and

the number of associated stations are shown in the header of Table 3.

The impact of basins size on model performance of WGHM 2.1f V2 with respect15

to the flow characteristics of Table 1 is shown in Table 3a. Median SDF in Table 3a

represents average deviation of observed and simulated discharges for five basin size

classes, with lower values indicating a better model performance. Class V with the

largest basins sizes (>100 000 km
2
) shows the best performance for all flow character-

istics except high flows (here class IV performs insignificantly better). Performance in20

class IV is good, too, with four out of five values better than average. While performance

in class II is comparable to class IV, results are more diverse in class III and comprise

three values significantly worse than average (low flows, seasonal and monthly vari-

ability). Class I (basin sizes between 9000 and 20 000 km
2
) clearly performs worst with

regard to all investigated flow characteristics with all values representing the minimum25

of all classes.

Mean R
2

is used to investigate the impact of basin size on the models representation

of flow variance. Table 3a shows mean R
2

for the three variability flow characteristics
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with regard to the basin size classes, with higher values indicating a better fit between

observed and simulated variance. Here, class IV displays the best results with best R
2

fit for seasonal and monthly variability and above-average fit for annual variability. R
2

of

the largest class (V) is significantly higher than average for seasonal variability and in

the range of average for the remaining characteristics. Class III performs very well with5

respect to annual variability while the other results are below average. Again, results

are somewhat better in class II with R
2

close to average for seasonal and monthly

variability and best of all classes for annual variability. Like median SDF, mean R
2

is worst for all flow characteristics in class I with values between 5 and 15% below

average.10

With respect to both goodness-of-fit measures, size class I (>9000–20 000 km
2
)

clearly performs worst. While results are distinctly better in class II (20 000–

40 000 km
2
), performance decreases again for most flow characteristics in class III

(40 000–60 000 km
2
). The best values can be found in classes IV (60 000–100 000 km

2
)

and V (>100 000 km
2
). The reason for the below-average performance in class I might15

be that sub-basins below 20 000 km
2

are too small for errors in input data to balance

out. A reason for the lower performance of class III as compared to class II may be

that regions with high data availability and quality like Europe and the USA are over-

represented in class II. As WGHM performance strongly depends on input data quality

(i.e. precipitation), model results are generally more reliable in these regions. Basins20

larger than 60 000 km
2

show the best model performance for all flow characteristics.

Obviously, it is not important that the tuning parameter γ and the areal correction factor

CFA are kept constant over the whole area, which may lead to blur spatial discrep-

ancies in large heterogeneous catchment and decreased model performance. The

dominant effect appears to be that, given the data resolution and spatial uncertainty,25

input data is better represented in large basins as these hold a better chance for errors

to balance out.

The impact of basin size on model tuning is investigated in two ways. Table 3b

provides the percentage of stations that could be tuned by the adjusting the model’s
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tuning parameter γ only as well as the fraction where either the area correction factor

(CFA) or both CFA and the station correction factor (CFS) had to be applied. Table 3c

lists percent changes of median SDF and mean R
2

as measures of model performance

of variant V2 as compared to variant V1.

Regarding the application of tuning factors, the size classes display a very diverse5

behavior. Results are best in class III where nearly half of the sub-basins could be

adjusted by γ only, and 67% without using station correction. In larger basins, the

fraction of only γ-adjusted basins is only slightly lower (45–46%), but CFS-corrected

sub-basins amount to 41% in class IV, while they only reach 32% in class V. Whereas

results are somewhat worse in class II, class I shows by far the worst results. Here, less10

than one quarter of the sub-basins could be adjusted without using correction factors

and station correction had to be applied in 91 out of 195 cases (47%).

Improvements in model performance achieved by applying V2 discharge information

are generally highest in class I – except for low flows – even though performance of

V2 results is significantly below average in this class. The positive effect of tuning is15

still significant in classes II and IV with rather low performance in V1 but reasonably

good SDF values in V2. In classes III and V improvements are less pronounced. While

class V already showed good results in V1, performance of class III rather remains

on a low level. As seen above, the impact of tuning to long-term average discharge

on simulating flow variability is very low, so that the result that the highest performance20

gains occur in the two largest size classes (lower part of Table 3c) is difficult to interpret.

In summary, the smallest basins (9000–20 000 km
2
) appear to be less suited for tun-

ing because correction factors have to be applied in more than 75% of the basins, with

the ensuing loss of model consistency. They also show by far the lowest modeling

performance with respect to the flow characteristics low flow, high flow and annual,25

seasonal and monthly variability even after tuning against long-term average observed

river discharge. However, for these basins, tuning affords the highest performance in-

crease, with median SDFs decreasing e.g. by 33% for long-term average discharge,

such that tuning of these basins can be considered as particularly valuable if the mod-
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eling goal is a better representation of observed flow characteristics.

4 Conclusions

The goal of this study was to investigate the value of observed river discharge data for

global-scale hydrological modeling of a number of flow characteristics that are required

for assessing water resources, water scarcity, flood risk and habitat alteration of aque-5

ous ecosystems. To our knowledge, this has never been done before. Observed river

discharge is certainly valuable for determining the quality of model results, but it can

also be used to tune not only catchment-scale but also global-scale hydrological mod-

els. We think that it is essential in global-scale hydrological modeling to take advantage

of the aggregated information on river basin processes and flows that is included in ob-10

served river discharge because model input data like precipitation, radiation or soil

characteristics are particularly uncertain at this scale.

The global hydrological model WGHM 2.1f uses observed long-term averages of

river discharge to tune the model such that simulated long-term average discharge

at the observation station (grid cell) is equal to the observed value. In this study, we15

analyzed discharge that was computed by two model variants, V1 which had been

tuned against a data set of 724 stations used in former versions of the model (Döll et

al., 2003), and V2, which had been tuned against a new data set of 1235 stations, with

extended time series.

WGHM is tuned against observed long-term average discharge by adjusting only20

one model parameter (γ) that affects runoff generation of land areas. Correction fac-

tors are applied in basins where γ does not suffice to adjust the modeled long-term

average river discharge to the observed one. Tuning with the extended observed dis-

charge data set V2 resulted in an increase of the land area that could be tuned without

correction factors of more than 8%, which is mainly due to the densification of stations25

in Siberia. The number of stations but not the percentage where this is possible in-

creased. However, the land area where not only the areal correction factor but also
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

the station correction factor had to be applied increased strongly, which is a strong

disadvantage, as the application of this factor makes discharge inconsistent with runoff

and leads to discontinuous discharge at the outflow of the respective sub-basin. Small

basins between 9000 and 20 000 km
2

are particularly problematic, as almost half of

them required a station correction factor. Only 25% of them could be tuned by only5

adjusting γ, while for larger basins, this was the case in more than 40%.

The impact of additional discharge information on model performance was investi-

gated by comparing river discharge as simulated by WGHM versions V1 and V2 to

observed values with respect to six flow characteristics including long-term average

discharge, low flows (monthly Q90), high flows (monthly Q10) as well as annual, sea-10

sonal and monthly variability of discharge. In general, the value of additional stations

is higher than the value of longer time series except in cases with formerly very short

time series. Representation of long-term average discharge, which at least for humid

regions is a good measure of renewable freshwater resources, is significantly improved

by additional discharge information. The stations with the highest benefit are those15

new stations that are located outside of V1 basins. Without tuning, simulated values

of long-term average discharge would differ from observed ones by a factor of 1.8 on

average (56 stations, subset B2). When considering only the stations that are located

within zero-order basins where average sub-basin size has decreased by at least 50%

(387 stations, subset D), the respective value is 1.3. Large river basins that have20

been considerably subdivided in V2, like in the Siberian basins, the Congo basin or the

Murray-Darling basin, show the highest benefits. The value of the additional discharge

information tends to be higher in semi-arid and snow dominated regions where results

of WGHM, and of hydrological models in general, are typically less reliable. Conversely,

the value of additional discharge information tends to be lower where station density25

was already high in V1 and simulations are generally more reliable, like in Europe.

Looking at the other five flow characteristics, their deviation from observed values,

as computed by the symmetric deviation factor SDF, decreases due to tuning against

additional discharge data. Again, the basins outside the V1 basins (subset B2) show
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the highest performance gains due to tuning the long-term average discharge, followed

by the stations inside significantly densified basins. The stations that are included in

both V1 and V2 but with additional upstream stations in V2, only show a very small in-

crease in the performance as measured by the SDF values. All subsets show a strong

correlation between decreased SDF of the long-term average discharge and the other5

flow characteristics. Tuning long-term average discharge does not lead to a significant

improvement of the representation of flow variance. This is not even the case for sub-

set B2, with R
2

of annual, seasonal and monthly variability increases by only 0–3%,

even though here the stations with an improved R
2

outnumber those with a decreased

R
2
. We conclude that decreased deviation of annual and monthly discharges from10

observed values, which leads to lower SDF for all flow characteristics, is almost exclu-

sively due to adjustments of the mean. It remains to be investigated if basin-specific

tuning of a second model parameter which impacts flow variability is viable and useful,

either using discharge characteristics in addition to long-term average discharge (as

listed in Table 1) or information on large-scale (mainly seasonal) water storage varia-15

tions as obtained by GRACE gravity data (Güntner et al., 2007). We think that improved

modeling of storage and outflow dynamics of reservoirs, lakes and wetlands is likely to

be necessary before any basin-specific calibration of a second model parameter is to

be undertaken.

The optimal sub-basin size for tuning depends on the modeling purpose. Small20

basins below 20 000 km
2

show a much stronger improvement in model performance

due to tuning than larger basins, while the improvement decreases with increasing

basin size. This is related to the dependence of model performance on basin size. It

is significantly lower for basins of less than 20 000 km
2

(before and after tuning) than

for larger basins, with basins over 60 000 km
2

performing best. On the other hand,25

tuning of small basins requires the application of the station correction factor in almost

half of them. Utilizing a very dense network of tuning stations thus leads to a less

consistent model, but provides a significantly better spatial representation of river flow

characteristics, while tuning with a network of sub-basins with more than 20 000 km
2
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leads to a more consistent model which is however associated with higher uncertainty

regarding the spatial distribution of discharge and renewable water resources within

the sub-basins.

In conclusion, tuning of WGHM 2.1f against a new dataset of river discharge ob-

served at 1235 stations world-wide has lead to a more realistic representation of the5

spatial pattern of river discharge and renewable water resources at the global scale. It

better serves the modeling objective of combining the best data available to derive re-

alistic and meaningful descriptions of terrestrial water flow characteristics. However, by

forcing modeled long-term average river discharges to become equal to the respective

observed values, simulation of temporal flow variability has not been improved signif-10

icantly and model consistency has suffered. Unfortunately, errors in input data and

the hydrological model can only be compensated to a rather limited extent by tuning

against observed river discharge. Our study nevertheless shows that the value of ob-

served river discharge data for global-scale hydrological modeling is high enough to

warrant its use not only for model validation.15
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Table 1. River flow characteristics and related indicators of model quality.

River flow characteristic Indicators

1 Long-term average flow Median SDF
a

of arithmetic mean of annual discharge

2 Low flow Median SDF of monthly Q
b
90

3 High flow Median SDF of monthly Q
c
10

4 (Variability of) Annual flows Median SDF and mean R
2

of time series of annual discharge

5 Seasonality of flow Median SDF and mean R
2

of mean monthly discharge
d

6 (Variability of) Monthly flows Median SDF and mean R
2

of time series of monthly discharge

a
SDF: Symmetric deviation factor, with SDF = simulated/observed if simulated ≥ observed,

and SDF = observed/simulated otherwise.
b

Monthly discharge that is exceeded in 9 out of 10 months.
c

Monthly discharge that is exceeded in 1 out of 10 months.
d

12 values per station (January to December).
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Table 2. Number and area of basins that could be tuned, in V1 and V2, by only adjusting the

model parameter γ, or with applying, in addition, the areal correction factor CFA and the station

correction factor CFS.

WGHM 2.1f variant

V1 V2

all tuning basins 724 1235

area [10
6

km
2
] 66.5 69.9

fraction of land area* 46.4% 48.7%

basins adjusted by γ only 384 546

fraction of tuning basins 53.0% 44.2%

fraction of tuning area 47.0% 48.5%

fraction of land area* 21.8% 23.7%

basins adjusted by γ and CFA 247 300

fraction of tuning basins 34.1% 24.3%

fraction of tuning area 38.2% 22.3%

fraction of land area* 17.7% 10.9%

basins adjusted by γ, CFA and CFS 93 389

fraction of tuning basins 12.8% 31.5%

fraction of tuning area 14.8% 29.2%

fraction of land area* 6.9% 14.2%

*143.4×10
6

km
2

(without Greenland and Antarctica).
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Table 3. Impact of basin size on model performance and basin-specific tuning. Model perfor-

mance (a), percentage of station that are adjusted by γ, CFA and CFS (b) and percent change

in model performance (c) with respect to flow characteristics according to five basin size classes

(italic figures: value above average of classes, bold figures: best value).

basin size class I II III IV V all avg. of

stations classes

basin size (1000 km
2
) <20 20–40 40–60 60–100 >100

no. of stations 195 301 99 64 88 747 149

(a)

Median SDF (V2)

long-term average discharge 1.00 1.00 1.00 1.00 1.00 1.00 1.00

low flows 1.86 1.64 1.83 1.77 1.64 1.71 1.75

high flows 1.26 1.22 1.19 1.18 1.19 1.22 1.21

annual variability of discharge 1.17 1.14 1.14 1.15 1.14 1.15 1.15

seasonal variability of discharge 1.56 1.45 1.54 1.46 1.38 1.49 1.48

monthly variability of discharge 1.79 1.67 1.72 1.59 1.50 1.69 1.65

Mean R
2

(V2)

annual variability of discharge 0.44 0.56 0.56 0.54 0.53 0.53 0.53

seasonal variability of discharge 0.76 0.79 0.78 0.86 0.84 0.79 0.81

monthly variability of discharge 0.46 0.49 0.48 0.52 0.50 0.48 0.49

(b)

Percentage of stations that were adjusted by

tuning with γ only 24.6% 41.2% 48.5% 45.3% 45.5% 38.7% 41.0%

correction with CFA 28.7% 21.9% 18.2% 14.1% 22.7% 22.6% 21.1%

corrected with CFA & CFS 46.7% 36.9% 33.3% 40.6% 31.8% 38.7% 37.9%

(c)

Percent change in median SDF: V1 as compared to V2

long-term average discharge −32.5% −15.2% −10.3% −12.1% −2.0% −15.2% −14.4%

low flows −7.3% −12.7% 3.1% −14.8% −1.6% −9.8% −6.6%

high flows −25.1% −9.1% −4.7% −7.2% −3.5% −10.7% −9.9%

annual variability of discharge −23.7% −8.6% −5.4% −9.7% −5.1% −9.7% −10.5%

seasonal variability of discharge −12.8% −9.1% −4.0% −9.6% −4.1% −9.4% −7.9%

monthly variability of discharge −12.8% −6.8% −1.1% −10.3% −2.2% −6.0% −6.7%

Percent change in mean R
2
: V1 as compared to V2

annual variability of discharge 0.7% 1.9% 1.4% −1.2% 4.4% 2.4% 1.4%

seasonal variability of discharge 2.3% 0.6% 1.5% 2.8% −0.2% 0.5% 1.4%

monthly variability of discharge 6.7% 3.2% −0.1% 4.3% 7.8% 1.7% 4.4%

4165

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/4125/2007/hessd-4-4125-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/4125/2007/hessd-4-4125-2007-discussion.html
http://www.egu.eu


HESSD

4, 4125–4173, 2007

River discharge data

in global-scale

hydrological

modeling

M. Hunger and P. Döll
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Figure 1. River discharge observation stations used for tuning WGHM variants V1 (724 stations) and V2 (1,235 stations), with their drainage basins. 

Fig. 1. River discharge observation stations used for tuning WGHM variants V1 (724 stations)

and V2 (1235 stations), with their drainage basins.
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Fig. 2. Results of tuning WGHM 2.1 f variants V1 and V2. The color of the basins indicates

whether each variant can compute observed long-term average river discharge at the stations

by only adjusting the runoff coefficient. In the striped sub-basins, discharge needs to be ad-

justed by an additional station correction factor CFS.
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(a) Old Hickory Dam Station (Tennessee), Cumberland River (subsets B1 and D) 
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 absolute values [km³]   indicator values 

flow characteristic obs. V1 V2  indicator V1 V2 

long-term average (annual) 17.2 23.5 17.2  SDF 1.37 1.00 

low flows (monthly Q90) 0.49 1.07 0.66  SDF 2.19 1.35 

high flows (monthly Q10) 2.76 3.06 2.45  SDF 1.11 1.13 

    median SDF 1.31 1.11 
annual variability 

    R² 0.79 0.81 

    median SDF 1.43 1.14 
seasonal variability 

    R² 0.61 0.94 

    median SDF 1.66 1.31 
monthly variability 

    R² 0.40 0.54 

 

(b) The Dalles Station (Oregon), Columbia River (subsets B1 and C) 
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 absolute values [km³]   indicator values 

flow characteristic obs. V1 V2  indicator V1 V2 

long-term average (annual) 162 164 162  SDF 1.01 1.00 

low flows (monthly Q90) 7.90 4.87 5.15  SDF 1.62 1.53 

high flows (monthly Q10) 22.5 30.0 29.0  SDF 1.33 1.29 

    median SDF 1.05 1.05 
annual variability 

    R² 0.77 0.77 

    median SDF 1.36 1.29 
seasonal variability 

    R² 0.89 0.90 

    median SDF 1.36 1.33 
monthly variability 
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Figure 3. Comparison between V1 and V2 model results and observed discharges at two 

Fig. 3. Comparison between V1 and V2 model results and observed discharges at two exem-

plary tuning stations. Annual and mean monthly hydrographs and indicator values with respect

to the different stream flow characteristics are shown.
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Fig. 4. Value of additional discharge information with respect to long-term average discharge

(renewable water resources). The corrected basin-specific SDF of WGHM 2.1f variant V1

shows model performance at stations only considered for tuning in V2 (sub-basins where nei-

ther the station nor the discharge time series for tuning changed between V1 and V2 are shown

in grey). The higher SDF is, the higher is the value of additional discharge information. For

SDF=1, simulated and observed values are identical, while for SDF=2, for example, the ob-

served value is either under- or overestimated by a factor of 2 without tuning.
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Fig. 5. Model performance of WGHM 2.1f at discharge tuning stations with extended or more

recent time series in V2 as compared to V1 (subset A with 60 stations). Low SDF and high R
2

values indicate good model performance.
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Fig. 6. Model performance of WGHM 2.1f at discharge tuning stations with altered V2 sub-

basin structure within the V1 tuning area (subset B1 with 691 stations). Low SDF and high R
2

values indicate good model performance.
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Fig. 7. Model performance of WGHM 2.1f at V2 discharge tuning stations outside the V1

tuning area (Subset B2 with 56 stations). Low SDF and high R
2

values indicate good model

performance.
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Fig. 8. Model performance of WGHM 2.1f at discharge tuning stations inside river basins where

average V2 sub-basin size has been decreased by at least 50% compared to V1 (subset D with

387 stations). Low SDF and high R
2

values indicate good model performance.
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