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Abstract

Long-term average groundwater recharge, which is equivalent to renewable ground-

water resources, is the major limiting factor for the sustainable use of groundwater.

Compared to surface water resources, groundwater resources are more protected

from pollution, and their use is less restricted by seasonal and inter-annual flow vari-5

ations. To support water management in a globalized world, it is necessary to esti-

mate groundwater recharge at the global scale. Here, we present a best estimate of

global-scale long-term average diffuse groundwater recharge (i.e. renewable ground-

water resources) that has been calculated by the most recent version of the WaterGAP

Global Hydrology Model WGHM (spatial resolution of 0.5
◦

by 0.5
◦
, daily time steps).10

The estimate was obtained using two state-of-the art global data sets of gridded ob-

served precipitation that we corrected for measurement errors, which also allowed to

quantify the uncertainty due to these equally uncertain data sets. The standard WGHM

groundwater recharge algorithm was modified for semi-arid and arid regions, based on

independent estimates of diffuse groundwater recharge, which lead to an unbiased es-15

timation of groundwater recharge in these regions. WGHM was tuned against observed

long-term average river discharge at 1235 gauging stations by adjusting, individually

for each basin, the partitioning of precipitation into evapotranspiration and total runoff.

We estimate that global groundwater recharge was 12 666 km
3
/yr for the climate nor-

mal 1961–1990, i.e. 32% of total renewable water resources. In semi-arid and arid20

regions, mountainous regions, permafrost regions and in the Asian Monsoon region,

groundwater recharge accounts for a lower fraction of total runoff, which makes these

regions particularly vulnerable to seasonal and inter-annual precipitation variability and

water pollution. Average per-capita renewable groundwater resources of countries vary

between 8 m
3
/(capita yr) for Egypt to more than 1 million m

3
/(capita yr) for the Falkland25

Islands, the global average in the year 2000 being 2091 m
3
/(capita yr). Regarding the

uncertainty of estimated groundwater resources due to the two precipitation data sets,

deviation from the mean is less than 1% for 50 out of the 165 countries considered,
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between 1 and 5% for 62, between 5 and 20% for 43 and between 20 and 80% for

10 countries. Deviations at the grid scale can be much larger, ranging between 0 and

186 mm/yr.

1 Introduction

Groundwater recharge is the major limiting factor for the sustainable use of ground-5

water because the maximum amount of groundwater that may be withdrawn from an

aquifer without irreversibly depleting it, under current climatic conditions, is approxi-

mately equal to long-term (e.g. 30 years) average groundwater recharge. Therefore,

long-term average groundwater recharge is equivalent to renewable groundwater re-

sources. Depletion of non-renewable (“fossil”) groundwater resources by human water10

withdrawals can be quantified by comparing withdrawal rates to groundwater recharge.

Groundwater recharge either occurs, locally, from surface water bodies or, in diffuse

form, from precipitation via the unsaturated soil zone. Long-term average diffuse

groundwater recharge is the part of precipitation that does not evapotranspirate and

does not run off to a surface water body on the soil surface or within the unsaturated15

zone. Only diffuse groundwater recharge is taken into account in this paper, as ground-

water recharge from surface water bodies cannot be estimated at the macro-scale. In

semi-arid and arid regions, outside the mountainous headwater regions, neglecting

groundwater recharge from surface-water bodies may lead to a significant underes-

timation of total renewable groundwater resources. Hereafter, the term groundwater20

recharge refers only to diffuse recharge.

In most regions of the world, a large part of groundwater recharge is transported to

surface waters, and is thus included in estimates of surface water resources derived

from river discharge measurements (groundwater close to the coast may discharge

directly into the ocean, and in semi-arid and arid regions, a part of the groundwater25

recharge evapotranspirates before discharging into a river). Nevertheless, it is useful to

quantify groundwater resources separately. First, they are much better protected from
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pollution than surface water resources. Second, the use of groundwater resources is

much less restricted by seasonal or inter-annual flow variations (e.g. drought periods)

than the use of surface water. To support water management in a globalized world, it

is therefore necessary to estimate, in a spatially resolved way, groundwater recharge

and thus renewable groundwater resources at the global scale.5

Different from surface water resources, groundwater recharge cannot be easily mea-

sured. While surface water resources are concentrated in the river channels of a

drainage basin and thus can be determined by measuring river discharge, ground-

water recharge, like precipitation, is distributed spatially, and a very large number of

measurements would be necessary to obtain a good estimate for a sizeable area. Be-10

sides, groundwater recharge, unlike precipitation, cannot be directly measured as a

volume flow but must determined by a variety of indirect methods where either the un-

saturated zone or the groundwater is analyzed (Lerner, 1990; Simmers, 1997; Scanlon

et al., 2002). In humid regions, groundwater recharge is generally estimated from the

baseflow component of measured river discharge. However, it is well known that com-15

puted baseflow values strongly depend on the method that has been applied for base-

flow analysis such that baseflow indices (baseflow as a fraction of total flow) can vary

by a factor of 2 (Tallaksen, 1995; Bullock et al., 1997; Neumann, 2005). Besides, base-

flow analysis does not lead to meaningful results if gauging stations are downstream of

large reservoirs, lakes or wetlands (L’vovich, 1979). Baseflow analysis in semi-arid and20

arid regions is likely to lead to an underestimation of groundwater recharge, as part of

the recharge evapotranspirates before reaching (larger) rivers (Margat, 1990, p. 33).

Finally, it must be kept in mind that the concept of renewable groundwater resources

and its relation to groundwater recharge and baseflow is scale-dependent as a part

of the groundwater recharge might reappear as surface water after a very short travel25

distance.

The first global-scale study of groundwater recharge was accomplished by L’vovich

(1979), whose global map of groundwater recharge was based on the estimation of the

baseflow component of observed river discharge. A number of institutions have com-
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piled global lists of country values of groundwater recharge (Margat, 1990; WRI, 2000;

FAO, 2003, 2005). In the compilation of WRI (2000), many values stem from Margat

(1990) which again often used estimates of the global analysis of L’vovich (1979). The

most recent estimates of groundwater recharge per country have been compiled by

FAO (2005), and include mainly data collected for FAO country reports (150 countries)5

and data from national sources, but a few country values are still those of the global-

scale analysis of L’vovich (1979). The country values of groundwater recharge have

been obtained by very diverse methods mostly in the 70s, 80s and 90s of the 20th

century. WRI (2005a, b), in their presentation of the FAO (2005) groundwater recharge

values, warn that “all data should be considered order-of-magnitude estimates” and10

that “cross-country comparisons should therefore be made with caution”. Comparing

WRI (2000) and FAO (2005) estimates, for the 131 countries for which values exist in

both data sets, 69 country values are the same, while 14 country values differ by more

than 50%.

After L’vovich (1979), no other global-scale analysis was performed until Döll et15

al. (2002) obtained the first model-based estimates of groundwater recharge at the

global scale. With a spatial resolution of 0.5
◦

geographical latitude by 0.5
◦

geographi-

cal longitude, diffuse groundwater recharge for the climate normal 1961–1990 was esti-

mated with the global hydrological model WGHM (WaterGAP Global Hydrology Model,

Döll et al., 2003; Alcamo et al., 2003). In that version of WGHM, long-term average20

total runoff, i.e. the sum of groundwater recharge and fast surface and subsurface

flow, was tuned against observed river discharge at 724 stations world-wide by adjust-

ing basin-specific parameters. Later, the WGHM groundwater recharge algorithm was

improved for semi-arid and arid regions, and the model was used to estimate the im-

pact of climate change on groundwater recharge (Döll and Flörke, 2005). The model25

was also applied to analyze the contribution of groundwater to large-scale water stor-

age variations as derived from gravity measurements of the GRACE satellite mission

(Güntner et al., 2007a, b). The analysis showed a large spatial variability of groundwa-

ter storage dynamics, both in absolute values and as a fraction of total water storage.
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As expected, because of its longer residence times, groundwater can decrease the

seasonal variation of total water storage, and it tends to have a larger contribution to

total storage change for inter-annual than for seasonal storage dynamics. Besides,

WGHM groundwater recharge estimates were included in the Hydrogeological Map of

Africa of Seguin (2005).5

The goal of this paper is to present the most recent estimates of groundwater

recharge at the global scale as obtained with the new WGHM version 2.1f for the

time period 1961–1990. This new model version differs from the former versions by,

among other changes, an increased number of now 1,235 river discharge observa-

tion stations that are used to tune the model. These stations lead an improved spatial10

representation of total runoff (Hunger and Döll, 2007), and thus probably groundwater

recharge. Besides, two state-of-the-art precipitation data sets are used as alternative

model inputs, in order to characterize the important uncertainty of estimated groundwa-

ter recharge that is due to uncertainty of global-scale precipitation estimates. Precipita-

tion is the major driver of groundwater recharge; for areas with arid to humid climate in15

southwestern USA, Keese et al. (2005) found the mean annual precipitation explains

80% of the variation of groundwater recharge. WGHM groundwater recharge esti-

mates will be included in the Global Map of Groundwater Resources developed in UN-

ESCO’s “World-wide Hydrogeological Mapping and Assessment Program” WHYMAP

(http://www.whymap.org, final release summer 2008).20

Other hydrological models as well as the land surface schemes of climate models

also compute variables that could be considered as diffuse groundwater recharge. To

our knowledge, however, these model outputs have not yet been analyzed and inter-

preted at the global scale. In the Second Global Soil Wetness Project, for example,

where the output of 13 land surface models was compared, groundwater recharge was25

lumped with interflow (Dirmeyer et al., 2005).

In the next section, we present the WGHM approach of modeling groundwater

recharge as well as the precipitation data sets. In Sect. 3, we show the computed

global groundwater recharge and resources maps including a quantification of the er-
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ror due to precipitation uncertainty and compare groundwater resources to total water

resources. In Sect. 4, we discuss the quality of the results, while in Sect. 5, we draw

some conclusions.

2 Methods and data

2.1 Model description5

A detailed presentation of the WaterGAP Global Hydrology Model (WGHM), includ-

ing process formulations, input data, model tuning, and validation is given by Döll et

al. (2003). The newest model version WGHM 2.1f is presented by Hunger and Döll

(2007). Here, a short model overview is provided, and the groundwater recharge algo-

rithm is described in detail.10

2.1.1 WGHM overview

The WaterGAP 2 model (Alcamo et al., 2003) includes both the global hydrological

model WGHM and a number of water use models that compute consumptive and with-

drawal water use for irrigation (Döll and Siebert, 2002), livestock, industry (Vassolo and

Döll, 2006) and households. Therefore, in WGHM, river discharge reduction due to hu-15

man water use can be taken into account by subtracting consumptive water use (water

withdrawals minus return flows) from surface water bodies. It is assumed that total

consumptive water use is taken from surface waters (Fig. 1) as there is currently no in-

formation, at the global scale, on the fraction of total water withdrawal that is abstracted

from groundwater.20

WHGM simulates the vertical water balance and lateral transport with a spatial res-

olution of 0.5
◦

by 0.5
◦
, covering the global land area with the exception of Antarctica

(66 896 cells). Figure 1 shows the storages and fluxes that are simulated for each grid

cell with a time step of 1 day. It is assumed that groundwater recharged within one cell
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leaves the groundwater store as baseflow within the same cell. Water flow between grid

cells is assumed to occur only as river discharge, following a global drainage direction

map (Döll and Lehner, 2002). Water flow from surface water bodies to groundwater is

not taken into account. For each time step, the net runoff of each cell is computed as

the balance of precipitation, evapotranspiration from canopy, soil and surface waters,5

and water storages changes within the cell.

WGHM is tuned, individually for 1235 large drainage basins, against observed long-

term average river discharge (Fig. 2) by optimizing a parameter in the soil water balance

algorithm, the so-called runoff coefficient, and, if necessary, by introducing correction

factors (Hunger and Döll, 2007). By tuning, the difference between long-term average10

precipitation and evapotranspiration, i.e. total runoff, in each tuning basin (during the

observation period) becomes equal to long-term average observed river discharge.

Given the large uncertainties of both the climate input data (in particular precipitation)

and the hydrological model, this type of tuning helps to obtain rather realistic water

flows in the basins. However, in semi-arid and arid regions, tuning is likely to lead to15

an underestimation of runoff generation, as river discharge at a downstream location

is likely to be less than the runoff generated in the basin, due to evapotranspiration of

runoff and leakage from the river. The tuning basins cover almost half of the global

land area (except Antarctica and Greenland). For the remaining river basins, the runoff

coefficient was obtained by regionalizing the runoff coefficients of the tuning basins.20

This was done by a multiple regression analysis which relates the runoff coefficient

for all the grid cells within the basin to the following basin characteristics: long-term

average temperature, fraction of open water surfaces and length of non-perennial rivers

(Döll et al., 2003). Outside the tuning basins, the correction factors were set to 1.

2.1.2 Groundwater recharge algorithm25

Daily groundwater recharge Rg is computed as part of the vertical water balance of

each grid cell (Fig. 1). In order to calculate Rg, total runoff from land Rl is partitioned

into fast surface and subsurface runoff Rs and groundwater recharge Rg. Following a
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heuristic approach, this is done based on qualitative knowledge about the influence of

the following characteristics on the partitioning of runoff: relief, soil texture, hydroge-

ology and the occurrence of permafrost and glaciers. With steeper slopes, finer soil

textures and less permeable aquifers, groundwater recharge as a fraction of total runoff

from land is expected to decrease, and permafrost and glaciers are assumed to pre-5

vent groundwater recharge. Besides, soils have a texture-related infiltration capacity,

which, if exceeded in case of intense rainfalls, prevents groundwater recharge (caus-

ing surface runoff to occur); the finer the soil texture, the lower the infiltration capacity.

Accordingly, Rg is computed as

Rg = min(Rgmax, fgRl ) with fg = fr ftfhfpg (1)10

Rgmax = soil texture-specific maximum groundwater recharge

(infiltration capacity) [mm/d]

Rl = total runoff of land area of cell [mm/d]

fg = groundwater recharge factor (0≤fg<1)

fr = relief-related factor (0<fr<1)

ft = soil texture-related factor (0 ≤ft≤1)

fh = hydrogeology-related factor (0<fh<1)

fpg = permafrost/glacier-related factor (0≤fpg≤1)

A number of other possible physio-geographic characteristics like land cover, pre-

cipitation, surface drainage density and depth to groundwater have not been included

in the algorithm for various reasons. Haberlandt et al. (2001) found, in their study on

baseflow indices BFI (baseflow as a ratio of total runoff from land) in the Elbe basin that15

the proportion of forest and arable land (i.e. land cover) in sub-basins of or below the

size of 0.5
◦

grid cells only had a weak influence on BFI. Precipitation was not included

as a predictor in Eq. (1) as 1) it is already included as an inflow to the model, and 2)

two regional-scale regression analyses of BFI lead to conflictive results. In the Central

European Elbe basin, where more rain falls in mountainous areas, there was a strong20

negative correlation between BFI and precipitation (Haberlandt et al., 2001). The op-
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posite behavior was found in Southern Africa where more rain falls in the northern

flat regions (Bullock et al., 1997). Depth to groundwater and surface drainage den-

sity, which were identified by Jankiewicz et al. (2005) as good predictors for estimating

groundwater recharge in Germany at a spatial resolution 1 km by 1 km (in addition to

total runoff, soil texture, slope, and land cover), are not available at the global scale at5

all or not at an appropriate resolution, respectively. Besides, in the regression analysis

of Jankiewicz et al. (2005), the depth to groundwater was found to have the opposite

effect in areas with high (>200 mm/yr) vs. low total runoff.

Global-scale information on relief (G. Fischer, IIASA, personal communication,

1999), soil texture (FAO, 1995), hydrogeology (Canadian Geological Survey, 1995) and10

the occurrence of permafrost and glaciers (Brown et al., 1998; Hoelzle and Haeberli,

1999) was available at different spatial resolutions and is described in more detail in

Appendix A. The cell-specific values of all four basic factors and of the texture specific

maximum groundwater recharge in Eq. (1) were computed by first assigning values to

the attributes of the global data sets (e.g. a ft-value of 1 was assigned to coarse, a15

ft-value of 0.7 to fine soil texture, Appendix A2). Then, the values were upscaled to

0.5
◦

by 0.5
◦
.

For semi-arid and arid conditions, modeling of runoff and groundwater recharge is

generally found to be more difficult than for humid areas, mainly due to the small val-

ues of these variables. Besides, river discharge measurements are not as indicative20

of groundwater recharge as under humid conditions, where most of the groundwater

recharge reaches a river. However, under semi-arid and arid conditions, it is possible

to estimate long-term average groundwater recharge based on the analysis of chloride

profiles in the soil and isotope measurements. Such estimates for 25 locations which

are representative not only for the profile location but a larger area of 25 km by 2525

km were compiled by Mike Edmunds (University of Oxford, personal communication,

2003) and were used to test the performance of Eq. (1), and to modify the groundwater

recharge algorithm of WGHM for semi-arid and arid grid cells (Fig. 2). In most cases,

the data are representative for the 50–100 year period before the measurements. The
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observed data are from Northern and Southern Africa, the Near East, Asia and Aus-

tralia (Fig. 2). In addition, groundwater recharge as computed by a meso-scale hydro-

logical model of the Death Valley region in southwestern USA (Hevesi et al., 2003) was

taken into account. The meso-scale model results, which are representative for the

time period 1950–1999, were upscaled to derive estimates for the 26 0.5
◦

grid cells of5

WGHM which cover the region (Fig. 2).

We found that WGHM, with Eq. (1), significantly overestimates groundwater recharge

at the semi-arid and arid observation sites, in particular groundwater recharge below

20 mm/a (Fig. 3). This could be caused by either an overestimation of total runoff

(likely in semi-arid and arid basins without discharge measurements) or an overes-10

timation of groundwater recharge as a fraction of total runoff. For the Death Valley

region, WGHM overestimates total runoff by about an order of 10 (50 mm/yr instead

of 5 mm/yr), which can only partially be explained by an overestimation of precipita-

tion. Where the groundwater recharge fraction is overestimated, the preferred tuning

method would be to modify the groundwater recharge factors in Eq. (1). However, an15

analysis of the 51 grid cells with independent estimates showed that an adjustment of

the recharge factors cannot lead to the necessary decrease in groundwater recharge,

as most cells that require a strong reduction of computed groundwater recharge have

low relief, coarse soil and young sedimentary aquifers, which means that they should

have relatively large groundwater recharge fractions. We concluded that the WGHM20

conceptual model of groundwater recharge is less appropriate for semi-arid than for

humid regions, as, compared to humid regions, semi-arid and arid regions share the

following characteristics:

– A larger variability of precipitation with more heavy rainfalls

– Surface crusting in areas of weak vegetation cover, which strongly reduces infil-25

tration into the soil

– Reduced infiltration of heavy rain into dry soil due to pore air which has to be re-

leased first to allow the infiltration. Additionally, the moistening of dry soil surfaces
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is reduced due to hydrophobic behavior of dried organic materials.

– More infiltration and thus groundwater recharge in soils with fine texture as com-

pared to soils with coarse texture. In very dry conditions, the low unsaturated

hydraulic conductivity of sands, for example, leads to a lower infiltration capacity

for sand as compared to loam, which, at the same matric potential, has a much5

higher water content and unsaturated hydraulic conductivity.

– In some regions, groundwater recharge only occurs via fissures in crystalline rock

which allow the rainwater to leave the zone of capillary rise faster than in the

case of sand. Rainwater that remains in the capillary zone evaporates due to

high temperatures and radiation in semi-arid regions. In humid regions, ground-10

water recharge in fissured crystalline rocks is expected to be lower than in sandy

sediments.

Altogether, in semi-arid regions groundwater recharge appears to be confined to peri-

ods of exceptionally heavy rainfall (Vogel and Van Urk, 1975), in particular if soil texture

is coarse (Small, 2005). Therefore, the computation of groundwater recharge in semi-15

arid and arid grid cells, with a medium to coarse soil texture, was modified such that

groundwater recharge as modeled with Eq. (1) occurs only if the daily precipitation is

larger than 10 mm/d. Semi-arid/arid grid cells are those with long-term average (1961–

1990) precipitation less or equal to half the potential evapotranspiration. The grid cells

which obey this rule but are north of 60
◦
N were not defined as “semi-arid”. This mod-20

ification of the groundwater recharge algorithm resulted in an unbiased estimation of

groundwater recharge (Fig. 3) and also improved the correlation between observed

and computed values (from R
2
=0.14 to R

2
=0.37)

2.2 Precipitation data sets

WGHM is driven by time series of 0.5
◦

gridded observed monthly climate variables be-25

tween 1901 and 2002, including precipitation, air temperature, cloudiness and number
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of wet days (CRU TS 2.0 data set, Mitchell and Jones, 2005). Daily observed climate

data are not available globally at the 0.5
◦

resolution for a period of 30 years, i.e. long

enough to average out temporal climate variability. Daily values for long periods of

time can only be obtained from re-analysis, i.e. computations with general circulation

models, but the computed precipitation fields do not capture the actual precipitation5

patterns in a satisfactory manner. This results in a less satisfactory simulation of ob-

served soil moisture dynamics when used as input into land surface models (Guo et

al., 2006). Therefore, in this study, monthly observation-based climate data are scaled

down to daily values. Downscaling precipitation from monthly to daily values is based

on the number of wet days per month, assuming the same grid-cell precipitation on10

each wet day of a month, while daily temperature and cloudiness are obtained by cubic

spline interpolation. For precipitation, the most important climatic driver of groundwa-

ter recharge, there is another 0.5
◦

gridded global data set of long duration, the GPCC

Full Data Product Version 3, for 1950–2004 (Fuchs et al., 2007). The two different

precipitation data sets are based on different methods for the spatial interpolation of15

observation data. For the CRU data set, 1961-1990 precipitation normals at 19 295

stations were combined with time series at less stations of temporally varying num-

bers to construct gridded time series from anomalies (New et al., 1999, 2000). For the

GPCC data set, only the station data available for the month of interest are taken into

account, thus losing information on spatial variability from the precipitation normals.20

For the period 1961–1990, precipitation time series are available for about 15 000 sta-

tions (Fuchs et al., 2007). The differences between the two precipitation data sets are

large at the grid-scale (Fig. 4). For some parts of the world, e.g. the Himalayas, the

long-term average precipitation values differ by more than a factor of two, and for many

parts of the world, by more than 20%. In the Himalayas, CRU precipitation seems to be25

shifted towards the Northeast as compared to GPCC. According to CRU, mean annual

long-term average precipitation for 1961–1990 is 721 mm/yr over the continents, as

compared to 708 mm/yr according to GPCC. Differences are larger for individual years.

It is not possible to judge which of the two data sets better reflects actual precipitation.
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Therefore, both precipitation data sets are considered to be of equal reliability, and

the best estimate of groundwater recharge is assumed to be equal to the mean of the

groundwater recharge values obtained by using the two different precipitation data sets

as input to WGHM.

None of the precipitation data sets is corrected for observational errors, i.e. the typical5

wind-induced undercatch of especially solid precipitation. We developed the following

equation to correct the time series of gridded observed monthly precipitation Po:

Pc = Po

[

1

CR

R(T )

R(Tmean)

]

(2)

Pc = corrected precipitation value [mm/month]

CR = 0.5
◦

gridded mean monthly catch ratio (measured precipitation

as a ration of actual precipitation) for 1979–1998

R = snow as a fraction of total monthly precipitation (a function of monthly

temperature)

T = temperature of specific month

Tmean = average temperature 1961–1990
The mean monthly catch ratios were obtained by analyzing the climatic conditions10

at 7898 climate stations between 1979 and 1998, and by taking into account the

different gauge types that are in use around the world (Adam and Lettenmaier, 2003).

Particularly low catch ratios are observed in case of snow. In case of precipitation time

series, it is therefore important to correct e.g. precipitation in January 1965 more than

in January 1966, if a larger fraction of precipitation fell as snow in January 1965 than15

in 1966. This adjustment was done using the empirical function R of Legates (1987)

which relates snow as a fraction of total monthly precipitation to monthly temperature

T , with

R =
1

1 + 1.61(1.35)T
(3)

Correction of GPCC 1961–1990 precipitation according to Eq. (1) increased the global20
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mean by 11.6%, from 708 mm/yr to 790 mm/yr, with increases of annual precipitation

ranging between a few percent and 30% in most areas of the globe. The relative

changes of the CRU precipitation due to correction are very similar.

3 Results

3.1 Groundwater recharge5

The global map of long-term average diffuse groundwater recharge for the period

1961–1990 (Fig. 5a) presents the ensemble mean of two WGHM model runs with

either GPCC or CRU precipitation data as input. The mean represents a best estimate

because the quality of the two precipitation data sets is judged to be equal. Both pre-

cipitation data sets have been corrected for observational errors by the same method.10

Grid-scale groundwater recharge ranges from 0 to 960 mm/yr, with the highest values

occurring in the humid tropics. Values over 300 mm/yr are also computed for some

parts of northwestern Europe and the Alps. Europe is the continent with the smallest

fraction of regions with groundwater recharge below 20 mm/yr. Such low values occur

in the dry subtropics and in Arctic regions (mainly due to permafrost).15

Figure 5b shows the uncertainty of estimated groundwater recharge that is due to

the use of two different precipitation data sets. The absolute difference between GPCC

(or CRU) groundwater recharge per grid cell and the ensemble mean ranges between

0 and 186 mm/yr, and at the scale of the 0.5
◦

grid cell, the percent differences can be

quite high (compare Figs. 5a and b). The spatial pattern of uncertainty is due to the20

combination of 1) the often very high differences between the precipitation data sets

(Fig. 4), and 2) the runoff coefficients and correction factors, which are equal within

each river basin and differ between the GPCC and CRU model runs.

The differences between the results for the two precipitation data sets become, in

general, smaller with increasing size of the considered area, e.g. for countries (Ap-25

pendix B) and continents (Table 1). For 50 out of the 165 countries considered, the
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deviation from the mean was less than 1%, for 62 between 1 and 5%, for 43 between

5 and 20% and for 10 between 20 and 80%. Deviations of more than 50% occurred

in case of the arid countries Kuwait, Qatar, Saudi Arabia and Western Sahara (Ap-

pendix B). At continental and global scales, the uncertainty of groundwater recharge

due to the two different data sets becomes insignificant, except for the dry Australia5

and Oceania (Table 1).

For all land areas of the Earth, excluding Antarctica, groundwater recharge and thus

renewable groundwater resources are estimated to be 12 666 km
3
/yr, while the conti-

nental values range from 404 km
3
/yr for Australia and Oceania to 4131 km

3
/yr for South

America (Table 1). Appendix B lists average groundwater recharge in 165 countries10

with an area of more than 10 000 km
2
.

To estimate the renewable groundwater resources that are potentially available for

humans in a specific area, groundwater recharge is divided by the population of this

area. The ideal spatial unit for this computation corresponds to the lateral extent of the

shallow aquifer which stores the groundwater recharge or the extent of a deep aquifer15

which is hydraulically connected to the recharge. However, the required spatial infor-

mation about the groundwater bodies is not available at the global scale. River basins,

which are considered to be the most appropriate spatial scale for surface water flow

assessments, are not appropriate spatial units for assessing groundwater resources

as aquifer boundaries do not necessarily correspond to river basins boundaries. In the20

case of non-local aquifers, a 0.5
◦

grid cell is too small a spatial unit, because in many

aquifers, a groundwater well in one cell draws water that is hydraulically connected

to water in many more cells. Thus, to give an impression of the global distribution of

groundwater resources per person, the average values for countries, or, in the case of

eleven large countries (Argentina, Australia, Brazil, Canada, China, India, Kazakhstan,25

Mexico, Mongolia, Russia and USA), for the first level of subnational units are shown

in Fig. 6. Population numbers are representative for the year 2000, and are taken from

the Gridded Population of the World version 3 (GPWv3) data set (CIESIN, 2005).

Renewable groundwater resources, at that scale of aggregation, range from
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8 m
3
/(capita yr) for Egypt to more than 1 million m

3
/(capita yr) for the Falkland Is-

lands. Please note that recharge from surface waters to the groundwater is not

counted as groundwater resources here. All countries in Northern Africa and the

Near East except Libya have average per-capita groundwater resources of less than

500 m
3
/(capita yr). Even humid countries can have per-capita groundwater resources5

below 1000 m
3
/(capita yr) if population density is high, like The Netherlands, Vietnam,

Japan or Germany. Per-capita renewable groundwater resources for countries are tab-

ulated in Appendix B. Figure 6 shows that except for Canada and Australia per-capita

groundwater resources vary strongly within the large countries that were subdivided.

In the USA, the lowest values occur in the Southwest, while in Mexico, the northern10

parts and the densely populated states in the central part show the smallest per-capita

groundwater resources. In Brazil, the difference between the water-rich and population-

poor Amazon basin and the rest of the country becomes visible. In Argentina, only

the semi-arid western states have low per-capita groundwater resources because the

semi-arid southern states have low population densities. In Russia, Mongolia, Aus-15

tralia and Canada, population density dominates the spatial pattern. Of the large coun-

tries, India has the lowest per-capita groundwater resources, with 273 m
3
/(capita yr)

on average (Appendix B), while most federal states are below 250 m
3
/(capita yr). The

average value for China is 490 m
3
/(capita yr), but some densely populated northern

states as well as the semi-arid Northwest show per-capita groundwater resources be-20

low 250 m
3
/(capita yr).

In 2000, average per-capita groundwater resources were 2091 m
3
/(capita yr) glob-

ally (Table 1). Australia and Oceania, due to the low population density, shows the

highest continental value, while Asia has the lowest value due to its high population

density, even though it is the continent with the second highest groundwater resources25

(in km
3
/yr) (Table 1).
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3.2 Groundwater recharge as compared to total runoff

Net cell runoff (Sect. 2.1.1) is the best estimate of total water resources of a cell. It

includes runoff from land, lakes and wetlands, and it takes into account the decrease

of runoff due to evapotranspiration from open water surfaces. Therefore, under semi-

arid conditions, net cell runoff can be less than zero if water flows into the cell’s lakes5

and wetlands from upstream. Net cell runoff is equal to the internally renewable water

resources of the cell if consumptive water use in the cell and upstream has been set

to zero in the model run. Figure 7 shows the global distribution of net cell runoff for

the case of no consumptive water use. Total and continental values of total renewable

water resources are listed in Table 1. Compared to values of Döll et al. (2003), net cell10

runoff is significantly higher in most northern snow-dominated areas (Canada, Scandi-

navia, Siberia) due to the precipitation correction applied here. This is the main reason

that the global estimate of total water resources, 39 414 km
3
/yr, is 7% larger than the

value presented in Döll et al. (2003). Besides, the spatial pattern of runoff is more var-

ied than before, particularly in Siberia where many more river discharge stations have15

been available for tuning WGHM version 2.1f.

Total internally renewable water resources of a country are equal to the sum of net

cell runoff of all cells within the country. They can be smaller than the groundwater

resources, or even negative. The latter is the case in Botswana, Egypt and Malawi,

where more water evapotranspirates from land, wetlands and lakes than falls as pre-20

cipitation inside the country (Appendix B). The groundwater resources of Chad, Iraq,

Mali, Senegal, Sudan, The Gambia, Uganda and Zambia are larger than the total in-

ternally renewable water resources (Appendix B) due to evaporation of external water

from open water surfaces. In the above countries as well as other semi-arid countries

that are strongly affected by evaporation from surface waters (e.g. Azerbaijan, Burk-25

ina Faso and Central African Republic), groundwater use may have the potential to

decrease evaporation from surface waters and thus to increase total water resources.

With 86 and 74%, The Netherlands and Denmark are the countries with the largest per-
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centage of groundwater recharge (not caused by evapotranspirative losses from lakes

and wetlands), followed by Poland and The Republic of Congo, with values over 70%

(Appendix B). 21 countries have ratios between 50 and 70%, and 13 dry countries as

well as Greenland, Svalbard, Nepal and Bhutan have ratios below 15% (Appendix B).

Globally, 32% of the total water resources are groundwater resources (Table 1). Asia5

and North and Central America are the continents with the smallest percentage (25%),

while in Africa groundwater resources account for 51% of the total water resources.

As explained above, this is mainly due to evaporative losses from open water surfaces

which decreases total water resources and thus increases the percentage of ground-

water resources.10

Groundwater recharge as a fraction of total runoff from land (GWRF) is analyzed

to identify areas where water resources are relatively vulnerable to pollution and sea-

sonal and inter-annual flow variability because a relatively large part of runoff rapidly

drains to surface waters. Total runoff from land is the sum of groundwater recharge

and fast surface and subsurface runoff (Fig. 1) and does not include evapotranspi-15

ration from surface water. GWRF is equal to the baseflow index if all groundwater

recharge reaches the river. GWRF ranges from 0 to 0.95 at the scale of grid cells

(Fig. 8). Regions with GWRF of more than 0.7 include plains in Europe and the Asian

part of Russia, and some other lowland areas scattered around the globe. GWRF be-

low 0.3 occur in most semi-arid and arid regions, except those with a fine soil texture20

(which is due to the groundwater recharge algorithm applied in WGHM, Sect. 2.1.2),

in mountainous areas like the Alps or the Ural, in the Arctic (due to permafrost) and in

the Asian monsoon regions, where only a small part of heavy precipitation serves to

recharge the groundwater. These regions are particularly vulnerable to seasonal and

inter-annual precipitation variability and water pollution.25
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4 Quality of computed groundwater recharge estimates

While the quality of simulated river discharge can be assessed easily by comparison to

discharge as observed at gauging stations, it is much more difficult to assess the quality

of simulated groundwater recharge, as groundwater recharge cannot be measured

directly, and there are no long-term observations at all. Thus, a quality assessment of5

simulated groundwater is hampered by the generally high uncertainty of independent

estimates of groundwater recharge (compare Sect. 1).

Comparing simulated grid cell groundwater recharge with estimates of groundwater

recharge from chloride profiles in semi-arid areas, we concluded that WGHM computes

an unbiased estimate of groundwater recharge under semi-arid conditions (Fig. 3). A10

comparison against estimates of groundwater recharge in countries is possible, as FAO

(2005) provides estimates for 157 countries. However, most of these values cannot be

considered to be reliable, as they are not based on measurements or well-founded

computations (see discussion in Sect. 1), such that they are only a very weak basis

for model validation. Comparing simulated groundwater recharge with the indepen-15

dent estimates in Fig. 9, it can be seen that modification of the groundwater recharge

algorithm for semi-arid areas almost eliminates the bias towards an overestimation of

groundwater recharge in “semi-arid” countries (70 out of the 157 countries). Here,

countries are called “semi-arid” if more than 34% of the country’s cells are defined

as semi-arid in this investigation (comp. Sect. 2.1.2). The modification of the WGHM20

groundwater recharge algorithm reduces simulated total groundwater recharge in semi-

arid countries that are included in the FAO (2005) data set from 3690 to 3305 km
3
/yr,

as compared to 3229 km
3
/yr according to FAO (2005). Modeling efficiency remains

low, even though it improves from 0.16 to 0.20 for recharge in mm/yr (and from 0.89 to

0.90 for recharge in km
3
/yr).25

The analysis of modeling efficiency obviously relies on the highly uncertain estimates

of groundwater resources per country by FAO (2005). For Finland, Germany and the

USA, FAO estimates were replaced in Fig. 9. Average groundwater recharge for Fin-
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land of 85 mm/yr (Lavapuro et al., 2007) appears to be more realistic than the FAO

value of 7 mm/yr (given a precipitation of 660 mm/yr), and for Germany the recently de-

rived value of 135 mm/yr (Jankiewicz et al. 2005) was used instead of the FAO-value of

128 mm/yr. For the USA, the WRI (2000) value replaced the FAO (2005) value as the

latter is twice as high as the first (and the WGHM value). In FAO (2005), this value is5

related to a total runoff value that is equal to 54% of total precipitation, while the com-

puted WGHM total runoff, which is bounded by many discharge observations, is only

37% of precipitation. However, there remain many countries for which the independent

estimates of groundwater resources seem to be unrealistic. One example is the United

Kingdom, with groundwater resources according to FAO (2005) of only 40 mm/yr, as10

compared to 590 mm/y surface water resources, whereas WGHM computes ground-

water resources of 322 mm/yr and total water resources of 792 mm/yr. While for Brunei

Darussalam, with a precipitation of 2700 mm/yr, groundwater recharge is estimated at

only 17 mm/yr by FAO, for Réunion, with a comparable precipitation of 3000 mm, FAO

provides an estimate of 1056 mm/yr.15

For the 87 humid countries, modeling efficiency is 0.11 for recharge in mm/yr (0.86

for recharge in km
3
/yr), whereas the overall modeling efficiency for all countries is 0.33

(for mm/yr) and 0.87 (for km
3
/yr). Of the countries with a groundwater recharge of

more than 100 km
3
/yr, computed and independent estimates differ by less than 10%

in case of Argentina, Cameroon, Colombia, Myanmar, Peru, Russia and USA. WHGM20

overestimates the independent estimates by more than 10% in case of Bolivia, Brazil,

Canada, Democratic Republic of Congo, and Indonesia, and underestimates them in

case of Chile, China, Guyana, India, Mexico, Philippines, and Republic of Congo. In

conclusion, WGHM can certainly not explain the independent groundwater resources

estimates, but it is not clear to what extent this is equal to not being able to model reality.25

Possibly, the soil texture-specific maximum groundwater recharge values (infiltration

capacity) in Eq. (1) and Table A1 should be increased considering that groundwater

recharge in most monsoon countries is underestimated (but overestimated in Indochina

and Indonesia).
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Simulated groundwater recharge in those humid countries that are included in the

FAO data set is 8912 km
3
/yr, as compared to 7299 km

3
/yr according to FAO. Com-

puted global groundwater recharge of 12 666 km
3
/yr (Table 1) is 10% larger than the

value estimated by L’vovich (1979) by a global-scale baseflow analysis for almost 1500

rivers (800 of them in the former Soviet Union). However, no discharge data had been5

available to L’vovich for 80% of South America, 20% of Africa (not counting the Sahara

and the Kalahari), 60% of Australia (not counting the desert), and some parts of Asia

and Canada.

For Germany, computed long-term average groundwater recharge at the scale of

0.5
◦

grid cells can be compared to values that were obtained by multiple regression10

with a spatial resolution of 1 km by 1 km, using baseflow as derived from 106 observed

hydrographs (Jankiewicz et al., 2005). For the whole of Germany, average ground-

water recharge and total runoff from land are 135 mm/yr and 327 mm/yr (Jankiewicz

et al., 2005) vs. 199 mm/yr and 397 mm/yr (WGHM), respectively. Average baseflow

coefficients are thus 0.41 (Jankiewicz et al., 2005) and 0.50 (WGHM). Thus, both av-15

erage groundwater recharge and baseflow coefficient for Germany are overestimated

by WGHM. In particular, groundwater recharge in the wet northwestern part is overes-

timated (Fig. 10). This may originate from the fact that artificial drainage for agricultural

purposes, which increases fast subsurface runoff, is not taken into account by WHGM

but by Jankiewicz et al. (2005). Besides, groundwater recharge in the eastern part of20

Germany is overestimated which is partially due to an overestimation of total runoff

particularly in the North, and partially to higher baseflow indices in WGHM. Baseflow

indices (BFI) of Jankiewicz et al. are mainly in the range of 0.5 to 0.75 (Jankiewicz et

al., 2005, their Fig. 10) while BFIs of WGHM are mainly in the range of 0.75 to 0.95.

Besides, Jankiewicz et al. (2005) reduced groundwater recharge where distance to25

groundwater is small, i.e. in floodplains (Fig. 10a).

The larger WGHM BFIs, however, fit well to the values of Haberlandt et al. (2001)

who derived BFIs for the German Elbe basin, which covers most of eastern Germany.

Haberlandt et al. (2001) also regionalized BFIs by multiple regression. For most sub-
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basins in the central and northern Elbe basin, they obtained BFIs>0.8 (Fig. 11 in

Haberlandt et al., 2001). The difference of BFIs between Haberlandt et al. (2001)

and Jankiewicz et al. (2005) are most likely due to the different methods of deriving

baseflow that serves as the basis for multiple regression and regionalization. While

Jankiewicz et al. (2005) used an automatic method for hydrograph separation based5

on daily river discharge, Haberlandt et al. (2001) used baseflow as computed by two

models which simulated discharge in 25 small subbasins of the Elbe in a satisfactory

manner. While WGHM underestimates the baseflow indices of Jankiewicz et al. (2005)

in the Elbe river basin, WGHM baseflow indices are similar to those of Haberlandt et

al. (2001).10

Finally, WGHM baseflow coefficients for Southern Africa are compared to base-

flow indices from hydrograph separation at discharge observation stations in South-

ern Africa, mapped onto the pertaining basins (Bullock et al., 1997, their Fig. 4.35).

However, on their figure, the basin outlines cannot be recognized such that it is not

possible to show the corresponding pattern of average WGHM baseflow indices for the15

basins. Figure 11 shows how the baseflow indices as computed for individual grid cells

by WGHM compare to the average basin BFIs of Bullock et al. (1997). The colors of

small polygons can be compared most directly, while for larger polygons, the grid cell

values within the polygon must be averaged. The spatial pattern of BFI on both maps

is somewhat consistent, with values below 0.1 in the westernmost basins in Namibia20

and values between 0 and 0.3 in southern and eastern central South Africa. Towards

the more humid North, in Angola and Zambia, both maps show larger BFI values, but

WHGM values remain between 0.6–0.8 while the Bullock et al. values are above 0.8.

5 Conclusions

The global 0.5
◦

by 0.5
◦

data set of long-term average groundwater recharge presented25

here is unique in that it combines state-of-the-art global scale hydrological modeling

with independent information on small-scale groundwater recharge in semi-arid and
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arid areas in an ensembles approach which takes into account and quantifies the

uncertainty due to available precipitation data. Basin-specific tuning of the Water-

GAP Global Hydrology Model WGHM against river discharge at 1235 stations world-

wide helps to compute reasonable estimates of total runoff from land. Inclusion of a

large number of spatially variable climatic and physio-geographic characteristics (in-5

cluding land cover, soil water holding capacity, soil texture, relief, hydrogeology, per-

mafrost/glacier) allows a well-founded estimate of groundwater recharge distribution.

Consideration of reliable information on long-term average groundwater recharge at

selected semi-arid locations world-wide made it possible to obtain an unbiased es-

timate of groundwater recharge in semi-arid areas. Finally, using the mean of two10

groundwater recharge estimates as obtained by applying two different and equally un-

certain global precipitation data sets make the resulting groundwater recharge data set

more robust, while at the same time uncertainty estimates are provided.

Due to the scarcity of reliable independent information on groundwater recharge at

all scales, but particularly at the scale of countries or subnational units, it is difficult to15

judge how well the computed groundwater recharge estimates correspond to reality. In

particular, a comparison to country estimates of groundwater resources as compiled

by FAO (2005) does not help. In most cases the method of estimation is unknown

and likely to be very rough, while in some cases the listed renewable groundwater

resources are obviously not defined as being equivalent to groundwater recharge. A20

comparison of independent estimates of groundwater recharge or rather baseflow co-

efficients that were derived using well-founded scientific methods (Jankiewicz et al.,

2005; Haberlandt et al., 2005) showed that uncertainty of baseflow estimation from

river discharge may lead to significantly different estimates of meso-scale baseflow in-

dices and thus groundwater recharge. At the global scale, WGHM would overestimate25

groundwater recharge by about 10–20% if the base-flow derived estimates of L’vovich

(1979) and the FAO country values were to be trusted.

A problem with the WGHM groundwater recharge estimation method is that there

are sharp boundaries between semi-arid/arid and humid zones which lead to rather
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abrupt reductions of computed groundwater recharge at the boundaries. In semi-arid

zones close to the boundaries groundwater recharge may be underestimated (unless

soil texture is fine).

In the future, artificial drainage will be taken into account based on a global data set

of artificially drained agricultural areas (spatial resolution 0.5
◦
) because groundwater5

recharge is reduced in these areas. According to the data set of Feick et al. (2005),

1.67 million km
2

are drained world-wide, i.e. 1.2% of the global land area without Green-

land and Antarctica. Further validation and improvement of the WGHM groundwa-

ter recharge model requires an increased number of reliable estimates of groundwa-

ter recharge. A large number of independent estimates of small-scale groundwater10

recharge in semi-arid areas, compiled by Scanlon et al. (2006), will be evaluated. Val-

idation and improved modeling of groundwater recharge in humid areas is hampered

by uncertainties of hydrograph separation.

The presented diffuse groundwater recharge estimates can be regarded as renew-

able groundwater resources. It is important to note, however, that exploitation of the15

total groundwater recharge of an aquifer is not possible without very strong impacts on

ecosystems and other water users. Withdrawal of a sizeable part of the groundwater

recharge already leads to significant drawdown of the water table, with ensuing conse-

quences e.g. for wetlands, and a decrease of streamflow. Thus groundwater recharge

is the uppermost limit of sustainably exploitable groundwater resources.20

Appendix A

Description of factors in the groundwater recharge model of WGHM

The following sections describe how the factors in the groundwater recharge model as

given by Eq. (1) have been quantified, providing methods and data sources.25
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A1 Relief

Based on the GTOPO30 digital elevation model with a resolution of around 1 km (USGS

EROS data center), IIASA produced a map of slope classes with a resolution of 5 min

(data provided by Günther Fischer, February 1999) which includes the fraction of each

cell that is covered by a certain slope class. Seven slope classes are distinguished5

(Table A1). The 5-min-map was aggregated and mapped onto the 0.5
◦
×0.5

◦
land mask,

such that the percentage of each slope class with respect to the total land area of each

0.5
◦

cell is produced. An “average relief” ravg , ranging from 10 to 70, is computed as

ravg =

7
∑

i=1

slope classi ∗ 10 ∗ fraci (A1)

frac i = areal fraction of slope class i within the 0.5
◦

cell.10

The relief-related groundwater recharge factor fr for each slope class is given in Table

A1. For each cell with an average relief ravg, the respective value for fr is obtained by

linear interpolation.

A2 Texture

Soil texture does not only determine the factor ft in Eq. (1), but also the maximum15

infiltration rate Rgmax. Soil texture is derived from the FAO Digital Soil Map of the

World and Derived Soil Properties (FAO, 1995). The digital map shows, for each 5
′

by 5
′

raster cell, the soil mapping unit. For each of the 4931 soil mapping units, the

following information is provided:

– names of up to 8 soil units that constitute the soil mapping unit20

– the area of each soil unit in percent of the total area of the soil mapping unit

– the area of each soil unit belonging to one of three texture classes and to one of

three slope classes
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The soil texture provided by FAO is only representative for the uppermost 30 cm of the

soil. We assigned a texture value of 10 to coarse texture, a value of 20 to medium

and a value of 30 to fine texture (Table A2). Based on the FAO information, an areally

weighted average texture value was computed for the 5
′
cells, which was then averaged

for land area of each 0.5
◦

cell. For the following soil units, texture was not given: dunes,5

glacier, bare rock, water, and salt. The texture value of dunes was set to 10. All other

four soil unit types were not taken into account for computing the areal averages (the

bare rock extent in the FAO data set appears to be much too small). Therefore, in a

cell with e.g. 20% water or bare rock, the texture value of the cell is 15 if 40% of the

area is covered with coarse soils and 40% with medium soils. If the total cell area is10

water, the texture value is set to 0; if it is bare rock or glacier (only very few cells), the

texture value equals 1. In these cases, surface runoff is assumed to be equal to total

runoff. For some cells (Greenland and some islands), no texture data are provided by

FAO. In this case, the texture was assumed to have a texture value of 20.

A3 Hydrogeology15

A global hydrogeological map does not exist. Only for Europe and Africa, there are

hydrogeological maps, which, however, use very different classifications. The Hydro-

geological Map of Pan-Europe (RIVM, 1991) distinguishes among areas with good,

modest, poor and no hydraulic conductivity. A hydrogeological map of Africa (UN,

1988) was derived from a geological map and only gives information on porosity but20

not on the more important hydraulic conductivity. A map of groundwater resources in

Africa (UNDTCD, 1988) provides additional information on extensive unconfined and

confined sedimentary aquifers and local, fragmented fractured aquifers.

On the global scale, only geological maps do exist. The digital Generalized Geologi-

cal Map of the World (Canadian Geological Survey, 1995) provides, on a scale of 1:3525

million, information on the rock type and the rock age. Rock type classes are “mainly

sedimentary”, “mainly volcanic”, “mixed sedimentary”, “volcanic and volcaniclastic plu-

tons”, “intrusive and metamorphic terranes”, “tectonic assemblages, schist belts and
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melanges”, “ice cap (Greenland)”. From this map, the dominant rock type and rock age

for the land area of each 0.5
◦
×0.5

◦
cell was assigned to the respective cell.

However, this rock type classification is not very helpful for estimating where ground-

water recharge is relatively high and where not, as rock type classes only show a

low correlation with the hydraulic conductivity of the rock. In particular, sedimentary5

rocks include both sands and clays, which have extremely different hydraulic conduc-

tivities. For non-sedimentary rocks, the degree of fracturing is decisive for the hydraulic

conductivity, and this information is not given either. For Europe, the rock types in com-

bination with the rock ages were compared to the Hydrogeological Map of Pan-Europe.

It appears that all rock types except the type “mainly sedimentary” correlate to some10

degree with areas of poor or no hydraulic conductivity. The “mainly sedimentary” rock

type corresponds mainly to good or modest hydraulic conductivity if the rock age is

either Cenozoic or Mesozoic. Paleozoic sedimentary rocks can have any hydraulic

conductivity, while Precambrian sedimentary rocks mostly have poor or no permeabil-

ity. Based on this comparison to the Hydrogeological Map of Pan-Europe, only a very15

rough classification of hydrogeological units relevant for groundwater recharge appears

to be appropriate (Table A3). This classification was checked against the maps for

Africa, and no systematic error became apparent.

High temperature and precipitation enhances weathering. Therefore, groundwater

recharge is assumed to be higher in warm and humid climates. The aquifer-related20

recharge factors fa are modified based on the long-term (1961–1990) average annual

temperature and precipitation in each cell (Table A3).

A4 Permafrost and glaciers

It is assumed that there is no groundwater recharge in the case of permafrost and

glaciers. Therefore, a data set was produced that provides the percentage of the land25

area of each cell that is underlain by permafrost or covered by glaciers. The higher this

percentage is the smaller is the fraction of total runoff that recharges the groundwater.

Brown et al. (1998) provide digital data for the extent of permafrost on the northern
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hemisphere, including information on glaciers in North America and the Arctic islands

(like Spitzbergen and Nowaja Semlja). Table A4 lists the five classes of permafrost ex-

tent according to Brown et al. (1998) The coverage classes were related to the average

areal coverage value Cpg. For North America and the Arctic islands, some map units

within permafrost areas are not assigned to any permafrost extent class but are classi-5

fied as glaciers. However, on the rest of the map, e.g. in Norway or in the Himalayas, no

information on glaciers is given, and the permafrost areas are continuous. The glacier

areas in North America and the Arctic islands were assigned a value of Cpg=100%.

The permafrost map was rasterized on a grid of 1/18
◦
×1/18

◦
, each cell being as-

signed to one of the five classes in Table A4 or to the class “glacier”. Then, the areal10

percentage of permafrost and glacier coverage within each 0.5
◦

cell was determined

as the average of the C-values of the 1/18
◦
×1/18

◦
cells that are land cells on Brown et

al. (1998) map.

For the southern hemisphere, no reliable maps of permafrost areas could be found,

which is due to the sporadic occurrence of permafrost and the little research done.15

Thus, the impact of permafrost on groundwater recharge was neglected for the south-

ern hemisphere.

In the next step, the glacier coverage for the land areas outside North America and

the Arctic was added. The glacier coverage was derived from the World Glacier In-

ventory (Hoelzle and Haeberli, 1999); in this inventory, the approximate location of20

the center of each glacier and its areal extent is provided. Glaciers with an areal ex-

tent of at least 1 km
2

were taken into account, which resulted in 8998 glaciers globally

(outside North America and the Arctic islands, and not considering Greenland and the

Antarctic). For each 0.5
◦

cell, the areal extents of all glaciers located within the cell

were summed up. When a cell only has glaciers and no permafrost, the fraction of the25

glacial area with respect to the total land area of the cells is equal to the value Cpg. If

there are both permafrost and glaciers (outside North America and the Arctic islands)
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within a 0.5
◦

cell, Cpg is computed as

Cpg =

100 ∗ Agl + Cpg(permafrost) ∗ (Aland − Agl )

Aland

(A2)

Agl = sum of all glacial area in a 0.5
◦

cell [km
2
]

Cpg(permafrost) = average Cpg-value due to permafrost

Aland = land area of 0.5
◦

cell [km
2
]

The factor fpg is assumed to be linearly related to Cpg, with fpg=1 if Cpg=0% (no

decrease of groundwater recharge due to glaciers and permafrost if neither of them5

occurs) and fpg=0 if Cpg=100% (no groundwater recharge if the cell is totally covered

by glaciers).

Appendix B

Renewable groundwater resources and total renewable water resources10

of countries as computed by WGHM for the climate normal 1961–1990

The internally renewable water resources of countries are equal to the difference of

lomg-term average precipitation and evapotranspiration within a country. In semi-arid

countries, it can be negative if inflow from other countries evapotranspirates within the

country. The internally renewable groundwater resources are equal to the groundwater15

recharge within the countries; they are always positive. In Table B1, the means of the

total and groundwater resources computed with GPCC and CRU precipitation data for

1961–1990 are listed together with the percent deviation from the mean (difference

between resources as computed with either one of the two precipitation data sets and

the ensemble mean value), which shows the uncertainty of the model estimates due20

to the uncertain precipitation input data. B/A represents groundwater resources in

percent of total water resources. In some semi-arid countries, it can be larger than
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100% or negative because total water resources are reduced by evapotranspiration

from surface water bodies. Only countries with an area of more than 10 000 km
2

are

listed.
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Haberlandt, U., Klöcking, B., Krysanova, V., and Becker, A.: Regionalisation of the base flow

index from dynamically simulated flow components – a case study in the Elbe River Basin,

J. Hydrol., 248, 35–53, 2001.

Hevesi, J. A., Flint, A. L., and Flint, L. E.: Simulation of Net Infiltration and Potential Recharge5

Using a Distributed-Parameter Watershed Model of the Death Valley Region, Nevada and

California, USGS Water-Resources Investigations Report 03-4090, Sacramento, 2003.

Hoelzle, M. and Haeberli, W.: World Glacier Inventory. World Glacier Monitoring Service, Na-

tional Snow and Ice Data Center, University of Colorado, Boulder, 1999.
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Neumann, J.: Flächendifferenzierte Grundwasserneubildung von Deutschland – Entwicklung

und Anwendung des makroskaligen Verfahrens HAD-GW Neu, Dissertation, Martin-Luther-

4101

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/4069/2007/hessd-4-4069-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/4069/2007/hessd-4-4069-2007-discussion.html
http://www.egu.eu


HESSD

4, 4069–4124, 2007

Global-scale

modeling of

groundwater

recharge
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Table 1. Long-term average continental groundwater resources (total and per capita) and total

water resources as computed by WGHM for the climate normal 1961–1990. Deviation refers

to the absolute difference between water resources as computed with either one of the two

precipitation data sets and the ensemble mean value, in percent of the mean.

Continent Total renewable Deviation Renewable Deviation B/A Per capita

water resources groundwater renewable

A resources groundwater

B resources
e

[km
3
/yr] [%] [km

3
/yr] [%] [%] [m

3
/cap yr]

Africa 4065 1.8 2072 1.4 51 2604

Asia
a,b

13168 1.0 3247 1.6 25 873

Australia and Oceania 1272 4.2 404 3.1 32 14578

Europe
a

3104 1.7 1191 0.8 38 1740

North/Central America
c

6493 1.0 1621 0.6 25 3336

South America 11310 0.3 4131 0.6 37 11949

Total land area
d

39414 0.02 12666 1.1 32 2091

a
Eurasia is subdivided into Europe and Asia along the Ural; Turkey is assigned to Asia.

b
Including the whole island of New Guinea.

c
Including Greenland.

d
Excluding Antarctica.

e
Population data based on CIESIN GPWv3 for the year 2000.
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Table A1. Slope classes and the relief-related groundwater recharge factor.

slope class slope [%] relief ravg fr

1 0–2 10 1

2 2–5 20 0.95

3 5–8 30 0.90

4 8–16 40 0.75

5 16–30 50 0.60

6 30–45 60 0.30

7 >45 70 0.15
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Table A2. Soil texture classes and the texture-related groundwater recharge factors.

FAO soil texture class texture value Rgmax

[mm/d]

ft

coarse:

sands, loamy sands and sandy loams with less than 18%

clay and more than 65% sand

10 5 1

medium:

sandy loams, loams, sandy clay loams, silt loams, silt, silty

clay loams and clay loams with less than 35% clay and less

than 65% sand; the sand fraction may be as high as 82% if

a minimum of 18% clay is present

20 3 0.95

fine:

clays, silty clays, sandy clays, clay loams and silty clay loams

with more than 35% clay

30 1.5 0.7

rock or glacier (in 100% of cell land area) 1 0 0
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Table A3. Hydrogeological units relevant for groundwater recharge and the aquifer-related

groundwater recharge factors.

Hydrogeological units unit fa fa in hot and

humid climates*

Cenozoic and Mesozoic sediments 1 1 1

with high hydraulic conductivity

Paleozoic and Precambrian sediments y 2 0.7 0.8

with low hydraulic conductivit

non-sedimentary rocks with 3 0.5 0.7

very low hydraulic conductivity

* Average annual temperature more than 15
◦
C and average annual precipitation more than

1000 mm (average climatic conditions 1961–1990).

4107

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/4069/2007/hessd-4-4069-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/4069/2007/hessd-4-4069-2007-discussion.html
http://www.egu.eu


HESSD

4, 4069–4124, 2007

Global-scale

modeling of

groundwater

recharge
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Table A4. Permafrost extent classes.

Permafrost extent class according to original Cpg corresponding to fpg
permafrost map each class [%]

continuous extent of permafrost (90–100%) 95 0.05

discontinuous extent of permafrost (50–90%) 70 0.3

sporadic extent of permafrost (10–50%) 30 0.7

isolated patches of permafrost (0–10%) 5 0.95

areas without occurrence of permafrost 0 1

glacier 100 0
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Table B1. Renewable groundwater resources and total renewable water resources of countries

as computed by WGHM for the climate normal 1961–1990.

Country Population

in 2000

[thousand]

Internally

renewable

water

resources

A

[mm/yr]

Dev.

(+/−)

[%]

Internally

renewable

groundwater

resources

B

[mm/yr]

Dev.

(+/−)

[%]

B/A

[%]

Per-capita inter-

nally renewable

groundwater

resources

[m
3
/(capita yr)]

Afghanistan 21 765 89.7 19.2 10.0 13.3 11.1 294

Albania 3134 670.9 4.8 191.2 2.6 28.5 1711

Algeria 30 291 15.8 31.3 2.6 19.9 16.7 201

Angola 13 134 176.4 4.5 104.7 6.4 59.4 9687

Argentina 37 032 125.2 12.8 53.2 6.9 42.5 3754

Armenia 3787 97.7 20.8 25.7 18.5 26.3 192

Australia 19 138 100.6 2.7 34.1 0.5 33.9 13 514

Austria 8080 632.3 1.7 163.4 0.5 25.8 1660

Azerbaijan 8041 44.7 7.5 33.3 9.8 74.5 351

Bahamas 304 222.8 3.9 129.5 0.9 58.1 4771

Bangladesh 137 439 797.3 0.6 245.0 0.3 30.7 86

Belarus 10 187 142.1 4.5 95.1 3.6 66.9 1795

Belgium 10 249 394.6 2.7 275.2 1.7 69.7 817

Belize 226 759.6 4.8 327.0 2.3 43.0 31 314

Benin 6272 131.3 3.0 86.3 2.2 65.7 1558

Bhutan 2085 597.5 11.1 76.6 8.4 12.8 1328

Bolivia 8329 327.1 3.5 146.0 0.9 44.6 18 071

Bosnia and Herzegovina 3977 602.9 3.0 226.3 3.8 37.5 2906

Botswana 1541 −13.5 24.5 18.5 3.5 −137.2 6655

Brazil 170 406 631.0 1.6 325.8 0.9 51.6 14 610

Bulgaria 7949 197.5 9.4 76.7 7.4 38.8 1055

Burkina Faso 11 535 49.2 0.6 38.9 1.5 79.0 902

Burundi 6356 245.9 0.8 104.1 2.5 42.3 407

Cambodia 13 104 637.9 14.7 267.7 0.2 42.0 3170

Cameroon 14 876 500.0 2.5 234.2 0.4 46.8 6992

Canada 30 757 274.8 0.7 83.4 0.6 30.4 20 366

Central African Republic 3717 193.3 3.6 148.1 1.6 76.6 23 698

Chad 7885 18.2 17.5 30.2 1.9 165.7 4343

Chile 15 211 527.9 11.9 80.5 0.0 15.2 3810

China 1 275 133 241.1 1.5 68.8 0.2 28.5 490

Colombia 42 105 1606.4 4.4 445.5 1.5 27.7 11 307

Congo (DRC) 50 948 408.6 1.3 247.1 2.8 60.5 10 446

Congo (RC) 3018 488.9 1.9 349.0 1.9 71.4 29 713
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Table B1. Continued.

Country Population

in 2000

[thousand]

Internally

renewable

water

resources

A

[mm/yr]

Dev.

(+/−)

[%]

Internally

renewable

groundwater

resources

B

[mm/yr]

Dev.

(+/−)

[%]

B/A

[%]

Per-capita inter-

nally renewable

groundwater

resources

[m
3
/(capita yr)]

Costa Rica 4024 1708.9 8.0 353.4 0.2 20.7 4081

Cote d’Ivoire 16 013 286.1 2.9 136.4 4.1 47.7 2706

Croatia 4654 517.2 6.2 239.5 0.7 46.3 2843

Cuba 11 199 288.3 9.9 111.0 5.6 38.5 1062

Czech Republic 10 272 208.8 0.3 92.1 0.1 44.1 692

Denmark 5320 487.9 2.6 362.5 1.6 74.3 2797

Djibouti 632 36.2 42.7 3.3 36.3 9.1 109

Dominican Republic 8373 361.2 16.6 120.2 9.2 33.3 691

Ecuador 12 646 1444.1 12.3 296.8 4.2 20.6 5565

Egypt 67 884 −9.1 44.1 0.6 8.6 −6.1 8

El Salvador 6278 610.8 8.3 229.8 8.9 37.6 739

Equatorial Guinea 457 1189.0 5.6 394.2 1.3 33.2 23 318

Eritrea 3659 61.6 7.4 5.9 16.4 9.5 193

Estonia 1393 275.7 1.8 172.4 1.4 62.5 5345

Ethiopia 62 908 135.8 4.0 39.1 1.6 28.8 690

Falkland Islands 2 370.0 3.2 225.6 0.2 61.0 1 104 476

Fiji 814 1162.5 10.0 288.6 7.8 24.8 6368

Finland 5172 306.5 1.1 127.5 0.3 41.6 7445

France 59 238 414.6 2.9 199.5 0.6 48.1 1825

French Guiana 165 1248.4 1.6 269.7 0.0 21.6 124 661

Gabon 1230 860.1 2.1 322.5 0.1 37.5 66 709

Gambia, The 1303 62.6 56.5 101.3 11.0 161.9 770

Georgia 5262 577.4 4.5 136.6 2.5 23.7 1795

Germany 82 017 315.6 1.5 200.7 0.3 63.6 861

Ghana 19 306 143.4 3.0 105.2 2.4 73.4 1232

Greece 10 610 313.5 1.3 90.5 0.4 28.9 1098

Greenland 56 144.4 17.9 6.5 12.6 4.5 239 740

Guatemala 11 385 1125.0 16.8 295.8 9.5 26.3 2794

Guinea 8154 634.7 3.8 212.2 0.6 33.4 6317

Guinea-Bissau 1199 563.5 5.0 204.6 2.7 36.3 5411

Guyana 761 863.4 11.6 364.9 4.0 42.3 91 912

Haiti 8142 361.1 49.2 99.5 34.8 27.6 326

Honduras 6417 730.2 5.9 231.7 5.6 31.7 3881
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Table B1. Continued.

Country Population

in 2000

[thousand]

Internally

renewable

water

resources

A

[mm/yr]

Dev.

(+/−)

[%]

Internally

renewable

groundwater

resources

B

[mm/yr]

Dev.

(+/−)

[%]

B/A

[%]

Per-capita inter-

nally renewable

groundwater

resources

[m
3
/(capita yr)]

Hungary 9968 107.2 4.6 72.9 4.3 68.0 668

Iceland 279 1191.5 4.1 306.3 2.9 25.7 106 189

India 1 008 937 455.1 10.7 93.1 0.9 20.5 273

Indonesia 212 092 1240.8 3.6 441.8 4.0 35.6 3719

Iran 70 330 48.8 9.4 15.1 5.5 31.0 331

Iraq 22 946 13.2 113.3 17.9 10.1 135.8 327

Ireland 3803 770.3 0.3 372.5 0.3 48.4 6603

Israel 6040 139.2 17.7 41.9 10.4 30.1 141

Italy 57 530 448.2 1.9 147.3 0.7 32.9 757

Jamaica 2576 603.7 51.3 136.8 33.2 22.7 588

Japan 127 096 990.4 4.2 278.7 2.3 28.1 798

Jordan 4913 35.9 44.5 12.2 12.5 34.0 215

Kazakhstan 16 172 33.6 2.8 10.4 1.5 30.8 1679

Kenya 30 669 85.1 9.8 46.0 5.8 54.1 822

Korea (Dem. People’s Rep.) 22 268 448.5 0.8 99.2 4.4 22.1 538

Korea (Republic of) 46 740 540.1 3.8 127.3 4.2 23.6 262

Kuwait 1914 29.7 12.0 1.2 54.1 4.1 11

Kyrgyzstan 4921 105.8 9.3 11.2 10.4 10.6 433

Laos 5279 853.6 3.1 236.2 6.0 27.7 10 071

Latvia 2421 274.3 0.6 159.1 0.4 58.0 4137

Lebanon 3496 370.0 4.7 100.4 2.4 27.1 292

Lesotho 2035 129.0 0.5 15.6 0.1 12.1 231

Liberia 2913 1557.7 1.4 419.3 1.8 26.9 13 812

Libya 5290 11.0 4.3 2.0 8.7 18.3 615

Lithuania 3696 241.4 2.3 152.7 1.4 63.2 2628

Macedonia 2034 245.9 0.9 61.6 1.1 25.1 758

Madagascar 15 970 588.8 2.0 216.1 2.9 36.7 7905

Malawi 11 308 −24.3 16.8 163.9 0.8 −675.8 1353

Malaysia 22 218 1312.9 3.6 480.8 2.5 36.6 6655

Mali 11 351 5.4 140.4 21.7 4.8 400.3 2294

Mauritania 2665 8.0 71.5 3.6 4.1 44.7 1381

Mexico 98 872 193.4 0.1 50.5 0.6 26.1 989

Moldova 4295 115.1 1.1 42.0 1.9 36.4 323
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Table B1. Continued.

Country Population

in 2000

[thousand]

Internally

renewable

water

resources

A

[mm/yr]

Dev.

(+/−)

[%]

Internally

renewable

groundwater

resources

B

[mm/yr]

Dev.

(+/−)

[%]

B/A

[%]

Per-capita inter-

nally renewable

groundwater

resources

[m
3
/(capita yr)]

Mongolia 2533 28.6 8.0 1.8 2.5 6.3 1079

Morocco 29 878 64.5 8.6 17.3 8.5 26.9 233

Mozambique 18 292 200.0 3.1 103.7 0.8 51.9 4207

Myanmar (Burma) 47 749 1200.0 4.3 225.5 3.8 18.8 3046

Namibia 1757 15.2 5.3 10.3 1.0 68.0 4723

Nepal 23 043 1066.4 2.1 135.4 0.0 12.7 834

Netherlands 15 864 412.2 1.3 354.7 1.3 86.1 736

New Caledonia 215 428.7 14.5 146.1 6.6 34.1 12 430

New Zealand 3778 1060.1 17.8 333.8 10.4 31.5 23 022

Nicaragua 5071 1171.8 3.3 336.6 0.7 28.7 7727

Niger 10 832 42.0 4.1 12.4 8.7 29.6 1332

Nigeria 113 862 304.5 0.3 163.1 1.3 53.6 1200

Norway 4469 946.4 2.4 215.2 1.9 22.7 14 738

Oman 2538 43.1 11.0 2.6 38.8 5.9 309

Pakistan 141256 62.2 15.5 12.2 13.3 19.5 74

Panama 2856 1099.7 5.7 324.6 1.9 29.5 8249

Papua New Guinea 4809 1577.9 0.0 457.7 0.1 29.0 34 665

Paraguay 5496 178.6 0.8 113.4 3.1 63.5 6427

Peru 25 662 1007.2 4.3 279.9 0.4 27.8 12 674

Philippines 75 653 991.2 2.3 263.3 4.8 26.6 998

Poland 38 605 198.3 0.1 143.7 0.2 72.4 1133

Portugal 10 016 451.5 5.7 141.6 1.6 31.4 1249

Qatar 565 8.3 35.3 1.3 62.6 15.2 24

Romania 22 438 215.0 1.7 93.4 0.7 43.4 973

Russia 145 491 210.1 1.1 54.1 0.6 25.8 5693

Rwanda 7609 175.5 4.1 67.6 5.9 38.5 195

Saudi Arabia 20 346 12.8 70.2 0.9 66.1 7.4 90

Senegal 9421 44.4 34.1 63.3 10.5 142.7 1257

Serbia and Montenegro 10 552 306.3 10.7 118.1 6.9 38.6 1131

Sierra Leone 4405 1412.5 4.1 394.0 2.2 27.9 6150

Slovakia 5399 247.1 3.6 115.6 3.5 46.8 1040

Slovenia 1988 693.1 3.2 271.6 0.3 39.2 2777

Solomon Islands 447 1406.5 3.5 419.0 11.9 29.8 23 284

Somalia 8778 20.1 36.3 9.5 5.7 47.5 678

South Africa 43 309 48.4 0.8 14.3 1.0 29.4 397
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Table B1. Continued.

Country Population

in 2000

[thousand]

Internally

renewable

water

resources

A

[mm/yr]

Dev.

(+/−)

[%]

Internally

renewable

groundwater

resources

B

[mm/yr]

Dev.

(+/−)

[%]

B/A

[%]

Per-capita inter-

nally renewable

groundwater

resources

[m
3
/(capita yr)]

Spain 39 910 229.3 0.5 69.9 0.5 30.5 875

Sri Lanka 18 924 602.2 8.3 165.2 0.7 27.4 550

Sudan 31 095 11.9 2.6 21.9 2.6 184.1 1708

Suriname 417 712.2 4.5 289.9 0.9 40.7 87 753

Svalbard 3 613.5 23.6 7.1 21.4 1.2 90 166

Swaziland 925 167.5 4.8 37.6 0.7 22.5 691

Sweden 8842 401.2 0.4 142.4 0.8 35.5 6284

Switzerland 7170 1069.8 8.9 228.1 2.6 21.3 1265

Syria 16 189 58.0 4.2 31.4 1.6 54.1 361

Tajikistan 6087 261.3 8.7 34.6 6.8 13.3 800

Tanzania 35 119 136.7 3.4 93.1 4.1 68.1 2216

Thailand 62 806 389.6 0.5 178.4 2.2 45.8 1370

Timor Leste 737 258.7 14.9 92.8 21.2 35.9 1898

Togo 4527 193.4 1.4 130.8 2.5 67.6 1593

Tunisia 9459 51.7 11.2 18.3 2.7 35.3 282

Turkey 66 668 235.6 4.1 56.3 2.5 23.9 643

Turkmenistan 4737 14.3 4.8 1.7 14.3 11.6 170

Uganda 23 300 13.3 104.1 94.7 5.7 712.9 750

Ukraine 49 568 117.6 0.4 50.2 0.0 42.7 579

United Arab Emirates 2606 11.9 20.9 3.0 18.3 25.4 77

United Kingdom 59 415 743.2 15.0 339.1 8.8 45.6 1316

Uruguay 3337 513.0 1.7 175.3 1.4 34.2 9109

USA 283 230 252.7 3.0 88.3 0.7 35.0 2512

Uzbekistan 24 881 30.5 2.7 7.8 1.4 25.6 130

Vanuatu 197 1258.0 0.1 358.8 5.5 28.5 21 602

Venezuela 24 170 845.9 0.3 281.8 0.8 33.3 9396

Vietnam 78 137 727.1 4.9 186.1 1.6 25.6 678

Western Sahara 223 7.9 50.4 0.4 79.6 5.7 536

Yemen 18 349 36.7 22.1 2.6 11.8 7.1 65

Zambia 10 421 94.7 3.3 108.4 0.9 114.4 7051

Zimbabwe 12 627 80.2 0.4 31.9 0.1 39.8 976
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Fig. 1. Schematic representation of water flows and storages in each 0.5 degree grid cell

as simulated by the global hydrological model WGHM, highlighting the computation of diffuse

groundwater recharge. Epot: potential evapotranspiration, Eact: actual evapotranspiration from

soil.
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Fig. 2. Location of 1235 river discharge stations for basin-specific tuning, location of inde-

pendent estimates of groundwater recharge, and semi-arid and arid areas where modified

groundwater recharge algorithm was applied.
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Fig. 3. Improved modeling of groundwater recharge due to modified groundwater recharge

algorithm for semi-arid regions: comparison of independent estimates of long-term average

groundwater recharge for 51 grid cells in semi-arid regions with modeled values as computed

with the standard and the modified algorithm (using GPCC precipitation).
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Fig. 4. Difference between the two available 0.5
◦

global data sets of time series of gridded

observed precipitation: CRU 1961–1990 mean annual precipitation as a ratio of GPCC 1961–

1990 mean annual precipitation.
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Fig. 5. Long-term average diffuse groundwater recharge for the time period 1961–1990 in

mm/yr; ensemble mean of groundwater recharge as computed by two WGHM model runs with

either GPCC or CRU precipitation data as input (a). Absolute difference between groundwater

recharge computed with either one of the two precipitation data sets and the ensemble mean

value, in mm/yr (b).
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Fig. 6. Per-capita groundwater resources in administrative units, in m
3
/(capita yr), as computed

by WGHM (ensemble mean using GPCC/CRU precipitation). Groundwater resources are rep-

resentative for the climate normal 1961–1990, population is representative for the year 2000.

4119

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/4069/2007/hessd-4-4069-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/4069/2007/hessd-4-4069-2007-discussion.html
http://www.egu.eu


HESSD

4, 4069–4124, 2007

Global-scale

modeling of

groundwater

recharge

P. Döll and K. Fiedler

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

����������������� ���� �����	�

Fig. 7. Long-term average total runoff from land and open water fraction of cell, in mm/yr,

for the time period 1961–1990, as computed by WGHM (ensemble mean using GPCC/CRU

precipitation).
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Fig. 8. Groundwater recharge as a fraction of total runoff from land (1961–1990), as computed

by WGHM (ensemble mean using GPCC/CRU precipitation).
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Fig. 9. Comparison of computed groundwater recharge per country (ensemble mean and

range) to independent estimates of FAO (2005), in mm/yr. With the modified groundwater

recharge algorithm for semi-arid areas (right), the bias towards an overestimation of ground-

water recharge in “semi-arid” countries (left) is almost eliminated. Here, countries are called

“semi-arid” if more than 34% of the country’s cells are semi-arid.
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(a) (b) (c) 

Fig. 10. Groundwater recharge in Germany as computed by Jankiewicz et al. (2005, their

Fig. 9) with a spatial resolution of 1 km by 1 km for 1961–1990 (a); aggregated to a spatial

resolution of 0.5
◦

(b); groundwater recharge as computed with WGHM for the same spatial

resolution and time period (c).
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Fig. 11. Baseflow indices at discharge observation stations in Southern Africa, mapped onto

the pertaining basins (Bullock et al., 1997, their Fig. 4.35) (left); groundwater recharge as a

fraction of total runoff from land as computed with WGHM, with polygon outlines of Bullock et

al. (1997) for easier comparison (right). Please note that the polygon outlines are not basin

boundaries but boundaries of polygon with the same color in the figure on the left.
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