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Abstract

Acidification has caused the loss or reduction of numerous Atlantic salmon (Salmo

salar L.) populations on both sides of the North Atlantic. Acid deposition peaked in

the 1980’s and resulted in both chronically and episodically acidified rivers. At present,

water quality is improving in all affected rivers due to reduced acid deposition. How-5

ever, spring snow melt, heavy rainfall and sea salt episodes can still cause short term

drops in pH and elevated concentrations of bioavailable aluminum. Technical mal-

function in lime dozers will cause short termed episodic spates in the limed rivers.

The current situation has prompted a need for dose-response relationships based on

short term exposures of Atlantic salmon to assess the potential population effects of10

episodic acidification. Water quality guidelines for salmon have been lacking, despite a

large number of experiments, all demonstrating dose-response relationships between

water chemistry and fish health. We have summarized results from 347 short-term

(<14 days) exposures of salmon parr and smolt performed between 1990 and 2003 in

Norway. The experiments have been performed as bioassays, where fish have been15

exposed in tanks fed river water, in tanks where the river water quality has been ma-

nipulated (added H
+

and Al) and as Carlin-tagged smolt releases after preexposure

to moderately acidic waters. The results from the various bioassays are compared

to water quality limits proposed on basis of the relationship between water quality

and population status/health in Norwegian rivers. The focus of this article is placed20

on chemical-biological interactions that can be drawn across experiments and expo-

sure protocols. We propose dose-response relationships for acid neutralizing capacity

(ANC), pH, cationic Al and gill accumulated Al, versus mortality in freshwater, effects

on hypo-osmoregulatory capacity in seawater challenge tests and on smolt to adult

survival in release experiments. The “no effect” dose depends on the life history stage25

tested and on the sensitivity of the biomarkers. Parr are more tolerant than smolt. Con-

centrations of Al that have no significant impact on freshwater life history stages can

still have major population effects if they occur prior to smolt migration. While smolt can
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survive in freshwater for a prolonged period of time (>10 days) at an Al dose resulting

in a gill Al concentration of up to 300µg Alg
−1

dw, a 3 day exposure resulting in a gill

Al accumulation in the range of 25 to 60µg Alg
−1

dw reduces smolt to adult survival in

a dose related manner by 20 to 50%. For smolt to adult survival, the biological signif-

icant response is delayed relative to the dose and occurs first after the fish enters the5

marine environment. In addition to exposure intensity and timing, exposure duration is

important for the setting of critical limits.

1 Introduction

Acidification has affected the Atlantic salmon (Salmo salar L.) populations in >50

rivers in Norway (Hesthagen and Hansen, 1991; Kroglund et al., 2002; Sandøy and10

Langåker, 2001). Of these, salmon is classified as extinct in 18 rivers while the catches

are reduced in the remaining. Acidification entails a pH reduction, and also a mobiliza-

tion of aluminum (Al). Toxicity is normally attributed to Al, unless the water is very acid

(Gensemer and Playle, 1999; Rosseland and Staurnes, 1994). Numerous other water

quality constituents can also affect toxicity, including total organic carbon (TOC) and15

calcium (Ca). TOC binds metals rendering them unavailable for accumulation whereas

Ca reduces the organism’s sensitivity to metals (Gensemer and Playle, 1999; Rosse-

land and Staurnes, 1994).

In northern Europe, acid deposition peaked in the 1980’s and resulted in chronic

acid waters in many areas. Water quality is at present improving due to reduced sulfur20

deposition (Evans et al., 2001; Skjelkvåle et al., 2003). However, many salmon rivers

are still severely affected by chronic acid water while others are more impacted during

acid episodes. An acidification episode has a short duration where the pH depression

most often is related to sulfate and possible nitrate pulses, snowmelt, heavy rainfall

and sea salt deposition. During an episode, chemical elements such as H
+

, Al, Ca25

and organic carbon will be continuously changing in response to dilution, mobilization

and transformation processes (Evans et al., 2001; Henriksen et al., 1984; Hindar et
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al., 2004; Teien et al., 2004b, 2005a). While severe acidification (both chronic and

episodic) can cause population extinction, the biological response to a more moderate

episode depends not only on the increase in H
+

and Al concentrations, but also on

exposure duration and timing and on changes in other water quality relevant elements.

The effects an episode will have on fish will as such depend on numerous simultaneous5

interacting elements including the prior exposure history of the fish. The ecological

impacts of episodes are still poorly documented as fish kills and density reductions

are rarely observed and documented. This is not necessarily due to kills being a rare

event, and is just as likely due to kills being difficult to observe on juvenile life-stages.

Field bioassays have the capacity to document both mortality rates and sub-lethal10

responses in fish, and link these to the intensity and duration of an acid/Al episode

(Barlaup and Åtland, 1996; Lacroix and Korman, 1996; Magee et al., 2003; Teien et

al., 2004b, 2005a). The effects of an episode can be simulated in short-term experi-

ments where the toxic components and the toxicity moderating variables can be con-

trolled and varied (data included here). Population responses to prior exposures can be15

tested in exposure/release experiments (Staurnes et al., 1996; Kroglund and Finstad,

2003; Kroglund et al., 2007; Magee et al., 2003). The results can later be feed into

water quality/biological response models (Korman et al., 1994; Monteith et al., 2005).

To identify water quality limits with respect to acidification, it is necessary to identify

the critical biological properties that need protection and the physio-chemical factors20

that affect these. Water that does not inflict mortality is not synonymous to a “healthy”

or satisfactory water quality. Although sub-lethal biological responses can be mea-

sured, the impacts these have on population status is still unclear. Although sub-lethal

doses can affect health status and growth, the effects are time limited. Fish surviving

an acidification episode will enter a recovery phase which depends on the severity of25

the initial stress response, the water quality present following the episode, and tem-

perature (Kroglund and Staurnes, 1999; Kroglund et al., 2001a; Lacroix and Korman,

1996; Magee et al., 2003). If fish are exposed to a new episode during the recov-

ery phase, the biological response can be more severe than expected from chemistry
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alone, as fish health already is compromised (Henriksen et al., 1984). Furthermore,

the ecologically relevant responses can be delayed relative to the timing of the dose

(see below).

For salmon, the timing of an acid episode is important because the various life stages

are not present at all times of the year and have differences in sensitivity where smolt5

are more sensitive than parr and fry (Rosseland and Staurnes, 1994; Gensemer and

Playle, 1999). Due to this variation in tolerance, an episode prior to or during the final

smoltification stage (in spring) can be more detrimental to a salmon population than

events of similar severity and duration occurring at another time of the year (Staurnes

et al., 1995). The chemical/biological interactions are further modified by water tem-10

perature, as toxicity increases with temperature (Poléo and Muniz, 1993).

Al is toxic by acting on the gill altering gill tissue structure and function (see review

in: Sparling and Lowe, 1996; Gensemer and Playle, 1999; Rosseland and Staurnes,

1994). The biological responses related to H
+

can be similar to, but also different

from responses related to Al (Gensemer and Playle, 1999; Rosseland and Staurnes15

1994). Mortality in acid water is often related to ionoregulatory disturbance at low pH

values, and to respiratory disturbances at high Al concentrations. H
+

and Al act in

concert at intermediate pH-levels. While H
+

by itself has no effect on the population

status of Atlantic salmon down to a pH of 5.4 (Fivelstad et al., 2004; Lacroix, 1989;

Watt et al., 2000), this pH value is highly toxic when present together with cationic Al20

(Rosseland and Staurnes, 1993; Gensemer and Playle, 1999; Staurnes et al., 1995).

Understanding how H
+

and aluminum interacts with fish health is thus crucial to the

interpretation of water quality. Acidification represents therefore a combined pressure

where the ecological effect of the two main stressors needs to be evaluated separately,

but also how they interact and magnify toxicity.25

Current water quality guidelines are often related to the acid neutralizing capacity

(ANC) of water, and as H
+

, Al and ANC are interrelated, all can be used as indicators

of water quality (Bulger et al., 1993; Kroglund et al., 2002; Lien et al., 1996). However,

this statement is only valid when both H
+

and Al is present and impact water quality:
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e.g., in water where low pH is due to organic acids, metal toxicity can be insignificant,

falsifying pH-based limits generated from Al-enriched water. Not all forms of Al are

toxic. Only cationic species of Al contained within the operational forms termed labile

Al (LAl) or inorganic monomeric Al (Ali), are gill-reactive and hence affect fish health

(Driscoll et al., 1980; Oughton et al., 1992; Teien et al., 2005b). Experiments show5

close relationships between cationic forms of Al and the Al concentrations accumu-

lated on gills (Kroglund et al., 2001a, b; Teien et al., 2006b). Gill Al thus provides an

independent measure of the Al-dose and is related to the concentrations of cationic Al.

Not all Al-species contained within cationic Al are equally bioavailable as both DOC

and silicate interferes with the relationship between Ali and gill Al, leading to variation10

in a dose response model (Teien et al., 2006a, b).

A no-observed-effect-concentration (NOEC) relates to “no” biological response and

is defined as: the highest concentration of an effluent or toxicant that causes no ob-

servable adverse effects on the test organisms (EPA, 2000). The biological response

used to identify NOEC for salmon has changed over the last decades; from focus on15

mortality and ionoregulatory responses in freshwater to an increased awareness that

acidification also effects growth and behavior (Gensemer and Playle, 1999; Rosse-

land and Staurnes, 1994). More recently, research has provided data demonstrating

how pre-smolt and smolt exposed to Al in freshwater can produce a delayed response,

leading to mortality and population effects after the fish left freshwater and entered sea-20

water (Kroglund and Finstad, 2003; Kroglund et al., 2007; Magee et al., 2001; Staurnes

et al., 1996). While severe acidification affects population status by causing mortality in

freshwater, moderate to low levels of acidification can have equal strong effects on pop-

ulation health by reducing smolt quality having an effect on post-smolt survival (Finstad

et al., 2007; Kroglund and Finstad, 2003; Kroglund et al., 2007; Magee et al., 2001;25

Staurnes et al., 1996). Because smolt leave the river over a time span of several weeks

and episodes can last days, parts of the smolt run can contain fish affected by Al, while

other parts of the population leave the river at a time with satisfactory water quality or

after they have recovered from the episode. In this respect, not only the timing of an
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episode is important, but also how well the fish can recover before they leave the river

and enter seawater.

There is increasing evidence that with reduced acid deposition, water quality im-

proves and that the intensity of episodes diminishes (Wright, 2007; Evans, 2007),

though severe acidification episodes still occur during extreme weather events (Barlaup5

and Åtland, 1996; Hindar et al., 1994; Hindar et al., 2004; Teien et al., 2005a, 2006a).

Fish can also experience higher concentrations of Al than predicted on basis of pH or

ANC in rivers affected by acid Al-rich tributaries (Rosseland et al., 1992; Poléo et al.,

1994; Kroglund et al., 2001a, b). Fish are affected by the general water quality, but it

can still be the extremes that have the largest impact on population status. Episodes10

can in part explain the poor biological recovery recorded to date, despite an impressive

long-term water chemical recovery (see discussion in: Monteith et al., 2005). The main

objective behind the work presented here is to identify empirical relationships between

water quality components and their possible effects on salmon populations. Focus is

on exposure intensity, duration and timing. The results are interpreted as a simulation15

of an episode.

2 Material

The material consists mainly of fish exposure experiments carried out in Norway during

the period 1990 to 2003. Only brief descriptions of methods are provided here and we

refer back to the original articles for full descriptions (Rosseland, et al., 1992; Poléo20

et al., 1994; Kroglund and Staurnes, 1999; Kroglund et al., 2001a, b, c; Rosseland

et al., 2001; Kroglund and Finstad, 2003; Teien et al., 2004a, 2006a; Kroglund et al.,

2007). These experiments involve a total of 347 groups of salmon at various life stages

exposed in tanks to water qualities ranging from satisfactory to lethal (Table 1). In this

data compilation, focus is placed on conclusions that can be drawn across experiments25

through a large range of water chemical compositions and biological responses. The

chemical limits derived from the exposure experiments are compared to limits sug-
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gested for Atlantic salmon based on population surveys (Kroglund et al., 2002).

We have included only experiments where we have access to the raw data to avoid

uncertainties related to exposure environment; differences in analytical protocols and

large differences in TOC concentrations. Experiments not included can and should be

used for model validation. The material is divided into two main parts differing with5

respect to experimental approach. In the short-term experiments, fish were exposed

up to 10 days, while in the sea-survival experiments, the exposures were sub-lethal

and exposed fish were released to monitor effects on movements and survival in the

marine environment.

2.1 Short-term exposures10

Fish material

The fish were offspring of wild parents reared at local hatcheries or wild smolt caught

by electro-fishing. It is not possible to define the pre-exposure history of a wild salmon

smolt as this life stage is not stationary and it is likely that these fish had experienced

acidification episodes prior to our exposures. Fish originating from the hatchery in River15

Suldal (SW Norway) experienced acidification pulses prior to being used in the exper-

iments, while fish from the other hatcheries were not pre-exposed to acidic waters.

Comparative studies have not been able to detect ecological relevant strain differences

in responses to water quality for salmon (Kroglund and Finstad, 2003; Rosseland et

al., 2001) as opposed to the large strain related differences in sensitivity observed for20

brown trout (Salmo trutta L.) (Dalziel et al., 1995; Andrén et al., 2006). We therefore

assume that strain differences are not the cause for response variations in our material.

Salmon migrate from the ocean to spawn in rivers. In the river, the fish develop from

eggs to fry to parr and to smolt and this latter stage will migrate into the ocean in the

spring (Mills, 1989). Here, data are presented for the life stages parr and smolt. The25

definition of a life stage is not straightforward, especially for smolt, as smoltification is a

process preadapting the individual to the later marine life. For simplicity, fish >12 cm,
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showing loss of parr marks and coloration and that were exposed within the period

March to May are regarded as being pre-smolt or smolt, while fish exposed prior to this

time span are treated as parr. Fish size varied between life stages and experiments.

Larger fish are more sensitive to Al while smaller fish are more sensitive to H
+

(Rosse-

land et al., 2001). This size-dependent response and sensitivity to the stressors adds5

to variation in the models.

Biological protocols

All experimental tanks were monitored for mortality at an interval of hours the first days,

less frequent thereafter. Mortality is presented as accumulated mortality and time (h)

to 1st fish died and in relationship to exposure duration and dose. Before sampling of10

gills and blood, the fish were killed by a blow to the head. The 2nd gill arch of the fish

was cut out for gill Al determination and analyzed according to Teien et al. (2006b).

Concentration of Al is reported as µg Alg
−1

gill dry weight (dw). The bioconcentration

factor (BCF) is estimated as the ratio between cationic Al in water and gill Al. Only

data from the terminal samples are presented here. The material is as such valid with15

respect to biological response recorded within a 7 to 10 day exposure period.

Exposure environment – freshwater, seawater challenge test and smolt to adult survival

All fish were exposed in 1–4 m
3

tanks, in 90 L black tanks or in cages placed in the

rivers. Depending on the experiment, fish were exposed to natural acid and non-acid

source water and water added Al
+

and H
+

to increase toxicity or limestone or sodium-20

silicate to reduce toxicity.

Seawater challenge tests were performed as a terminal test in all smolt studies.

The test was run at salinities of 33–34 ppt, at temperatures of 6–11
◦
C and for 24 h.

Responses are here presented as mortality and as blood-plasma Cl
−

concentrations.

The responses are presented as average group performance in seawater minus per-25

formance in freshwater (SW plasma Cl
−

– FW plasma Cl
−

). Plasma Cl
−

cannot be
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measured on dead fish; thus the average increase in plasma Cl
−

in groups suffering

from mortality is underestimated.

To address the relationship between seawater challenge tests and population re-

sponses, a seawater survival program was initiated in 1999. Over the years 1999,

2000, 2002 and 2003, groups of 1200 to 1500 pre-smolt originating from wild salmon5

broodstock of the Imsa strain were Carlin tagged (Carlin, 1955) prior to exposure to

control water or to one of three acid doses where episodic high Al was administered

only for the last 3 days prior to release and long term low-Al and long term high-Al

lasted >30 days. Following treatment termination, the fish were transported to River

Imsa (pH >6.5) and released 150 m above the river mouth. Timing of migration from10

freshwater to seawater was as such voluntary. Additional details are given by Kroglund

et al. (2007).

Chemical protocols

Al is present as unstable inorganic species following changes in pH; e.g. after liming.

“Unstable” Al is here functionally defined as acid water containing elevated concentra-15

tions of Al that has been aged for <30 min after an increase in pH. Fish exposed to

unstable forms of Al are excluded from the models as the aim was to make a “general”

model relating stable water chemistry to biological responses.

pH was measured using two protocols. pH was either measured in field or at NIVA’s

laboratory in Oslo after transport. Positively charged (cationic) Al was identified us-20

ing two different protocols and is defined as Al retained in an Amberlite ion exchanger

column; pyrechatecol-violet method (Røgeberg and Henriksen, 1985) termed LAl, and

in situ modification of the Barnes-Driscoll method (Teien et al., 2004a) termed Ali.

Both protocols are commonly used in Norway, the first in the national monitoring pro-

gram, the latter in fish experiments dedicated to study Al-biological interactions and25

Al-species transformations and mechanisms. The two different protocols have different

properties and do not estimate identical concentrations of cationic Al (Andrén, 2003).

The in situ method produces better relationships between Al and a biological response
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as Al speciation can be changed during transport to the laboratory (Teien et al., 2004a).

Aluminum fractionated after transport to a laboratory can therefore underestimate the

“true” dose experienced by the fish (Kroglund et al., 2001ab; Poléo et al., 1994; Rosse-

land et al., 1992; Teien et al., 2004a, 2005b, 2006ab). This effect is best detected

using gill Al or in situ fractionation of Al. All major cations and anions were measured5

at laboratory (NIVA) using standard protocols.

NOEC-limits

We use mortality as the unacceptable, non-recoverable biological response. Elevated

mortality related to the exposure is understood as an effect of water quality. Water

quality limits are based on various biomarkers and are graded as “no effect”, “low10

to high” and “high”. “No effect” implies that no or few exposure groups responded

negatively to the treatment. “Low to high effect” defines the chemical range where all

response levels can be present, whereas “high effect” defines water chemistry where

all exposure groups responded strongly. Water quality limits are presented with respect

to dose and exposure duration for the life stages parr and smolt.15

Performance in seawater challenge tests were used as an indicator of possible ef-

fects of freshwater quality on hypo-osmoregulatory capacity of the fish. The test was

only performed on groups where freshwater survival was high. Water qualities that

cause high mortality in freshwater are therefore lacking in the material. The ecolog-

ically more relevant response, actual effects on post-smolt survival affecting adult re-20

turn rates, was used to define limits with respect to the survival of smolts to the adult

stage. Dose response relationships were tested using linear regressions. R
2

values

and equations are entered into the graphs whenever p<0.001.
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3 Results

Relationship pH and cationic Al

The relationships we observed between pH, ANC and cationic Al are superimposed

onto data from the 1000-lake survey in Norway (Henriksen et al., 1989). The rela-

tionship between our data and the national dataset was satisfactory for all elements5

(Fig. 1). Our data are thus representative of the chemical ranges present in Norway.

There was a close relationship between cationic Al and H
+

in the water with pH <6.4

(Fig. 1a). More cationic Al was measured as Ali than as LAl for a given pH (P<0.001).

This difference is probably purely analytical, but may also be due to different pH/Al

relationships in the various water qualities used in these experiments, and/or due to10

pH being analyzed in the field when Ali was determined. The systematic difference

supports an analytical interpretation. Regardless of protocol, all fish were exposed to a

combination of H
+

and Al in these experiments. Due to the differences in relationships,

guidelines for pH/Al must be related to the analytical protocols being used. The use

of different protocols within acid rain research makes comparisons between studies15

more difficult (Hindar et al., 2000; Andrén, 2003). There were similar differences in the

relationship between cationic Al and ANC and pH to ANC (Fig. 1b).

Cationic Al – gill Al concentrations

There was a highly significant relationship (p<0.0001) between cationic Al, ANC and

gill Al (Figs. 2a, c). The relationship was not significantly influenced by Al protocol or20

life stage (p>0.1). The bio-concentration factor (BCF) varied within a range of 2 to 8,

and increased with Al concentration with respect to LAl but not so for Ali (Fig. 2b). This

demonstrates differences in the bio reactive properties for the two forms of cationic Al.

The relative large variation in factor suggests that there are other environmental, bio-

logical and chemical factors that also influence Al accumulation. Gill Al concentrations25

in salmon from water having pH values >6.5 and in water outside regions affected by
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acid rain is usually <5µg Alg
−1

dw and almost always <15 µg Alg
−1

dw provided there

are no contaminants such as clay present. These values represent background levels

(Kroglund et al., 2007).

The relationship between cationic Al and gill Al will be affected by: a) underestima-

tion of LAl in mixing zones, b) analytical errors in Ali and LAl fractionation, c) gill Al was5

not in a steady state to cationic Al, d) background concentration of gill Al were elevated

due to prior Al-exposures and e) contamination of sample. These factors contribute to

uncertainty in the regression models. Most of the uncertainty is probably related to the

determination of cationic Al. Furthermore, not all forms of Al species determined as

cationic Al are bio-reactive and hence toxic. Measurement of cationic Al can overesti-10

mate toxicity in water rich in DOC, silicate (Si) and fluoride (F) (Peterson et al., 1989;

Teien et al., 2005b, 2006a). Organically bound Al can have cationic properties with

respect to an ion exchanger, but not to the gill. This has been tested using Al
26

by

Oughton et al. (1992) and in exposure experiments where fish were exposed to source

water and water that was passed through filters with a 10
−3

nominal cut-off removing15

about 50% of DOC (Teien et al., 2005b). Regardless of these uncertainties, there were

strong relationships between gill Al and biological responses (see later). The BCF can

be used to generate a probability range for gill Al given a concentration of cationic Al.

During an episode there need not be any clear relationship between cationic Al and

gill Al. While changes in water quality can occur over a time span of minutes, kinetic20

constraints will delay the corresponding change in gill Al. During exposure, gill Al

increases fast and reaches a “steady” state to the ambient concentration of cationic

Al within a time span of 1 day. Likewise, at the end of the episode, water quality can

improve faster than gill Al depuration (Teien et al., 2005a, 2006b).

3.1 Biological responses-parr25

There is only limited data on mortality in the parr studies. Reduced survival was

recorded in only 9 of 101 exposure groups. All fish survived when pH>5.6, Ali
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<45µgL
−1

and ANC >15µeqL
−1

(Figs. 3a–c). When water quality deteriorated rel-

ative to these limits, mortality increased relatively steeply, but could also remain low at

pH <5, Ali >90 and ANC <–10. Only toxic responses were never observed within the

range in water qualities we exposed the fish to.

Parr tolerated gill Al concentrations above 500µg Alg
−1

dw. The number of obser-5

vations are insufficient for determination of NOEC, but 100% of the fish died when the

gill Al concentration was 1000µg Alg
−1

dw and there was zero mortality when gill Al

<400µg Alg
−1

dw. There was also a clear relationship between accumulated mortality

and the time it took to kill the 1st fish. When accumulated mortality exceeded 25%

over a 7 to 10 day exposure period, the first kills were observed within the first 24 h10

exposure separating acute from moderately lethal water qualities.

3.2 Biological responses-smolt

Mortality was frequently observed in the smolt studies (Figs. 4a–d). Reduced sur-

vival was recorded in 39 of 228 exposure groups. All fish survived when pH>5.8, LAl

<20µgL
−1

or Ali <40µgL
−1

and ANC >15µeqL
−1

(Figs. 4a–c). When water quality de-15

teriorated relative to these limits, mortality increased relatively steeply, and was always

high when pH <5.5, LAl >45 µgL
−1

or Ali >65µgL
−1

and ANC <0µeqL
−1

. Mortality

started when gill Al exceeded 300µg Alg
−1

dw and was thereafter correlated to dose.

In water qualities that resulted in high mortality, the first kills were observed within the

first 24h of exposure (Fig. 4e). At lower doses, the fish had to be exposed for 4 days or20

more to initiate mortality.

3.3 Seawater challenge tests

There was a relationship between impaired hypo-osmoregulatory capacity and mor-

tality (Fig. 5). Mortality increased when plasma Cl
−

in the seawater challenge test

exceeded 160 mM or when the difference in plasma Cl
−

in seawater to freshwater25

exceeded 45 mM (Figs. 5a, b). These levels differentiate between groups having in-
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creasing mortality from groups not suffering from mortality.

When pH in the pre-exposed freshwater >6.5 and cationic Al<5µg AlL
−1

, we ob-

served close to zero mortality in a subsequent seawater challenge test. At lower pH

or higher Al concentrations, mortality could range from low to high irrespective of dose

(Table 2, Figs. 6a, b). Mortality was however significantly (p<0.0001) related to gill-Al5

and in a clear dose-response manner (Fig. 6c).

The fish had reduced hypo-osmoregulatory capacity with decreasing freshwater pH

and increasing cationic Al (Fig. 6d). The increase in plasma Cl
−

from freshwater to

seawater increased beyond 40 mM when cationic Al exceeded 5µg AlL
−1

as LAl or

10µg AlL
−1

as Ali (Fig. 6e) or when gill Al exceeded 25µg Alg
−1

dw. Mortality in the10

tests was always high when cationic Al exceeded 25µg AlL
−1

as LAl and when gill Al

exceeded 500µg Alg
−1

dw. Hypo-osmoregulatory regulation was always poor when

pH <6.0, cationic Al exceeded 15µg AlL
−1

as LAl (or 25µg AlL
−1

as LAl) and when gill

Al exceeded 100µg Alg
−1

dw.

The dose-response relationships with respect to the seawater challenge tests sug-15

gest cut-off limits rather than dose related responses with the exception of gill Al. The

strong relationship to gill Al suggests that Al bound to the gill is a stronger indicator of

the dose than the chemical indices.

3.4 Seawater survival

Large groups of Carlin-tagged smolt were exposed to control water (average pH >6.5;20

<5µg LAlL
−1

) or to Al-containing water (pH range 5.7–6.6; LAl range 6–17µgL
−1

). At

exposure termination, the fish had accumulated Al onto gills in a dose related man-

ner (25 to 60µg Alg
−1

dw), while the control fish had 5.9±3.3µg Alg
−1

dw). Gill Al

could account for >80% of the variation in return rates (Kroglund et al., 2007). Hypo-

osmoregulatory capacity was related to both ANC and cationic Al (measured as LAl)25

(Figs. 7a, b). Adult return rates was related to performance in the seawater challenge

test, to cationic Al (as LAl) and to ANC. The number of exposure groups is insuffi-

cient to set definitive limits for ANC, but support previous conclusions that even low
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concentrations of Al have detrimental effects with respect to survival in seawater.

3.5 Water quality limits

In an experimental study, Atlantic salmon smolt exposed to pH 5.4–5.6 for 35 days,

in waters having “no” gill-reactive Al. showed no negative effects monitored as post-

smolt survival and growth following 100 days in seawater (Fivelstad et al., 2004). In5

Canada where high organic content bind most of the Al in water even at pH 5.4, “no

effect” on smolt production is expected at pH levels above 5.4 (Lacroix, 1989; Watt

et al., 2000). These observations suggest that the H
+

concentration at pH of 5.4 has

no adverse effect on smolt quality by itself. Leivestad et al. (1980) did not observe

any reduction in plasma Cl
−

above pH 4.5 in waters not containing LAl, suggesting H
+

10

limits to be around pH 4.5 for freshwater life stages of Atlantic salmon. It is reasonable

to assume that fish in our studies were mainly responding to Al as pH was generally

>5.4. Even if pH had no direct toxic role, pH contributes to toxicity by mobilizing Al

from the catchments and by transporting Al on its toxic form to the river. Within the

river environment H
+

interacts with Al speciation and hence toxicity and acts together15

with Al to give a combined stressor.

The response relationships presented here were mainly generated on fish that were

not pre-exposed to acidic waters. Acclimation to acid water has been suggested as

a mechanism to cope with impaired water quality to enhance survival (e.g. Allin and

Wilson, 1999; Mueller et al., 1991). We did not observe acclimation in any of the long-20

term studies performed on Atlantic salmon smolt, but we did observe growth reduction

and immunosuppression (Finstad et al., 2007; Kroglund and Finstad, 2003; Kroglund

et al., 2007) but no signs of genetic adaptation to acid water (Rosseland et al., 2001).

This lack of adaptation can be due to the extreme effects Al has on seawater survival

(Staurnes et al., 1995) and the flooding of adapted genes by non-adapted genes from25

fish originating in non-acidic rivers (Rosseland et al., 2001).
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Limits affecting freshwater survival (parr to smolt survival)

Parr exposed to pH values <5.6 or cationic Al concentrations >45µg µgL
−1

suffered

from increasing mortality (Table 3). Mortality was recorded within the first 24 h mainly

when pH was <5.1 and when cationic Al exceeded 90µgL
−1

. At lower dose levels,

mortality occurred first after several days. For smolt, mortality increased when pH was5

<5.8 or when LAl exceeded 20µgL
−1

or gill-Al exceeded 300µgg
−1

dw (Table 3). Mor-

tality could occur within 24 h when pH was <5.5, LAl >25µgL
−1

or gill-Al >750µgg
−1

dw (Fig. 7). At lower levels of the dose, the fish had to be exposed for days before

mortality was observed. The differences in limits are to be expected on basis of the dif-

ferences in sensitivity previously reported (Rosseland and Staurnes, 1993; Gensemer10

and Playle, 1999).

Limits affecting survival in seawater (smolt to adult survival)

Performance in the seawater challenge tests were increasingly poor when LAl>5 or

Ali>10µgL
−1

. All smolt having gill Al >25µgg
−1

dw had poor hypo-osmoregulatory

capacity (Table 4). Results from the sea-survival program indicate that smolt exposed15

to >5<10µgL
−1

had 25 to 50% reduction in survival, where the reduction was strongly

related to dose. The return rates were reduced in all groups having gill Al concentra-

tions >25µg Alg
−1

dw (p<0.0001). This strong relationship between Al and reduction

in adult returns was independent of exposure duration as fish exposed for 3 days fitted

into the same model as fish exposed for >30 days.20

The cause-effect mechanisms for this phenomenon are different form those asso-

ciated with mortality in freshwater. Reduced seawater survival is most likely due to

the direct effects Al has on the gill Na
+

,K
+

-ATPase activity (ability to maintain home-

ostasis in seawater), on mucus quality (charge and density), immunosuppression (in-

creased sensitivity to diseases and parasites) and behavior effects related to loss of25

fright response and willingness to enter full strength seawater (Berntssen et al., 1993;

Finstad et al., 2007; Kroglund and Staurnes, 1999; Kroglund et al., 2007; Magee et
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al., 2003; Staurnes et al., 1984; Staurnes et al., 1995, 1996; Rosseland et al., 1992).

Of these, Al-induced effects on gill Na
+

,K
+

-ATPase activity has received most atten-

tion. The activity of this enzyme increases steeply during smoltification as a part of

the pre-adaptation to tolerate full strength sea water (Wedemeyer et al., 1980). While

compromised seawater tolerance has little effect on performance while the individual5

is in freshwater, this response is critical for post-smolt survival and can have the same

effects on population health as heavy mortality in freshwater (Kroglund and Finstad,

2003; Kroglund et al., 2007). Smolt released into the acidified Rivers Mandalselva and

Moisåna in the early 1980’s gave zero returns, while fish released into the estuary had

a low return rate (Hansen, 1987). Similar results were observed after releasing smolt10

into the acid river Lygna, while smolt released into the limed River Audna or into the

estuary of the two rivers had recoveries (Staurnes et al., 1996). Improvements in lim-

ing strategy can increase salmon adult return rates (Alenäs et al., 1995; Larsen and

Hesthagen, 1995; Hesthagen and Larsen, 2003).

As the timing of the smolt run varies across regions, care must be taken when in-15

terpreting the ecological effect of an episodic Al exposure to the actual timing of the

smoltification period. The smolt run can last for weeks, where part of the smolt leaving

the river can have reduced hypo-osmoregulatory capacity, while individuals migrating

earlier or later have normal sea water performance. The ecological effect depends on

the timing of the episode and how well fish recover after the episode.20

4 Discussion

Both in situ bioassays and field surveys suggest that acid episodes are harmful to fish

(Barlaup and Åtland, 1996; Hindar et al., 2004; Magee et al., 2003; Teien et al., 2004b,

2005a). In short-term exposures, fish can be exposed to controlled levels of water

quality constituents mimicking elements of a natural episode, but is at the same time25

a poor representation of the complex variation in water chemistry the wild and native

fish populations are exposed to prior to, during and following an episode. Results
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from short-term exposures cannot therefore easily be extrapolated to effects at the

population level (Lepori and Ormerod, 2005). For instance, fish constrained within

tanks or cages during an episode are denied the possibility of behavioral avoidance that

could enhance their survival in the wild. Atlantic salmon has poor developed avoidance

behavior with respect to aluminum, compared to other fish species (Åtland and Barlaup,5

1995; 1996). To substantiate the water quality limits suggested on basis of short-term

exposures, these limits are compared to limits suggested for Atlantic salmon based

on population surveys (Kroglund et al., 2002). The results used in this paper were

generated by the use of acidification naı̈ve fish, exposed for a short period (<10 days)

under controlled conditions. The short exposure duration mimics, but is at the same10

time an oversimplification of an episode.

The response limits derived from the parr and smolt studies are not very different

from limits suggested on basis of acidification-related effects on adult return rates re-

ported from 73 rivers in Kroglund et al., (2002). Salmon was extinct from all rivers

having an annual average pH <5.2 and >50µg LAlL
−1

. This is a water quality that15

affects both parr and smolt survival in the bioassays. Within the pH-range of 5.2–5.7

and 20–50µg AlL
−1

as LAl, salmon was extinct in some rivers while other rivers had

reduced catches. This is a water quality that can cause some mortality in the bioas-

says, depending on i.e. the calcium level in the river, especially during episodic events.

Mortality also will depend on exposure duration. All rivers within the pH range of 5.7–20

6.2 or a LAl concentration within the range of 5–20µg AlL
−1

had reduced catches.

This is a water quality where parr and smolt survival in freshwater is not affected in the

bioassays, but the hypo-osmoregulatory capacity of the smolt is compromised. Rivers

having pH >6.2, <3µg AlL
−1

and ANC values >35µeqL
−1

were all categorized as

unaffected by acidification. Similar conclusions are drawn from the bioassays. The25

population status of salmon in the individual river will be controlled by chemical and

biological factors and in-between year variations in critical exposures (timing, duration

and “intensity” of episodes). Furthermore, it is well known that returning adult salmon,

being accounted for in the catch statistics, can have an origin from neighboring rivers
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(strayers) within a region and that escaped salmon from fish farms can contribute to

the annual catches as well. Salmon catches in some of the acid rivers can thus be due

to smolt produced in other rivers.

The population responses reported in Kroglund et al. (2002) were all based on an-

nual average water qualities. Fish are affected by the general water quality, but it is5

probably the extremes (taking exposure duration into account) that have the largest

impact on population status. The relationship between episode intensity and annual

average chemistry is therefore of interest (Wright et al., 2007). Smolt will migrate from

the river and into the ocean during high discharge periods in spring, a time period when

acidification episodes were common. Short-term episodes in spring (down to 3 days)10

can as such be one of the factors contributing to the present low and declined salmon

populations in many rivers draining to the Atlantic Ocean (Kroglund et al., 2007).

The above limits suggest that population extinction occurs mainly in water qualities

where the critical limit for all life history stages is exceeded, since parr (which we have

included in our experiments) probably is the most resistant life history stage. Catch15

reductions, however, occur in rivers where water quality is predicted to affect the hypo-

osmoregulatory capacity of the smolt. The low tolerance limits of smolts to Al suggest

that more rivers than presently accepted being acidified can be affected by acidification.

This can then have restricted the interpretation of cause and effect, and thus the use of

chemicals (lime) as a mitigation method to improve fisheries. In those cases, additional20

data on gill Al would aid to the interpretation of ecological status.
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Table 1. Number of exposure groups, separated and sorted according to life stage and the
analytical protocol for Al fractionation.

Number of exposure groups
Life stage LAl-protocol Ali-protocol Total

Parr 34 67 101
Smolt 114 114 228
Post-smolt 18 0 18
Total 116 181 347
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Table 2. Percent of the seawater challenge tests (24 h, 33–34 ppt salinity, 6–11
◦

C) resulting to
from zero, >0–<50% and >50% mortality relative to the LAl concentration the fish experienced
while in freshwater. N=179.

No Moderate to high High
mortality mortality mortality

LAl 0% >0–50% >50%

µgL
−1

< 5 100 0 0
5–10 6 54 40
10–15 38 40 22
15–20 11 65 24
>20 22 18 60
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Table 3. Dose levels that separate “no effect” levels from doses where responses can either

range from “low to high” or are always “high” with respect to ANC (µeqL
−1

), pH (H
+
), cationic Al

(µgL
−1

) and gill Al (µgg
−1

dw) as the dose and mortality as the response. Limits are proposed
for the life stages parr and smolt. Exposure duration was <10 days.

Mortality-parr Mortality-smolt
ANC pH Ali Gill Al ANC pH LAl Ali Gill Al

No effect >15 >5.6 <45 <400 >15 >5.8 <20 <40 <300
Low-high <15 <5.6 45–90 >1000 <15 5.5–5.8 20–40 40–65 300–450
High <15 <5.5 >40 >65 >450
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Table 4. Dose levels that separate “no effect” levels from doses where responses can either

range from “low to high” or are always “high” with respect to ANC (µeqL
−1

), pH (H
+)

, cationic Al

(µgL
−1

) and gill Al (µgg
−1

dw) as the dose. All fish were exposed for 7 to 10 days. Responses
are evaluated using plasma Cl

−

(on smolt surviving a 24 h seawater challenge test) and on
effects on adult return rates (smolt release experiments; 3 – >40 days exposure).

Plasma Cl
−

(SW-FW) Adult return rates
pH LAl Ali Gill Al ANC pH LAl Gill Al

No effect >6.5 <5 <10 <25 >50 <8 <25
Low-high 6.5–6.0 5–15 10–25 25–100 <50 8–12 25–60
High <6.0 >15 >25 >100 >12 >60
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1990, Bulger et al., 1993; Lien et al., 1996). Linear relationships are entered into the graphs
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Fig. 3. Relationship between (a): pH, (b): cationic Al, and (c): gill Al and accumulated mortality
of parr. In Fig. (d): the relationship between accumulated mortality over a 10 day period is
related to how long it took to kill the first fish. The dashed lines suggest dose levels separating
“no effect”, “low to high” effect and always “high” effect.
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Fig. 4. Relationship between (a): pH, (b): cationic Al, (c): ANC and (d): gill Al and accum

Fig. 4. Relationship between (a): pH, (b): cationic Al, (c): ANC and (d): gill Al and accumulated
mortality of smolt. In Fig. (e): the relationship between accumulated mortality over a 10 day
period is related to how long it took to kill the first fish. Linear relationships are entered into the
graphs whenever significant. The dashed lines suggest dose levels separating “no effect”, “low
to high” effect and/or always “high” effect. 3351
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Fig. 5. Relationship between (a) plasma Cl
−

or (b) increase in plasma Cl
−
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values and mortality in seawater challenge tests (n=178). Linear relationships are entered into
the graphs whenever significant.

3352

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/3317/2007/hessd-4-3317-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/3317/2007/hessd-4-3317-2007-discussion.html
http://www.egu.eu


HESSD

4, 3317–3355, 2007

Water quality limits

for Atlantic salmon

(Salmo salar L.)

F. Kroglund et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

A

0

20

40

60

80

100

4.5 5.5 6.5

pH

S
W

, 
a

c
c

u
m

. 
m

o
rt

a
li
ty

; 
%

LAl; smolt Ali; smolt D

y = -38.6x + 289

R2 = 0.278

0

20

40

60

80

100

4.5 5.5 6.5

pH

S
W

 -
 F

W
; 

p
la

s
m

a
 C

l-
, 
m

M

LAl; smolt Ali; smolt

B

0

20

40

60

80

100

0 50 100
Cationic Al, µg/l

S
W

, 
a

c
c

u
m

. 
m

o
rt

a
li
ty

; 
%

LAl; smolt Ali; smolt E

y = 21.6Ln(x) - 14.9

R2 = 0.548

0

10

20

30

40

50

60

70

80

90

100

0 25 50

Cationic Al, µg L
-1

S
W

 -
 F

W
; 

p
la

s
m

a
 C

l- , 
m

M

75

LAl; smolt Ali; smolt

0

25

50

75

0 5 10 15 20

C

0

20

40

60

80

100

0 500 1000

Gill-Al, µg
-1

 dw

S
W

, 
a

c
c

u
m

. 
m

o
rt

a
li
ty

; 
%

Ali; smolt LAl; smolt F

y = 14.6Ln(x) - 15

R2 = 0.646

0

20

40

60

80

100

0 100 200 300 400 500

Gill-Al, µg g
-1

 dw

S
W

-F
W

; 
p

la
s

m
a

 C
l- , 

m
M

LAl; smolt Ali; smolt

0

25

50

0 25 50 75 100

 

Fig. 6. Mortality in a seawater challenge test with respect to (a) pH, (b) cationic Al (as LAl and Ali) and 

Fig. 6. Mortality in a seawater challenge test with respect to (a) pH, (b) cationic Al (as LAl
and Ali) and (c) gill Al concentrations measured in freshwater prior to the test. Figures (d)–(f)

show the same data, but using the increase in plasma Cl
−

from freshwater to seawater as the
biological response. To increase resolution, the relationship for low concentrations is inserted
into Figs. (e) and (f). Linear relationships are entered into the graphs whenever significant.
The dashed lines suggest dose levels separating “no effect”, “low to high” effect and/or always
“high” effect.
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Figure 7ab. Relationships between a) cationic Al (as LAl) and b) ANC with respect to effects 

Fig. 7. Relationships between (a) cationic Al (as LAl) and (b) ANC with respect to effects
on hypo-osmoregulatory capacity (plasma Cl

−

). Figures (c)–(e) Relationship between hypo-
osmoregulatory capacity, cationic Al (as LAl) and ANC with respect to adult return rates. Linear
relationships are entered into the graphs whenever significant.
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781 Figure 7. Expected mortality levels for smolt of Atlantic salmon with respect to pH, cationic Al

Fig. 8. Expected mortality levels for smolt of Atlantic salmon with respect to pH, cationic Al (as
LAl) and gill Al in relation to exposure duration. After: Kroglund and Rosseland, 2004.
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